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CSC384: Lecture 10
�Last time

• Inference and Independence

�Today
• Reasoning under uncertainty (belief networks)

�Readings:
• Today: 10.3 (note: d-separation not covered in text)
• Next week:  10.3 (var. elim.), 10.4 (decision making)
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Exploiting Cond. Ind. (Recap)

�Let’s see what conditional independence buys us
�Consider a story:

• If Craig woke up too early E, Craig probably needs 
coffee C; if C, Craig needs coffee, he's likely angry A. 
If A, there is an increased chance of an aneurysm 
(burst blood vessel) B. If B, Craig is quite likely to be 
hospitalized H.
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Cond’l Ind. in our Story (Recap)

�If you learned any of E, C, A, or B, your assessment of 
Pr(H) would change. 

• E.g., if any of these are seen to be true, you would increase 
Pr(h) and decrease Pr(~h). 

• So H is not independent of E, or C, or A, or B.

�But if you knew value of B (true or false), learning value 
of E, C, or A, would not influence Pr(H). Influence these 
factors have on H is mediated by their influence on B.

• Craig doesn't get sent to the hospital because he's angry, he 
gets sent because he's had an aneurysm.

• So H is independent of E, and C, and A, given B
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Cond’l Ind. in our Story (Recap)

�So H is independent of E, and C, and A, given B
�Similarly:

• B is independent of E, and C, given A
• A is independent of E, given C

�This means that:
• Pr(H | B, {A,C,E} )  =  Pr(H|B)

� i.e., for any subset of {A,C,E}, this relation holds
• Pr(B | A, {C,E} ) = Pr(B | A)
• Pr(A | C, {E} ) = Pr(A | C)
• Pr(C | E)    and    Pr(E)   don’t “simplify”
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Cond’l Ind. in our Story (Recap)

�By the chain rule (for any instantiation of H…E):
• Pr(H,B,A,C,E) = 

Pr(H|B,A,C,E) Pr(B|A,C,E) Pr(A|C,E) Pr(C|E) Pr(E)

�By our independence assumptions:
• Pr(H,B,A,C,E) = 

Pr(H|B) Pr(B|A) Pr(A|C) Pr(C|E) Pr(E)

�We can specify the full joint by specifying five 
local conditional distributions: Pr(H|B); Pr(B|A); 
Pr(A|C); Pr(C|E); and Pr(E) 
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Example Quantification

�Specifying the joint requires only 9 parameters (if 
we note that half of these are “1 minus” the 
others), instead of 31 for explicit representation

• linear in number of vars instead of exponential!
• linear generally if dependence has a chain structure
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Inference is Easy

�Want to know P(a)? Use summing out rule:
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Inference is Easy

�Computing P(a) in more concrete terms:
• P(c) = P(c|e)P(e) + P(c|~e)P(~e) 

= 0.8 * 0.7 + 0.5 * 0.3  = 0.78
• P(~c) = P(~c|e)P(e) + P(~c|~e)P(~e) = 0.22

�P(~c) = 1 – P(c), as well
• P(a) = P(a|c)P(c) + P(a|~c)P(~c) 

= 0.7 * 0.78 + 0.0 * 0.22 = 0.546
• P(~a) = 1 – P(a) = 0.454 
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Bayesian Networks

�The structure above is a Bayesian network. A BN 
is a graphical representation of the direct 
dependencies over a set of variables, together 
with a set of conditional probability tables (CPTs) 
quantifying the strength of those influences.
�Bayes nets generalize the above ideas in very 
interesting ways, leading to effective means of 
representation and inference under uncertainty.
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Bayesian Networks

�A BN over variables {X1, X2,…, Xn}  consists of:
• a DAG whose nodes are the variables
• a set of CPTs Pr(Xi | Par(Xi) )   for each  Xi

