

/ 1

Digital Air Brush – a 10 DOF bimanual tool
Paulo Pacheco2,1 George Fitzmaurice1,2 Ian Ameline 1 William Buxton1,2

1Alias|wavefront
Toronto, Ontario

Canada

2Department of Computer Science
University of Toronto

Toronto, Ontario, Canada

ABSTRACT

There is an ongoing tension in user interface design between using
new tools in new ways, which requires the acquisition of new
skills, vs tailoring computer-based tools around the way things are
done in traditional media, thereby exploiting existing skills. The
former might be called innovation and the latter emulation. We
explore the relationship between the two within the context of a
computer paint program, in particular, an airbrush tool. In the
process, we also explore human interaction with computers using
a high (10) degrees of freedom (DOF) input device, the Wacom
Intuos tablet. The investigation sheds new light on not only future
paint programs, but graphical interaction in general.

Keywords

Bimanual, two-handed, DOF, airbrush, paintbrush, stencil,
cursors, feedback.

1. Introduction
The use of computers has had a strong impact on how we think
about problems and perform specific tasks. In many, if not most
cases, there is little relationship between how work was
traditionally performed, and how it is done with computers.
Modeling 3D forms with clay is fundamentally different than
doing so with 3D computer graphics. Few, if any, of the skills of
the clay sculptor transfer easily to sculpting with a computer. The
(generally tacit) assumption has been that the price paid in
discarding old skills and learning new ones was made up for in
other benefits accruing from the new tools.
In some areas, computer paint programs, for example, the
computer techniques have tried to follow much more closely the
traditional techniques. At the basic level, at least, if you could
draw and paint with traditional media, your could rapidly
capitalize on these skills using the computer, and thereby get the
best of both media, while paying a very low price in terms of new
skills required.
The problem with this latter, emulation approach, is that at a
certain point (generally sooner than later) the correspondence
between the traditional and the new break down. A consequence
is that while expectations generated by the familiar pointed one
way, the reality of the computer tool went in another. A good
example of this is with the air brush. While the computer version
is superficially similar to the real thing, this breaks down almost
immediately upon probing even slightly beyond the surface.
In what follows, we discuss our practice and experience in
developing a prototype paint program, focussing on the air brush
tool. Our purposes are manifold. First, we want to see how far we

can go in terms of maximising skill transfer from the traditional
media. In order to do so, we need to push well beyond the number
of degrees of freedom typically used in computer air brush tools.
In this process, we purposely constrained ourselves to doing so
using widely available technology rather than exotic "one off"
devices.
What we found is that this deep and narrow study gives rise to
some interesting insights that have, in our opinion, significant
implications to the design of future paint systems, specifically,
and computer graphics applications, in general.

2. Traditional Air Brush
A traditional airbrush has multiple degrees of freedom. The size
of the ink pattern is largely determined by the distance of the
brush from the surface being painted. The shape of the pattern is
a conic section determined by the angle of tilt of the airbrush, and
the orientation of the conic section is determined by the direction
of the tilt. The amount of ink that is emitted per unit time is
controlled by a spring loaded trigger, mounted on the side of the
device.

Figure 1: A traditional airbrush drawing process.

What we have described thus far is the airbrush itself. This is
something that can be (but isn't) emulated reasonably well with
existing technology. (More on that later.)
If we move from a focus on the tool to the work, intent, and
method of use, we see that even if we copied a traditional airbrush
perfectly with a computer, the tool would still be inadequate in

/ 2

comparison with the real thing. The reason for this can be gained
by anyone who carefully reads any book on airbrush technique, or
simply watches a professional artist at work. What quickly should
become clear is that airbrushes are almost never used alone. In
almost all cases, they are used in combination with a "frisket" or
stencil, which is typically held in the other hand. In fact, the key
feature of the vocabulary of an airbrush is a sharp edge on one
side, made possible by the frisket, and a soft feathered edge on the
other, non-masked side.

