
CSC 384 Lecture Slides (c) 2002, C. Boutilier

CSC384: Lecture 11
�Last time

• D-separation and inference in belief networks

�Today
• Variable elimination; decision making; utility theory
• Readings:

�Today: 10.3, 10.4 (utility theory)
�Next week: 10.4 (decision trees and decision nets)

�Announcements:

• Check out BN construction/evaluation applet on CI
Web page:

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Variable Elimination
�The intuitions in examples from last time give us
a simple inference algorithm for networks without
loops: the polytree algorithm. We won't discuss it
further. But be comfortable with the intuitions.
�Instead we'll look at a more general algorithm
that works for general BNs; but the propagation
algorithm will more or less be a special case.
�The algorithm, variable elimination, simply
applies the summing out rule repeatedly. But to
keep computation simple, it exploits the
independence in the network and the ability to
distribute sums inward.

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Factors

�A function f(X1, X2,…, Xk) is also called a factor.
We can view this as table of numbers, one for
each instantiation of the variables X1, X2,…, Xk.

�A tabular rep’n of a factor is exponential in k
�Each CPT in a Bayes net is a factor:

• e.g., Pr(C|A,B) is a function of three variables, A, B, C

�Notation: f(X,Y) denotes a factor over the
variables X � Y. (Here X, Y are sets of variables.)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

The Product of Two Factors
�Let f(X,Y) & g(Y,Z) be two factors with variables
Y in common
�The product of f and g, denoted h = f x g (or
sometimes just h = fg), is defined:

h(X,Y,Z) = f(X,Y) x g(Y,Z)

0.12~a~b~c0.48~a~bc0.2~b~c0.6~a~b

0.12~ab~c0.28~abc0.8~bc0.4~ab

0.02a~b~c0.08a~bc0.3b~c0.1a~b

0.27ab~c0.63abc0.7bc0.9ab

h(A,B,C)g(B,C)f(A,B)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Summing a Variable Out of a Factor
�Let f(X,Y) be a factor with variable X (Y is a set)
�We sum out variable X from f to produce a new
factor h = X f, which is defined:

h(Y) = x � Dom(X) f(x,Y)

0.6~a~b

0.4~ab

0.7~b0.1a~b

1.3b0.9ab

h(B)f(A,B)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Restricting a Factor
�Let f(X,Y) be a factor with variable X (Y is a set)
�We restrict factor f to X=x by setting X to the
value x and “deleting”. Define h = fX=x as:

h(Y) = f(x,Y)

0.6~a~b

0.4~ab

0.1~b0.1a~b

0.9b0.9ab

h(B) = fA=af(A,B)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Variable Elimination: No Evidence
�Computing prior probability of query var X can
be seen as applying these operations on factors

P(C) = A,B P(C|B) P(B|A) P(A)

= B P(C|B) A P(B|A) P(A)

= B f3(B,C) A f2(A,B) f1(A)

= B f3(B,C) f4(B)

= f5(C)
Define new factors: f4(B)= A f2(A,B) f1(A) and f5(C)= B f3(B,C) f4(B)

� ��

� � � � � � � � � 	 �� �
 � �	 � �

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Variable Elimination: No Evidence
�Here’s the example with some numbers

� ��

� � � � � � � � � 	 �� �
 � �	 � �

~c

c

f5(C)

0.375

0.625

~b

b

f4(B)

0.15

0.85

0.1

0.9

~a

a

f1(A)

0.8~b~c0.6~a~b

0.2~bc0.4~ab

0.3b~c0.1a~b

0.7bc0.9ab

f3(B,C)f2(A,B)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

VE: No Evidence (Example 2)

P(D) = A,B,C P(D|C) P(C|B,A) P(B) P(A)

= C P(D|C) B P(B) A P(C|B,A) P(A)

= C f4(C,D) B f2(B) A f3(A,B,C) f1(A)

= C f4(C,D) B f2(B) f5(B,C)

= C f4(C,D) f6(C)
= f7(D)

Define new factors: f5(B,C), f6(C), f7(D), in the obvious way

� �

�� � � � �

�
 � � 	 �	 � �
� � � � 	 � ��� � � ��

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Variable Elimination: One View

�One way to think of variable elimination:
• write out desired computation using the chain rule,

exploiting the independence relations in the network
• arrange the terms in a convenient fashion
• distribute each sum (over each variable) in as far as it

will go
� i.e., the sum over variable X can be “pushed in” as

far as the “first” factor mentioning X
• apply operations “inside out”, repeatedly eliminating

and creating new factors (note that each step/removal
of a sum eliminates one variable)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Variable Elimination Algorithm

� Given query var Q, remaining vars Z. Let F be
set of factors corresponding to CPTs for {Q} � Z.

