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CSC384: Lecture 11
�Last time

• D-separation and inference in belief networks

�Today
• Variable elimination; decision making; utility theory
• Readings:

�Today: 10.3, 10.4 (utility theory)
�Next week: 10.4 (decision trees and decision nets)

�Announcements:

• Check out BN construction/evaluation applet on CI 
Web page:
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Variable Elimination
�The intuitions in examples from last time give us 
a simple inference algorithm for networks without 
loops: the polytree algorithm. We won't discuss it 
further. But be comfortable with the intuitions.
�Instead we'll look at a more general algorithm 
that works for general BNs; but the propagation 
algorithm will more or less be a special case.
�The algorithm, variable elimination, simply 
applies the summing out rule repeatedly. But to 
keep computation simple, it exploits the 
independence in the network and the ability to 
distribute sums inward.
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Factors

�A function f(X1, X2,…, Xk) is also called a factor. 
We can view this as table of numbers, one for 
each instantiation of the variables X1, X2,…, Xk.

�A tabular rep’n of a factor is exponential in k
�Each CPT in a Bayes net is a factor:

• e.g., Pr(C|A,B) is a function of three variables, A, B, C

�Notation: f(X,Y) denotes a factor over the 
variables X � Y. (Here X, Y are sets of variables.)
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The Product of Two Factors
�Let f(X,Y) & g(Y,Z) be two factors with variables 
Y in common
�The product of f and g, denoted h = f x g  (or 
sometimes just h = fg), is defined:

h(X,Y,Z) = f(X,Y) x g(Y,Z)

0.12~a~b~c0.48~a~bc0.2~b~c0.6~a~b

0.12~ab~c0.28~abc0.8~bc0.4~ab

0.02a~b~c0.08a~bc0.3b~c0.1a~b

0.27ab~c0.63abc0.7bc0.9ab

h(A,B,C)g(B,C)f(A,B)
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Summing a Variable Out of a Factor
�Let f(X,Y) be a factor with variable X  (Y is a set)
�We sum out variable X from  f  to produce a new 
factor h = X f,  which is defined:

h(Y) = x � Dom(X) f(x,Y)

0.6~a~b

0.4~ab

0.7~b0.1a~b

1.3b0.9ab

h(B)f(A,B)
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Restricting a Factor
�Let f(X,Y) be a factor with variable X  (Y is a set)
�We restrict factor  f  to X=x by setting X to the 
value  x  and “deleting”. Define  h = fX=x as:

h(Y) = f(x,Y)

0.6~a~b

0.4~ab

0.1~b0.1a~b

0.9b0.9ab

h(B) = fA=af(A,B)
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Variable Elimination: No Evidence
�Computing prior probability of query var X  can 
be seen as applying these operations on factors

P(C) = A,B P(C|B) P(B|A) P(A)

= B P(C|B) A P(B|A) P(A)

= B f3(B,C) A f2(A,B) f1(A) 

= B f3(B,C) f4(B)

= f5(C)
Define new factors: f4(B)= A f2(A,B) f1(A) and  f5(C)= B f3(B,C) f4(B)

� ��

� � � � � � � � � 	 �� � 
 � �	 � �
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Variable Elimination: No Evidence
�Here’s the example with some numbers

� ��

� � � � � � � � � 	 �� � 
 � �	 � �

~c

c

f5(C)

0.375

0.625

~b

b

f4(B)

0.15

0.85

0.1

0.9

~a

a

f1(A)

0.8~b~c0.6~a~b

0.2~bc0.4~ab

0.3b~c0.1a~b

0.7bc0.9ab

f3(B,C)f2(A,B)
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VE: No Evidence (Example 2)

P(D) = A,B,C P(D|C) P(C|B,A) P(B) P(A)

= C P(D|C) B P(B) A P(C|B,A) P(A)

= C f4(C,D) B f2(B) A f3(A,B,C) f1(A) 

= C f4(C,D) B f2(B) f5(B,C)

= C f4(C,D) f6(C)
= f7(D)

Define new factors: f5(B,C), f6(C), f7(D), in the obvious way

� �

�� � � � �

� 
 � � 	 �	 � �
� � � � 	 � ��� � � ��
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Variable Elimination: One View

�One way to think of variable elimination:
• write out desired computation using the chain rule, 

exploiting the independence relations in the network
• arrange the terms in a convenient fashion
• distribute each sum (over each variable) in as far as it 

will go
� i.e., the sum over variable X can be “pushed in” as 

far as the “first” factor mentioning X
• apply operations “inside out”, repeatedly eliminating 

and creating new factors (note that each step/removal 
of a sum eliminates one variable)



CSC 384 Lecture Slides (c) 2002, C. Boutilier

Variable Elimination Algorithm

� Given query var Q, remaining vars Z. Let F be 
set of factors corresponding to CPTs for {Q} � Z.