Figure 1 shows a traditional airbrush artist also using a piece of
cardboard cut to a desired shape as a mask.

3. Conventional Digital Airbrushes
Digital paint programs have a fairly long history, dating from the
late '70s and early '80s. [12]. In many ways they grew in
sophistication to the point where they have become standard tools
of the graphic artist. However, even today, there is little
resemblance between the richness of the digital tool compared to
the traditional one, when we look at airbrushes.
In fairness, until recently, this was partly due to the hardware
technology available. Affordable generally available pressure
sensitive styli are less than 10 years old. Early styli were tethered,
affecting usability, and the graphics displays were not capable of
handling the large brushes that were associated with airbrush art.
Hence, the fact that digital airbrushes did not much resemble real
ones is understandable. Typically they used stylus pressure to
control the size and/or the amount of ink, and the ink pattern was
some gaussian type distribution. Examples of this generation of
digital airbrush are Corel PhotoPaint [14] and Adobe Photoshop
[13].

More recently, tablets have become available that support styli
with pressure sensitive tips, wheels on the side that emulate the
trigger on a conventional airbrush. They are also able to sense the
tilt of the stylus, and even enable the user to control another
widget, such as a digital frisket, by simultaneously sensing the
position and orientation of a puck on the tablet [11].
Painter6 from MetaCreations [15] is the first product to attempt to
come closer to mimicking traditional technique of airbrushing.
They use a conic section for their airbrush, and the side trigger to
control inkflow. Nevertheless, the feel is still not smooth, and the
tool is still not capable of taking full advantage of the skills of a
trained traditional airbrush artist. Foremost, in this regard, is the
ability to dynamically change the size of the pattern, and use the
airbrush in combination with a frisket or mask.
In this regard, the only product that has supported bimanual
airbrushes with movable masks is Alias|Wavefront's StudioPaint.
However, this product does not take advantage of tilt or conic
sections.
None of the tools yet do the job that needs to be done. Yet, one of
our arguments is that with the technology available today, this
need not be the case.
While providing a brush with real-time responsiveness where that
brush is sub-pixel positioned, has variable intensity, size and
shape combined with a stencil mask presents a formidable
challenge, it can now be done. Several tens of millions of different
shapes and intensities of brush images may have to be stored.
Even for cursor feedback, several million shapes must be

computed. Providing all this matching real-time requirements,
was not an easy task for a personal computer even as recently as
some months ago. [Note: This could be accomplished on an SGI
Reality Engine as far back as 1993] We are just entering a very
particular moment that allows us to put everything together in a
reasonably priced package.

4. A Hybrid Digital Airbrush Tool
In our approach (Figure 2), we propose a combination of two
tools: an airbrush and a paintbrush. The idea is to capture as
closely as possible the skills and technique of a traditional
airbrush, and at the same time, integrate this with other
functionality commonly used in combination with it, but not
practical to integrate with traditional media.
Without pressure on the tip, we have an airbrush tool, with tilt for
the shape, distance being controlled by the puck wheel (size), and
ink by the stylus wheel. The airbrush is in effect only when the
stylus is used off of the tablet surface, as in the case of traditional
media.
However, when the stylus comes into contact with the tablet, its
functionality switches to a pressure sensitive "marker" tool, rather
than an airbrush. With this, size is controlled by the pressure.
Table 1 summarises the functionality of the tool.

Figure 2: Our proposal. Note that the Stylus is above the
Tablet.

Tool Ink Size Shape

Real Trigger Distance Tilt

Traditional Tip Tip Tilt

Mimic Stylus Wheel Tip Tilt

New (Tip = 0) Stylus Wheel Puck Wheel Tilt

New (Tip > 0) Stylus Wheel Tip Tilt

Table 1: Comparison among several airbrush tool approaches,
our purpose and the real airbrush

/ 3

Table 2 shows the mapping of the interchangeable analogue input
attributes with the tool.

