CSCD18 Tutorial 3

2D OpenGL Transformations
OpenGL transformation commands set up a 4 by 4 transformation matrix for all transformations.
Therefore, the transformation looks like this:

Q.| |Mmu mpy 0 1, P,
O, |_|my My 0 L P,
ol |0 o 1 olo
1 0 0 0 1|1

As mentioned previously the transformation matrix, M, is normally created using one or more of the
following OpenGL function calls:

Translation (in the x or y directions):
glTranslatef(t,, t,, 0.0);
Rotation (6° about the z-axis):
glRotatef(©°, 0.0, 0.0, 1.0);
Scaling (in the x or y directions):
glScalef(o,, o, 1.0);
Shearing: there is no specific GL command; use a combination of scaling and rotation.

Combining Transformations
We can combine two or more transformations and compactly define them using a single matrix.
Consider the following rectangular object:

Its points are defined in the local or object coord system as a set o fie 2.0
of points starting from the origin and proceeding in a CCW ya oo £
direction as follows: o
OBI: {(0,0), (2,0), (2, 1), (0, 1)} | R
12 X
« Suppose that we translate the object by 1 unit in the x-direction ya J,,,L, 0 fig2.1
and 1 unit in the y-direction. Denote this transformation by T. o
« We can express this transformation as: 21 : -
P’ opy =T Pog; 1 -
12 X

page 7

CSCD18 Tutorial 3

« Now suppose that we rotate the object by 45 °about the origin ‘ i

. . j b ig 2.2
(z-axis) and denote this transformation by R. y U

« We can express this overall transformation as: /o

P”os; =R P’ op; Z !

=R T Pog; 1| :f

+ Note that all of the transformations were described with respect L

to a fixed set of axes, namely the origin. 1 2

Now, if we perform the transformations in reverse order starting
with the rotation:
« We can express the rotation transformation as:

P’ o1 = R Pog;

fig 2.3

« Then, after performing the translation we get: fig2.4

P”OBJ =TP ’OBJ
=TR POBJ

Notice that the result is not the same; matrix composition is non-commutative:

RT= TR
Also, there are 2 ways of looking at these transformations; either in world coords or in object coords.
If we are describing all of our transformations w.r.t. a fixed set of axes, then the transformations are
written down from right to left, as in the example above.
If we are describing all of our transformations in terms of a local (object) coordinate system, they
should be ordered from left to right.
Both views are correct, but often it is easier to think in terms moving with a local coordinate system,
especially when displaying hierarchical objects that are relative to one another.

page 8