1. Choose an elimination ordering Z1, …, Zn of variables in Z.
2. For each Zj -- in the order given -- eliminate Zj � Z

as follows:
(a)  Compute new factor  gj = Zj f1 x f2 x … x fk,  

where the fi are the factors in F that include Zj
(b) Remove the factors  fi (that mention Zj ) from F 

and add new factor  gj to  F
3. The remaining factors refer only to the query variable Q. 

Take their product and normalize to produce P(Q)
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VE: Example 2 again

Step 1: Add f5(B,C) = A f3(A,B,C) f1(A) 
Remove: f1(A), f3(A,B,C) 

Step 2: Add f6(C)= B f2(B) f5(B,C)
Remove: f2(B) , f5(B,C) 

Step 3: Add f7(D) = C f4(C,D) f6(C) 
Remove: f4(C,D), f6(C) 

Last factor f7(D) is (possibly unnormalized) probability P(D)

Factors: f1(A) f2(B) 
f3(A,B,C) f4(C,D) 

Query: P(D)?  
Elim. Order: A, B, C

� �

�� � � � �

� 
 � � 	 �	 � �
� � � � 	 � ��� � � ��
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Variable Elimination: Evidence
�Computing posterior of query variable given 
evidence is similar; suppose we observe C=c:

P(A|c) = � P(A) P(c|A)
= � P(A) B P(c|B) P(B|A)
= � f1(A) B f3(B,c) f2(A,B) 
= � f1(A) B f4(B) f2(A,B)
= � f1(A) f5(A)
= � f6(A)

New factors:  f4(B)= f3(B,c);   f5(A)= B f2(A,B) f4(B); f6(A)= f1(A) f5(A) 

� ��

� � � � � � � � � 	 �� � 
 � �	 � �



CSC 384 Lecture Slides (c) 2002, C. Boutilier

Variable Elimination with Evidence

Given query var Q, evidence vars E (observed to be
e), remaining vars Z. Let F be set of factors 
involving CPTs for {Q} � Z.

1. Replace each factor f�� � � � � � � � 	 � 
 � 	 � � � � 
 � � 
 � � � � � � � � 
 	 � �

� 
 � � � 
 � � � � � � � � 
 � � 
 � 	 � � ��� � ��������������
	��	����
�	��

2. Choose an elimination ordering Z1, …, Zn of variables in Z.
3. Run variable elimination as above.
4. The remaining factors refer only to the query variable Q. 

Take their product and normalize to produce P(Q)
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VE: Example 2 again with Evidence

Restriction: replace f4(C,D) with f5(C) = f4(C,d) 

Step 1: Add f6(A,B)= C f5(C) f3(A,B,C)
Remove: f3(A,B,C), f5(C) 

Step 2: Add f7(A) = B f6(A,B) f2(B) 
Remove: f6(A,B), f2(B) 

Last factors: f7(A), f1(A). The product f1(A) x f7(A) is (possibly 
unnormalized) posterior. So… P(A|d) = � f1(A) x f7(A).

Factors: f1(A) f2(B) 
f3(A,B,C) f4(C,D) 

Query: P(A)?  
Evidence: D = d
Elim. Order: C, B

� �

�� � � � �

� 
 � � 	 � 	 ��
� � � �	 � ��� � � � �
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Some Notes on the VE Algorithm

�After iteration j (elimination of Zj), factors remaining in set 
F refer only to variables Xj+1, … Zn and Q. No factor 
mentions an evidence variable E after the initial restriction.
�Number of iterations: linear in number of variables
�Complexity is linear in number of vars and exponential in 

size of the largest factor. (Recall each factor has 
exponential size in its number of variables.) Can't do any 
better than size of BN (since its original factors are part of 
the factor set). When we create new factors, we might 
make a set of variables larger.
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Some Notes on the VE Algorithm

�The size of the resulting factors is determined by 
elimination ordering! (We’ll see this in detail)
�For polytrees, easy to find good ordering (e.g., 
work outside in).
�For general BNs, sometimes good orderings exist, 
sometimes they don't (then inference is 
exponential in number of vars). 

• Simply finding the optimal elimination ordering for 
general BNs is NP-hard.

• Inference in general is NP-hard in general BNs
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Elimination Ordering: Polytrees

�Inference is linear in size of 
network

• ordering: eliminate only 
“singly-connected” nodes

• e.g., in this network, eliminate 
D, A, C, X1,…; or eliminate 
X1,… Xk, D, A, C; or mix up…

• result: no factor ever larger 
than original CPTs

• eliminating B before these 
gives factors that include all of 
A,C, X1,… Xk !!!
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Effect of Different Orderings

�Suppose query variable 
is D. Consider different 
orderings for this network

• A,F,H,G,B,C,E:
�good: why?