Tip
State Attribute

Puck
Wheel

Stylus
Wheel

Stylus
Tip

Puck
Stylus
Offset

Stylus
Button

Size ü 5

Ink ü 5 P = 0

Zoom ü 5 ü

Size ü

Ink ü P > 0

Zoom ü

Table 2: Analogue inputs mapping

5. Degrees of Freedom
Several works on evaluation of human-computer interaction are
available. Since a deeper analysis would be beyond the scope of
this paper, we summarize some interesting results obtained by
Shumin Zhai [4][p101]:
“The physical property of a 6 DOF input device should provide
rich proprioceptive feedback so that the user can easily feel her
control actions so as to learn the task quickly.
The controller transfer function used in any interaction technique
should be compatible with the characteristics of the physical
device.
Fine, small muscle groups and joints (i. e. fingers) should be
included in the operation of input devices when possible.
Visual display of user actions in relation to target objects should
be designed to allow immediate extereoceptive feedback, and the
inclusion of semi-transparency well serves this purpose by
revealing the depth relationship between a cursor and target
objects.”

DOF Device Action / Control

2 Puck Translation (x / y) Translates Mask / Paper

1 Puck Rotation Rotates Mask / Paper

0 Any Puck Button Toggles Mask / Paper
action

1 Wheel Zoom

1 Pressure Airbrush distance (shape
size)

1 Wheel Ink flow

2 Tilt (x / y) Airbrush tilt

2 Stylus Translation (x / y) Airbrush x / y position

Table 3: DOF implemented in our application

In this work, we are extending these concepts to a 10-DOF system
(Table 3). As a matter of fact, we are still far from the at least 56-
DOF the human body has (considering only bones movements).
The limitation, however, is the connection human - machine,
keeping ALL of those DOF’s in a conscience level at the same
time.

6. User Interface
In the traditional digital airbrush tool, we are only concerned with
the position and pressure. In contrast, this tool offers the tilt and
the ink flow control. In addition, an actual piece of paper is
simulated providing both rotation and translation, as in the real
world. A Stencil Mask completes the metaphor.
The graphical interface chosen is made up of the following
components:

• Sheet of Paper

• Stencil Mask

• Variable Cursor.

The input control devices are:

• Stylus Pen (Figure 3)

• Six-button Puck (Figure 4)

• Wacom tablet.

Figure 7 shows the basic element output.

Figure 3: The Stylus Pen and its various eleme nts: the eraser
(on top), the tip, on bottom and the wheel, close to the index
finger.

/ 4

Figure 4: The Puck - The puck wheel appears in foreground,
close to the table where it lies.

The Paper is the region where the user draws. It has the translation
and rotation properties, which are controlled by the Puck when
any of its buttons is pressed.
 The Stencil Mask can be any bitmap. As a consequence, it can be
any irregular shape, concave or convex, continuous or not. It is the
default object controlled by the Puck, when no button is pressed.
The puck wheel controls the amount of zoom for both Paper and
Stencil Mask.
The Variable Cursor is an important element in the application,
since it is responsible for providing the feedback for the
dominant-hand (DH). It is basically an ellipse with variable shape
and position, which is modeled according to the Stylus Pen
position, tilt and pressure.

7. Algorithms
To implement the various elements mentioned in the previous
item, we had to deal with several optimizations.

7.1 Paper
For the implementation of the real-time translating and rotating
paper, two coordinate systems were used.

One fixed in the origin, without rotation or translation, being used
only in back buffer, to record information in memory, only. This
information is used only when the paper is either rotated or
translated.
The other coordinate system is aligned to the actual paper the user
sees on the screen. It is used basically to avoid slow memory
operations, using as much as possible hardware capabilities, such
as the OpenGL display lists.

7.2 Mask
Since the mask is basically stored in a display list, not being
modified during the entire process, it is the fastest component to
be displayed. For the stencil operations, only OpenGL blending is
being used, instead of its slower stencil buffer.

