
CSCD18 Tutorial 3

2D OpenGL Transformations
OpenGL transformation commands set up a 4 by 4 transformation matrix for all transformations.
Therefore, the transformation looks like this:�

Qx

Qy

0
1 ����� m11 m12 0 t x

m21 m22 0 t y

0 0 1 0
0 0 0 1 � � P x

P y

0
1 �

As mentioned previously the transformation matrix, M, is normally created using one or more of the
following OpenGL function calls:

Translation (in the x or y directions):
glTranslatef(tx, ty, 0.0);

Rotation (ºӨ about the z-axis):
glRotatef(ºӨ , 0.0, 0.0, 1.0);

Scaling (in the x or y directions):
glScalef(� x, � y, 1.0);

Shearing: there is no specific GL command; use a combination of scaling and rotation.

Combining Transformations
We can combine two or more transformations and compactly define them using a single matrix.
Consider the following rectangular object:

Its points are defined in the local or object coord system as a set
of points starting from the origin and proceeding in a CCW
direction as follows:

OBJ: {(0,0), (2, 0), (2, 1), (0, 1)}� Suppose that we translate the object by 1 unit in the x-direction
and 1 unit in the y-direction. Denote this transformation by T.� We can express this transformation as:

P 	 OBJ = T POBJ

page 7

fig 2.1

fig 2.0y

x

1

2

1

y

x1

1

2

2

CSCD18 Tutorial 3� Now suppose that we rotate the object by 45 � about the origin
(z-axis) and denote this transformation by R.� We can express this overall transformation as:

P
�

OBJ = R P 	 OBJ

 = R T POBJ� Note that all of the transformations were described with respect
to a fixed set of axes, namely the origin.

Now, if we perform the transformations in reverse order starting
with the rotation:� We can express the rotation transformation as:

P 	 OBJ = R POBJ

� Then, after performing the translation we get:
P

�
OBJ = T P 	 OBJ

 = T R POBJ

Notice that the result is not the same; matrix composition is non-commutative:
R T

� T R
Also, there are 2 ways of looking at these transformations; either in world coords or in object coords.
If we are describing all of our transformations w.r.t. a fixed set of axes, then the transformations are
written down from right to left, as in the example above.
If we are describing all of our transformations in terms of a local (object) coordinate system, they
should be ordered from left to right.
Both views are correct, but often it is easier to think in terms moving with a local coordinate system,
especially when displaying hierarchical objects that are relative to one another.

page 8

fig 2.2

1

1

y

x2

fig 2.3

1

1

y

x2

fig 2.4

1

1

y

x2