1. Choose an elimination ordering Z1, …, Zn of variables in Z.
2. For each Zj -- in the order given -- eliminate Zj � Z

as follows:
(a) Compute new factor gj = Zj f1 x f2 x … x fk,

where the fi are the factors in F that include Zj
(b) Remove the factors fi (that mention Zj) from F

and add new factor gj to F
3. The remaining factors refer only to the query variable Q.

Take their product and normalize to produce P(Q)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

VE: Example 2 again

Step 1: Add f5(B,C) = A f3(A,B,C) f1(A)
Remove: f1(A), f3(A,B,C)

Step 2: Add f6(C)= B f2(B) f5(B,C)
Remove: f2(B) , f5(B,C)

Step 3: Add f7(D) = C f4(C,D) f6(C)
Remove: f4(C,D), f6(C)

Last factor f7(D) is (possibly unnormalized) probability P(D)

Factors: f1(A) f2(B)
f3(A,B,C) f4(C,D)

Query: P(D)?
Elim. Order: A, B, C

� �

�� � � � �

�
 � � 	 �	 � �
� � � � 	 � ��� � � ��

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Variable Elimination: Evidence
�Computing posterior of query variable given
evidence is similar; suppose we observe C=c:

P(A|c) = � P(A) P(c|A)
= � P(A) B P(c|B) P(B|A)
= � f1(A) B f3(B,c) f2(A,B)
= � f1(A) B f4(B) f2(A,B)
= � f1(A) f5(A)
= � f6(A)

New factors: f4(B)= f3(B,c); f5(A)= B f2(A,B) f4(B); f6(A)= f1(A) f5(A)

� ��

� � � � � � � � � 	 �� �
 � �	 � �

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Variable Elimination with Evidence

Given query var Q, evidence vars E (observed to be
e), remaining vars Z. Let F be set of factors
involving CPTs for {Q} � Z.

1. Replace each factor f�� � � � � � � � 	 �
 � 	 � � � �
 � �
 � � � � � � � �
 	 � �

�
 � � �
 � � � � � � � �
 � �
 � 	 � � ��� � ��������������
	��	����
�	��

2. Choose an elimination ordering Z1, …, Zn of variables in Z.
3. Run variable elimination as above.
4. The remaining factors refer only to the query variable Q.

Take their product and normalize to produce P(Q)

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

VE: Example 2 again with Evidence

Restriction: replace f4(C,D) with f5(C) = f4(C,d)

Step 1: Add f6(A,B)= C f5(C) f3(A,B,C)
Remove: f3(A,B,C), f5(C)

Step 2: Add f7(A) = B f6(A,B) f2(B)
Remove: f6(A,B), f2(B)

Last factors: f7(A), f1(A). The product f1(A) x f7(A) is (possibly
unnormalized) posterior. So… P(A|d) = � f1(A) x f7(A).

Factors: f1(A) f2(B)
f3(A,B,C) f4(C,D)

Query: P(A)?
Evidence: D = d
Elim. Order: C, B

� �

�� � � � �

�
 � � 	 � 	 ��
� � � �	 � ��� � � � �

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Some Notes on the VE Algorithm

�After iteration j (elimination of Zj), factors remaining in set
F refer only to variables Xj+1, … Zn and Q. No factor
mentions an evidence variable E after the initial restriction.
�Number of iterations: linear in number of variables
�Complexity is linear in number of vars and exponential in

size of the largest factor. (Recall each factor has
exponential size in its number of variables.) Can't do any
better than size of BN (since its original factors are part of
the factor set). When we create new factors, we might
make a set of variables larger.

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Some Notes on the VE Algorithm

�The size of the resulting factors is determined by
elimination ordering! (We’ll see this in detail)
�For polytrees, easy to find good ordering (e.g.,
work outside in).
�For general BNs, sometimes good orderings exist,
sometimes they don't (then inference is
exponential in number of vars).

• Simply finding the optimal elimination ordering for
general BNs is NP-hard.

• Inference in general is NP-hard in general BNs

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Elimination Ordering: Polytrees

�Inference is linear in size of
network

• ordering: eliminate only
“singly-connected” nodes

• e.g., in this network, eliminate
D, A, C, X1,…; or eliminate
X1,… Xk, D, A, C; or mix up…

• result: no factor ever larger
than original CPTs

• eliminating B before these
gives factors that include all of
A,C, X1,… Xk !!!