7.3 Strokes and Variable Cursors
The elliptical strokes for the brushes used for the output are stored
previously in OpenGL display lists, being calculated as it is
shown in the next section. The same occurs for the cursors, but
only the shape is calculated, without ink issues.
It is also interesting to mention that in order not to have a
flickering cursor, some copy and draw pixel operations are
performed in the front and back buffer.

Some mathematical derivations are presented in Appendix 1.

8. Conclusions
Despite their long history (in computer terms), digital airbrushes
have not yet reached their potential. In order to do so, and in so
doing deliver artists tools worthy of their skill, we have to move
beyond the individual tools and focus on workflow and skill, not
technology. The underlying technology is currently there to
deliver worthy tools. What we as computer professionals need to
do is apply the same concern with design to our products, as the
artists that we ask to use them apply to their output.

9. Future Work
There are some obvious and practical extensions of this work.
First, we would like to increase blending to at least 12 bits per
channel to offer an even softer brush edge. In general, we would
also like to continue to improve the overall performance of the
system. The user interface can also be enhanced in a number of
ways such as adding a more sophisticated set of brush-related
widgets such as a color palette and allowing the mask and menus
to be transparent to reduce interference between the user and the
artwork. Lastly, we would like to explore how our techniques
would translate to painting in 3D.

10. ACKNOWLEDGMENTS
The authors would like to thank Azam Khan, Jade Rubick,
Gordon Kurtenbach, Ravin Balakrishnan, Stephen Spenceley and
Jill Jacob at Alias|wavefront for their comments and assistance to
this work. Lastly, we would like to thank Wacom for their
encouragements and supplying us with Intuos tablets, pucks and
air brushes.

11. REFERENCES
[1] Moore, D. S. and McCabe, G. P. Introduction to the Practice

of Statistics, Freeman, 1993.
[2] Foley, J. D., van Dam, A., Feiner, S. K., Hughes, J. F.

Computer Graphics: Principles and Practice. Addison
Wesley, Reading, MA. 1990.

[3] Porter, T. and Duff, T. Compositing Digital Images.
Proceedings of SIGGRAPH 84, volume 18, pages 253-259,
July 1984.

[4] Zhai, S. Human Performance In Six Degree Of Freedom
Input Control. Ph.D. Thesis. University of Toronto.
Department of Industrial Engineering. 1995

/ 5

[5] Wright, R S. and Sweet, M. OpenGL Superbible. Waite
Group Press. 1996

[6] Silicon Graphics. OpenGL Reference Manual. Addison
Wesley. 1992.

[7] Neider, J., Davis T., Woo M., OpenGL Programming Guide.
Addison Wesley. 1993.

[8] Kurtenbach G., Fitzmaurice, G., Baudel, T., Buxton, B. The
design and evaluation of a GUI Paradigm based on Tablets,
Two-hands and Transparency.

[9] Smith, A.R.. Paint, Tutorial: Computer Graphics, pp. 501-
515 (1982). IEEE Computer Society. Edited by K. S. Booth.

[10] Maurello, R. S. The Complete Airbrush Book. Wm. Penn
Publishing, New York. 1955.

[11] Wacom: http://www.wacom.com

[12] Smith, A.R. (1982). Paint. In K. S. Booth (Ed.). Tutorial:
Computer Graphics . IEEE Computer Society, 501-515.

[13] Adobe Photoshop:
http://www.adobe.com/products/photoshop/main.html

[14] Corel Photopaint: http://www.corel.com/paint9/index.htm

[15] MetaCreations Painter6:
http://www.metacreations.com/products/painter6/

[16] Alias|Wavefront StudioPaint: http://www.aw.sgi.com

Appendix 1: Stroke derivations

In this section we present some mathematical derivations, part of
which was used to implement the brush shapes and feedback
cursor.