• E,C,A,B,G,H,F:
�bad: why?

�Which ordering creates 
smallest factors?

• either max size or total
• which creates largest?
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Relevance

�Certain variables have no impact on the query. In 
ABC network, computing Pr(A) with no evidence 
requires elimination of B and C. 

• But when you sum out these vars, you compute a 
trivial factor (whose value are all ones); for example:

• eliminating C: f4(B) = C f3(B,C) = C Pr(C|B)

• 1 for any value of B   (e.g., Pr(c|b) + Pr(~c|b) = 1)

�No need to think about B or C for this query

� ��



�� � �� � �� � �	 
 � � �� 
 � � � � � �� ���� ��� �� 	 �� �� � 


Relevance: A Sound Approximation

�Can restrict attention to relevant variables. Given 
query Q, evidence E:

• Q is relevant
• if any node Z is relevant, its parents are relevant
• if E�E is a descendent of a relevant node, then E is 

relevant

�We can restrict our attention to the subnetwork
comprising only relevant variables when 
evaluating a query Q
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Relevance: Examples
�Query: P(F)

• relevant: F, C, B, A

�Query: P(F|E)
• relevant: F, C, B, A
• also: E, hence D, G
• intuitively, we need to compute

� � � � � � � 	 P(C) P(E|C) to accurately
compute P(F|E)

�Query: P(F|E,C)
• algorithm says all vars relevant; but really none 

except C, F (since C cuts of all influence of others)
• algorithm is overestimating relevant set

�

� �

�




�

�
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Probabilistic Inference

�Applications of probabilistic inference and 
Bayesian networks in AI are virtually limitless
�Some examples (slides to follow):

• mobile robot navigation
• speech recognition
• medical diagnosis, patient monitoring
• process control and monitoring
• help system under Windows (Bayes nets, really � )
• weather prediction
• etc.
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Robot Uncertainty (Thrun et al.)
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Map (Smithsonian: Thrun et al.)
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CPSC Network

�BN for diagnosing hepatobiliary diseases
• 448 nodes, 906 links, 8254 CPT entries
• see portion of network (not attached)

�Related models (medical diagnosis):
• QMR
• Pathfinder
• etc…



�� � �� � �� � �	 
 � � �� 
 � � � � � �� ���� ��� �� 	 �� �� � 


Alarm Network

�Monitoring system for patients in 
intensive care
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Pigs Network

�Determines pedigree of breeding pigs
• used to diagnose PSE disease
• half of the network show here
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Where Do Bayes Nets Come From?

�Bayes nets often handcrafted
• interact with a domain expert to: (a) identify 

dependencies among variables (causal structure);  
(b) quantify the local distributions (CPTs)

• empirical data, human expertise often used as guide

�Recent emphasis on learning BNs from data
• input: a set of cases (instantiations of variables)
• output: a network reflecting empirical distribution
• issues: identifying causal structure; missing data; 

discovery of hidden (unobserved) variables; 
incorporating prior knowledge (bias) about structure
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Decision Making under Uncertainty
�I give robot a planning problem: I want coffee

• but coffee maker is broken: robot reports “No plan!”

�If I want more robust behavior – if I want robot to 
know what to do if my primary goal can’t be 
satisfied – I should provide it with some 
indication of my preferences over alternatives

• e.g., coffee better than tea, tea better than water, 
water better than nothing, etc.

�But it’s more complex:
• it could wait 45 minutes for coffee maker to be fixed
• what’s better: tea now? coffee in 45 minutes?
• could express preferences for <beverage,time> pairs
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Preference Orderings

�A preference ordering � is a ranking of all 
possible states of affairs (worlds) S

• these could be outcomes of actions, truth assts, 
states in a search problem, etc.

• s � t: means that state s is at least as good as t

• s 
 t: means that state s is strictly preferred to t

�We insist that � is

• reflexive: i.e., s � s  for all states s 

• transitive: i.e., if  s � t  and  t � w,  then  s � w 

• connected: for all states s,t, either s � t  or t � s 
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Why Impose These Conditions?

�Structure of preference ordering 
imposes certain “rationality 
requirements” (it is a weak ordering)
�E.g., why transitivity?

• Suppose you (strictly) prefer coffee to 
tea, tea to OJ, OJ to coffee

• If you prefer X to Y, you’ll trade me Y 
plus $1 for X

• I can construct a “money pump” and 
extract arbitrary amounts of money 
from you

�

�

�

� � � �

� � � � �
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Decision Problems: Certainty

�A decision problem under certainty is:
• a set of decisions D

�e.g., paths in search graph, plans, actions, etc.
• a set of outcomes or states S

�e.g., states you could reach by executing a plan
• an outcome function f : D S

�the outcome of any decision

• a preference ordering � over S

�A solution to a decision problem is any d* � D 
such that f(d*) � f(d) for all d� D
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Computational Issues
�At some level, solution to a dec. prob. is trivial

• complexity lies in the fact that the decisions and 
outcome function are rarely specified explicitly

• e.g., in planning or search problem, you construct the 
set of decisions by constructing paths or exploring 
search paths -- don’t know outcomes in advance!