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Effect of Different Orderings

�Suppose query variable
is D. Consider different
orderings for this network

• A,F,H,G,B,C,E:
�good: why?

• E,C,A,B,G,H,F:
�bad: why?

�Which ordering creates
smallest factors?

• either max size or total
• which creates largest?

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Relevance

�Certain variables have no impact on the query. In
ABC network, computing Pr(A) with no evidence
requires elimination of B and C.

• But when you sum out these vars, you compute a
trivial factor (whose value are all ones); for example:

• eliminating C: f4(B) = C f3(B,C) = C Pr(C|B)

• 1 for any value of B (e.g., Pr(c|b) + Pr(~c|b) = 1)

�No need to think about B or C for this query

� ��

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Relevance: A Sound Approximation

�Can restrict attention to relevant variables. Given
query Q, evidence E:

• Q is relevant
• if any node Z is relevant, its parents are relevant
• if E�E is a descendent of a relevant node, then E is

relevant

�We can restrict our attention to the subnetwork
comprising only relevant variables when
evaluating a query Q

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Relevance: Examples
�Query: P(F)

• relevant: F, C, B, A

�Query: P(F|E)
• relevant: F, C, B, A
• also: E, hence D, G
• intuitively, we need to compute

� � � � � � � 	 P(C) P(E|C) to accurately
compute P(F|E)

�Query: P(F|E,C)
• algorithm says all vars relevant; but really none

except C, F (since C cuts of all influence of others)
• algorithm is overestimating relevant set

�

� �

�

�

�

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Probabilistic Inference

�Applications of probabilistic inference and
Bayesian networks in AI are virtually limitless
�Some examples (slides to follow):

• mobile robot navigation
• speech recognition
• medical diagnosis, patient monitoring
• process control and monitoring
• help system under Windows (Bayes nets, really �)
• weather prediction
• etc.

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Robot Uncertainty (Thrun et al.)

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Map (Smithsonian: Thrun et al.)

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

CPSC Network

�BN for diagnosing hepatobiliary diseases
• 448 nodes, 906 links, 8254 CPT entries
• see portion of network (not attached)

�Related models (medical diagnosis):
• QMR
• Pathfinder
• etc…

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Alarm Network

�Monitoring system for patients in
intensive care

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Pigs Network

�Determines pedigree of breeding pigs
• used to diagnose PSE disease
• half of the network show here

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Where Do Bayes Nets Come From?

�Bayes nets often handcrafted
• interact with a domain expert to: (a) identify

dependencies among variables (causal structure);
(b) quantify the local distributions (CPTs)

• empirical data, human expertise often used as guide

�Recent emphasis on learning BNs from data
• input: a set of cases (instantiations of variables)
• output: a network reflecting empirical distribution
• issues: identifying causal structure; missing data;

discovery of hidden (unobserved) variables;
incorporating prior knowledge (bias) about structure

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Decision Making under Uncertainty
�I give robot a planning problem: I want coffee

• but coffee maker is broken: robot reports “No plan!”

�If I want more robust behavior – if I want robot to
know what to do if my primary goal can’t be
satisfied – I should provide it with some
indication of my preferences over alternatives

• e.g., coffee better than tea, tea better than water,
water better than nothing, etc.

�But it’s more complex:
• it could wait 45 minutes for coffee maker to be fixed
• what’s better: tea now? coffee in 45 minutes?
• could express preferences for <beverage,time> pairs

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Preference Orderings

�A preference ordering � is a ranking of all
possible states of affairs (worlds) S

• these could be outcomes of actions, truth assts,
states in a search problem, etc.

• s � t: means that state s is at least as good as t

• s
 t: means that state s is strictly preferred to t

�We insist that � is

• reflexive: i.e., s � s for all states s

• transitive: i.e., if s � t and t � w, then s � w

• connected: for all states s,t, either s � t or t � s

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Why Impose These Conditions?

�Structure of preference ordering
imposes certain “rationality
requirements” (it is a weak ordering)
�E.g., why transitivity?

• Suppose you (strictly) prefer coffee to
tea, tea to OJ, OJ to coffee

• If you prefer X to Y, you’ll trade me Y
plus $1 for X

• I can construct a “money pump” and
extract arbitrary amounts of money
from you

�

�

�

� � � �

� � � � �

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Decision Problems: Certainty

�A decision problem under certainty is:
• a set of decisions D

�e.g., paths in search graph, plans, actions, etc.
• a set of outcomes or states S

�e.g., states you could reach by executing a plan
• an outcome function f : D S

�the outcome of any decision

• a preference ordering � over S

�A solution to a decision problem is any d* � D
such that f(d*) � f(d) for all d� D

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Computational Issues
�At some level, solution to a dec. prob. is trivial

• complexity lies in the fact that the decisions and
outcome function are rarely specified explicitly

• e.g., in planning or search problem, you construct the
set of decisions by constructing paths or exploring
search paths -- don’t know outcomes in advance!