�Key notions (see text for defn’s, all are intuitive):
• parents of a node: Par(Xi) 
• children of node
• descendents of a node
• ancestors of a node
• family: set of nodes consisting of Xi and its parents

�CPTs are defined over families in the BN 
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An Example Bayes Net
�A couple CPTS 

are “shown”

�Explict joint 
requires 211 -1 
=2047 parmtrs

�BN requires 
only 27 parmtrs
(the number of 
entries for each 
CPT is listed)
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Semantics of a Bayes Net

�The structure of the BN means: every Xi is 
conditionally independent of all of its 
nondescendants given it parents:

Pr(Xi | S � Par(Xi)) = Pr(Xi | Par(Xi))

for any subset S � NonDescendents(Xi)
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Semantics of Bayes Nets (2)

�If we ask for Pr(x1, x2,…, xn) we obtain
• assuming an ordering consistent with network 

�By the chain rule, we have: 

Pr(x1, x2,…, xn) 
= Pr(xn | xn-1,…,x1) Pr(xn-1 | xn-2,…,x1)… Pr(x1)
= Pr(xn | Par(Xn-1)) Pr(xn-1 | Par(xn-2))… Pr(x1)

�Thus, the joint is recoverable using the 
parameters (CPTs) specified in an arbitrary BN
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Constructing a Bayes Net

�Given any distribution over variables X1, X2,…, 
Xn, we can construct a Bayes net that faithfully 
represents that distribution.

Take any ordering of the variables (say, the order given), 
and go through the following procedure for Xn down to X1. 
Let Par(Xn) be any subset S � {X1,…, Xn-1} such that Xn
is independent of {X1,…, Xn-1} - S given S. Such a subset 
must exist (convince yourself). Then determine the parents 
of Xn-1 the same way, finding a similar S � {X1,…, Xn-2} , 
and so on. In the end, a DAG is produced and the BN 
semantics must hold by construction.
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Causal Intuitions

�The construction of a BN is simple
• works with arbitrary orderings of variable set
• but some orderings much better than others!
• generally, if ordering/dependence structure reflects 

causal intuitions, a more natural, compact BN results

�In this BN, we’ve used the 
ordering Mal, Cold, Flu, 
Aches to build BN for 
distribution P

• Variable can only have 
parents that come earlier in 
the ordering
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Causal Intuitions

�Suppose we build the BN for distribution P using 
the opposite ordering

• i.e., we use ordering Aches, Cold, Flu, Malaria
• resulting network is more complicated!

�Mal depends on Aches; 
but it also depends on 
Cold, Flu given Aches

• Cold, Flu explain away Mal 
given Aches

�Flu depends on Aches; but 
also on Cold given Aches
�Cold depends on Aches
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Testing Independence

�Given BN, how do we determine if two variables 
X, Y are independent (given evidence E)?

• we use a (simple) graphical property

�D-separation: A set of variables E d-separates X 
and Y if it blocks every undirected path in the BN 
between X and Y. (We'll define blocks next.)
�X and Y are conditionally independent given 
evidence E if  E d-separates X and Y

• thus BN gives us an easy way to tell if two variables 
are independent (set E = �) or cond. independent
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Blocking in D-Separation

�Let P be an undirected path from X to Y in a BN. 
Let E be an evidence set. We say E blocks path 
P iff there is some node Z on the path such that:

• Case 1: one arc on P goes into Z and one goes out of 
Z, and Z�E; or

• Case 2: both arcs on P leave Z, and Z�E; or

• Case 3: both arcs on P enter Z and neither Z, nor any 
of its descendents, are in E.
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Blocking: Graphical View
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D-Separation: Intuitions



CSC 384 Lecture Slides (c) 2002, C. Boutilier

D-Separation: Intuitions
�Subway and Therm are dependent; but are independent 

given Flu (since Flu blocks the only path)
�Aches and Fever are dependent; but are independent given 

