CSC 418/2504 — Computer Graphics, Fall 2003

Tutorial 3. Viewing Transfor mations

1. Viewing and Modeling Transformation — modelview matrix

Derivation
Y axls
1
|
_ |
F 3 "'u"'up Z a}{lﬁh 1II|.|"'up
ﬁ“‘*—nh n L'

to express points in world coordinates (WCS) in terms of camera (VCYS)
defined by:

o aneyepoint Pee

o areference point P

o anup vector Vy

unit vectors of VCS (call themi, j, k if you prefer)

Peye'Pref
N = ---ccccmee e
|Peye'Pref|
Vi X N
U= --=-======--
| Vup x n |

vV = n X U

intuition

0 SuUppose Peye is fixed
o to pan the camera (like shaking your head left and right)
= move P "horizontally"
= corresponds to rotating the VCS along the y axis
o totilt the camera (like nodding your head up and down)
= move P "vertically"
= corresponds to rotating the VCS aong the x axis
o torock the camera (like tilting your head left and right)
= let Pgye - Pt be the normal vector of aplane A
= change V, S0 that its projection onto A "rotates" left and right
= corresponds to rotating the VCS along the z axis

oV represents agenera "upwardness' for the camera

view matrix
o first express camerain terms of world:
0 [100 Peyeex] [Ux vk Ny 0]
o Mam =[01 0 Peyey] [Uy vy ny 0]
0 [001 Peyez] [U vy n, 0]
0 [000 1][O0 O 01]

then invert Mcam to express world in terms of camera:

(o]

0 [Ux Uy U; O] [100 'Peye,x]
0 Mam® = [Vx Vy V; 0] [01 0 -Peyey |
0 [Nx Ny N O] [001 'Peye,z]
0 [0 0 01][000 1]

0 Pvcs = Meam™ Puvcs
OpenGL
performs these calculations internally with a call to gluLookAt()

code:

gl Matri xMode(GL_MODELVI EW ;
gl Loadl dentity();
g| uLook At (Peye,)u Peye,y' Peye,z, Pref,x. Pref,y' Pref,z' Vup,x. Vup,y. Vup,z))

Example

scene with camera at (4,4,4), pointed at (0,1,4), with up vector (0,1,0)

(4,4,4) - (0,1,4) (4,3,0)
M S mmmmmemeeeeeeeeee D eeeeeeaaan = (4/5,3/5,0)
| (4,4,4) - (0,1,4) | | (43,0 |
(0,1,0) x (4/5,3/5,0) (0,0, -4/5)
U S mmmmmmmmmmmmeeemmeeeiiee S eeeeeeeeaaaa- = (0,0,-1)
| (0,1,0) x (4/5,3/50) | | (0,0,-4/5) |
v = (4/5,3/5,0) x (0,0,-1) = (-3/5,4/5,0)
[0 0-10][100-4] [O o0 -1 4
Mant= [-3/54/500] [010-4] =1 -354/5 0 -4/
[453500][001-4] [4/53/5 0-28
[0 0 o01][00O0 2] [O 0 O 1
check
[4] [0] [4] [1]
Man® [41 =001, Maw® [4] =[0]
[4] [0] [31 [0]
[1] [1] [1] [1]
2. Projection Transformation — projection matrix
Derivation
maps pointsin VCSto NDCS
see Hill, lecture notes for derivation
0 [x] [10 0 0]/ x]
0 [vy 1 =[01 0 0] [vy]
0 [z] [00 1 0]7] z]
0 [-z/d] [00-1/d0] [1]
OpenGL
==left y=top
(1,11
z=-far
z (-1,-1,-1)
" y=hottom ~#=right
L=-near
Ves MDCS

code for perspective projection:

gl Matri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();

gl uPer spective(fovy, aspect, near, far);
or
gl Frustum(l eft, right, bottom top, near, far);

gluPerspective()
o fovy
= field of view in the y-direction, centered abouty = 0

= indegrees

= agpect ratio that determines the field of view in the x direction

= ratio of x (width) toy (height)

= in camera coordinates
= closeto O (but not 0)
o far
= in camera coordinates
glFrustum()
o left, right, bottom, top, near, far
= gpecifiesthe clipping planes of the view volume explicitly

= in camera coordinates