�E.g., our usual office domain
• We find a plan satisfying chc, ~cm, lt

• Can we stop searching?

• Must convince ourselves no better plan 
exists (nothing can reach best)

• Generally requires searching entire plan 
space, unless we have some clever tricks

� � � 	 � � � 	 � � �

�

� � � 	 � � � 	 � � �

�

� � � 	 � � � 	 � � �

�

� � � 	 � � � 	 � � �
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Decision Making under Uncertainty

�Suppose actions don’t have deterministic outcomes
• e.g., when robot pours coffee, it spills 20% of time, making a mess
• preferences: chc, ~mess

�

~chc,~mess
�

~chc, mess

�What should robot do?
• decision getcoffee leads to a good outcome and a bad outcome 

with some probability
• decision donothing leads to a medium outcome for sure

�Should robot be optimistic? pessimistic?
�Really odds of success should influence decision

• but how?

getcoffee
chc, ~mess

~chc, mess

donothing ~chc, ~mess
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Utilities

�Rather than just ranking outcomes, we must 
quantify our degree of preference

• e.g., how much more important is chc than ~mess

�A utility function U:S � associates a real-
valued utility with each outcome.

• U(s) measures your degree of preference for s

�Note: U induces a preference ordering �U over S 
defined as:  s �U t  iff U(s) � U(t)

• obviously � U will be reflexive, transitive, connected
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Expected Utility
�Under conditions of uncertainty, each decision d 
induces a distribution Prd over possible outcomes

• Prd(s) is probability of outcome s under decision d

�The expected utility of decision d is defined

�
∈

=
Ss

d sUsdEU )()(Pr)(

If U(chc,~ms) = 10, U(~chc,~ms) = 5, U(~chc,ms) = 0, 
then EU(getcoffee) = 8 and EU(donothing) = 5

If U(chc,~ms) = 10, U(~chc,~ms) = 9, U(~chc,ms) = 0, 
then EU(getcoffee) = 8 and EU(donothing) = 9
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The MEU Principle

�The principle of maximum expected utility (MEU)
states that the optimal decision under conditions 
of uncertainty is that with the greatest expected 
utility.
�In our example

• if my utility function is the first one, my robot should 
get coffee

• if your utility function is the second one, your robot 
should do nothing
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Decision Problems: Uncertainty

�A decision problem under uncertainty is:
• a set of decisions D
• a set of outcomes or states S
• an outcome function Pr : D (S)

� (S) is the set of distributions over S (e.g., Prd)

• a utility function U over S

�A solution to a decision problem under 
uncertainty is any d*� D such that EU(d*) �
EU(d) for all d�D

�Again, for single-shot problems, this is trivial
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Expected Utility: Notes

�Note that this viewpoint accounts for both:
• uncertainty in action outcomes
• uncertainty in state of knowledge
• any combination of the two

s0

s1

s2
�

� � �
� � �

s3

s4

�
� � 


� �  

0.7  s1

0.3  s2

0.7  t1

0.3  t2

0.7  w1

0.3  w2

�

�

! � � � � � � � " � � � � � " � # � $ # � � � � � " # � % # � & � � ' ( �



�� � �� � �� � �	 
 � � �� 
 � � � � � �� ���� ��� �� 	 �� �� � 


Expected Utility: Notes

�Why MEU? Where do utilities come from?
• underlying foundations of utility theory tightly couple 

utility with action/choice
• a utility function can be determined by asking 

someone about their preferences for actions in 
specific scenarios (or “lotteries” over outcomes)

�Utility functions needn’t be unique
• if I multiply U by a positive constant, all decisions 

have same relative utility
• if I add a constant to U, same thing
• U is unique up to positive affine transformation



�� � �� � �� � �	 
 � � �� 
 � � � � � �� ���� ��� �� 	 �� �� � 


So What are the Complications?
�Outcome space is large

• like all of our problems, states spaces can be huge
• don’t want to spell out distributions like Prd explicitly
• Soln: Bayes nets (or related: influence diagrams)

�Decision space is large
• usually our decisions are not one-shot actions
• rather they involve sequential choices (like plans)
• if we treat each plan as a distinct decision, decision 

space is too large to handle directly
• Soln: use dynamic programming methods to 

construct optimal plans (actually generalizations of 
plans, called policies… like in game trees)