Flu (since Flu blocks the only path). Similarly for Aches and 
Therm (dependent, but indep. given Flu).
�Flu and Mal are indep. (given no evidence): Fever blocks 

the path, since it is not in evidence, nor is its decsendant
Therm.  Flu,Mal are dependent given Fever (or given 
Therm): nothing blocks path now.
�Subway,ExoticTrip are indep.; they are dependent given 

Therm; they are indep. given Therm and Malaria. This for 
exactly the same reasons for Flu/Mal above.
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Inference in Bayes Nets

�The independence sanctioned by D-separation 
allows us to compute prior and posterior 
probabilities quite effectively.
�We'll look at a couple simple examples to 
illustrate. We'll focus on networks without loops. 
(A loop is a cycle in the underlying undirected
graph. Recall the directed graph has no cycles.)
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Simple Forward Inference (Chain)

�Computing prior require simple forward 
“propagation” of probabilities (using Subway net)

P(J) = M,ET P(J|M,ET) P(M,ET)

= M,ET P(J|M) P(M|ET) P(ET)

= M P(J|M) ET P(M|ET) P(ET)

�(1) follows by summing out rule; (2) by chain rule 
and independence; (3) by distribution of sum

• Note: all (final) terms are CPTs in the BN
• Note: only ancestors of J considered
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Simple Forward Inference (Chain)

�Same idea applies when we have “upstream” 
evidence

P(J | et) = M P(J | M,et) P(M | et)

= M P(J | M) P(M | et)
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Simple Forward Inference (Pooling)

�Same idea applies with multiple parents

P(Fev) = Flu,M P(Fev|Flu,M) P(Flu,M)

= Flu,M P(Fev|Flu,M) P(Flu) P(M)

= Flu,M P(Fev|Flu,M) TS P(Flu|TS) P(TS)          
ET P(M|ET) P(ET)

�(1) follows by summing out rule; (2)  by 
independence of Flu, M; (3) by summing out

• note: all terms are CPTs in the Bayes net
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Simple Forward Inference (Pooling)

�Same idea applies with evidence

P(Fev|ts,~m) = Flu P(Fev |Flu,ts,~m) P(Flu| ts,~m)

= Flu P(Fev|Flu,~m) P(Flu|ts)
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Simple Backward Inference

�When evidence is downstream of query variable, 
we must reason “backwards.” This requires the 
use of Bayes rule:

P(ET | j) = � P(j | ET) P(ET)

= � M P(j | M,ET) P(M|ET) P(ET)

= � M P(j | M) P(M|ET) P(ET)

�First step is just Bayes rule
• normalizing constant � is 1/P(j); but we needn’t 

compute it explicitly if we compute P(ET | j) for each 
value of ET: we just add up terms P(j | ET) P(ET) for 
all values of ET (they sum to P(j))



CSC 384 Lecture Slides (c) 2002, C. Boutilier

Backward Inference (Pooling)

�Same ideas when several pieces of evidence lie 
“downstream”

P(ET | j,fev) = � P(j,fev | ET) P(ET)

= � M P(j,fev | M,ET) P(M|ET) P(ET)

= � M P(j,fev | M) P(M|ET) P(ET)

= � M P(j | M) P(fev | M) P(M|ET) P(ET)
• Same steps as before; but now we compute prob of 

both pieces of evidence given hypothesis ET and 
combine them. Note: they are independent given M; 
but not given ET.

• Still must simplify  P(fev|M)  down to CPTs (as usual)
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Variable Elimination
�The intuitions in the above examples give us a 
simple inference algorithm for networks without 
loops: the polytree algorithm. We won't discuss it 
further. But be comfortable with the intuitions.
�Instead we'll look at a more general algorithm 
that works for general BNs; but the propagation 
algorithm will more or less be a special case.
�The algorithm, variable elimination, simply 
applies the summing out rule repeatedly. But to 
keep computation simple, it exploits the 
independence in the network and the ability to 
distribute sums inward.