�E.g., our usual office domain
• We find a plan satisfying chc, ~cm, lt

• Can we stop searching?

• Must convince ourselves no better plan
exists (nothing can reach best)

• Generally requires searching entire plan
space, unless we have some clever tricks

� � � 	 � � � 	 � � �

�

� � � 	 � � � 	 � � �

�

� � � 	 � � � 	 � � �

�

� � � 	 � � � 	 � � �

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Decision Making under Uncertainty

�Suppose actions don’t have deterministic outcomes
• e.g., when robot pours coffee, it spills 20% of time, making a mess
• preferences: chc, ~mess

�

~chc,~mess
�

~chc, mess

�What should robot do?
• decision getcoffee leads to a good outcome and a bad outcome

with some probability
• decision donothing leads to a medium outcome for sure

�Should robot be optimistic? pessimistic?
�Really odds of success should influence decision

• but how?

getcoffee
chc, ~mess

~chc, mess

donothing ~chc, ~mess

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Utilities

�Rather than just ranking outcomes, we must
quantify our degree of preference

• e.g., how much more important is chc than ~mess

�A utility function U:S � associates a real-
valued utility with each outcome.

• U(s) measures your degree of preference for s

�Note: U induces a preference ordering �U over S
defined as: s �U t iff U(s) � U(t)

• obviously � U will be reflexive, transitive, connected

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Expected Utility
�Under conditions of uncertainty, each decision d
induces a distribution Prd over possible outcomes

• Prd(s) is probability of outcome s under decision d

�The expected utility of decision d is defined

�
∈

=
Ss

d sUsdEU)()(Pr)(

If U(chc,~ms) = 10, U(~chc,~ms) = 5, U(~chc,ms) = 0,
then EU(getcoffee) = 8 and EU(donothing) = 5

If U(chc,~ms) = 10, U(~chc,~ms) = 9, U(~chc,ms) = 0,
then EU(getcoffee) = 8 and EU(donothing) = 9

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

The MEU Principle

�The principle of maximum expected utility (MEU)
states that the optimal decision under conditions
of uncertainty is that with the greatest expected
utility.
�In our example

• if my utility function is the first one, my robot should
get coffee

• if your utility function is the second one, your robot
should do nothing

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Decision Problems: Uncertainty

�A decision problem under uncertainty is:
• a set of decisions D
• a set of outcomes or states S
• an outcome function Pr : D (S)

� (S) is the set of distributions over S (e.g., Prd)

• a utility function U over S

�A solution to a decision problem under
uncertainty is any d*� D such that EU(d*) �
EU(d) for all d�D

�Again, for single-shot problems, this is trivial

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Expected Utility: Notes

�Note that this viewpoint accounts for both:
• uncertainty in action outcomes
• uncertainty in state of knowledge
• any combination of the two

s0

s1

s2
�

� � �
� � �

s3

s4

�
� �

� �

0.7 s1

0.3 s2

0.7 t1

0.3 t2

0.7 w1

0.3 w2

�

�

! � � � � � � � " � � � � � " � # � $ # � � � � � " # � % # � & � � ' (�

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

Expected Utility: Notes

�Why MEU? Where do utilities come from?
• underlying foundations of utility theory tightly couple

utility with action/choice
• a utility function can be determined by asking

someone about their preferences for actions in
specific scenarios (or “lotteries” over outcomes)

�Utility functions needn’t be unique
• if I multiply U by a positive constant, all decisions

have same relative utility
• if I add a constant to U, same thing
• U is unique up to positive affine transformation

�� � �� � �� � �	
 � � ��
 � � � � � �� ���� ��� �� 	 �� �� �

So What are the Complications?
�Outcome space is large

• like all of our problems, states spaces can be huge
• don’t want to spell out distributions like Prd explicitly
• Soln: Bayes nets (or related: influence diagrams)

�Decision space is large
• usually our decisions are not one-shot actions
• rather they involve sequential choices (like plans)
• if we treat each plan as a distinct decision, decision

space is too large to handle directly
• Soln: use dynamic programming methods to

construct optimal plans (actually generalizations of
plans, called policies… like in game trees)