A.1. Geometry

Let a cone (Figure 5),

()[]20
2
0

2
0 tanα−=+ zpyx (1)

where α is the cone angle, and p is its axle length

and a plane,

00 =z

in the),,(000 zyx coordinate system.

Rotating the plane clockwise by θ degrees and considering a new
coordinate system (x, y, z), so that the plane equation be

z = 0 (2)

we have









θ+θ=

=
θ−θ=

cossen

sincos

00

0

00

zxz

yy
zxx

and thus,









θ+θ−=

=
θ+θ=

cossin

sincos

0

0

0

zxz

yy
zxx

 (3)

Substituting (2) and (3) in (1),

() ()[] →αθ−θ+=+θ+θ =0222 tancossinsincos zzxpyzx

() α=+αθ−αθ−θ 22222222 tantansin2tansincos pypxx

Analyzing the cases of θ + α, we have three cases:

1) ()Parabolao90=α+θ

α−=θ o90 , then









α
+αα=

cos2
tansin22 pxpy

2) ()Ellipseo90<α+θ

()
1

tansincos
tancos

tansincos

tancos

tansincos
tansin

222

222

2

2222

222

2

222

2

=

αθ−θ
αθ

+

αθ−θ

αθ










αθ−θ
αθ

−

p
y

p

p
x

R2

R2

p

α
α

z

x

xo

zo

θ

R1

R

Figure 5: Schematic cone, intercepting the plane z=0

/ 6

Which is an equation of an ellipse, where

αθ−
αθ

=
αθ−θ

αθ
= 222221 tantan1

tanseccos
tansincos

tancos pp
R

αθ−

α
=

αθ−θ

αθ
=

22222
2

tantan1

tan

tansincos

tancos pp
R

αθ−
αθθ

=
αθ−θ

αθ
= 22222

2

tantan1
tanseccostan

tansincos
tansin pp

X M

3) ()Hyperbolao90>α+θ

()
1

costansin
tancos

costansin

tancos

costansin
tansin

222

222

2

2222

222

2

222

2

=

θ−αθ
αθ

−

θ−αθ

αθ










θ−αθ
αθ

+

p
y

p

p
x

In this implementation, we considered only the second case,
leaving the other cases to be considered for future
implementations.

A.1.2. Ink

Since we have already our boundaries limited to a known ellipse
shape, now we are able to fill the ellipse. To do this, lets consider
Figure 6, through which we will derive the amount of ink for each
pixel, taking into account two things:

• The intensity decrements in a manner inversely proportional
to the square of the distance from the vertex V of the cone,
from where the ink is emitted, in our model, and

• The variation of the ink intensity according to the angle β the
pixel has in relation to the axle of the cone, which will be
modeled as a Gaussian curve.

The distance d from a generic point inside the ellipse curve is:

() () 2222 cossin pp ypxpd +θ++θ=

And the angle β can be calculated as follows:

β⋅⋅−+=+ cos22222 dpdpyx pp

()
dp

yxdp pp

⋅

+−+
=β∴

2
cos

2222

 (4)

We can, then, consider a Gaussian ink distribution, using the
following equation, using the β angle calculated in (4).

2

2
1

2
1)(









θ
β

−

πσ
=β ef (5)

Then, the final value for the amount of ink, can be given by the
following expression:

()
20 d

f
Kink

β
= ,

where K0 is a constant and ()βf is calculated in (5).

V

P

F

d

yp

xp

p

θ

β

Figure 6: Auxiliary scheme to calculate the pixel intensity
where F = ellipse focus, P = pixel, d = distance between the
Pixel P and the cone vertex V.

/ 7

Figure 7: The basic elements - Paper, Mask and Feedback
Cursor

Figure 9: Some random drawing exploring our application
capabilities

Figure 8: Some colour drawing
.

Figure 10: The same drawing as in Figure 9, with the paper
zoomed, rotated and translated.

/ 8

Figure 11: Some traditional (real) airbrush tools

