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Abstract
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Master of Science

Graduate Department of Computer Science
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2004

We present a system for reconstructing water surfaces using an indirect refractive stereo

reconstruction method. Our work builds on previous work on image-based water recon-

struction that uses single view refractive reconstruction techniques. We combine this

approach with a stereo matching algorithm. Depth determination relies upon the refrac-

tive disparity of points on a plane below the water. We describe how the location of

points on the water surface can be determined by hypothesizing a depth from the refrac-

tive disparity of one camera view. Then the second camera view is used to verify the

depth. We compare two potential metrics for this matching process. We then present re-

sults from our algorithm using both simulated and empirical input, analyzing the results

to determine the primary factors that contribute toward accurate surface point determi-

nation. We also show how this process can be used to reconstruct sequences of dynamic

water and present several result sets.
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Chapter 1

Introduction

“The world turns softly

Not to spill its lakes and rivers,

The water is held in its arms

And the sky is held in the water.

What is water,

That pours silver,

And can hold the sky?”

-Hilda Conkling

Water has fascinated mankind since the earliest times. It is more than just a necessity

of life; water has inspired art, poetry, myth and science. Thales the ancient Greek

philosopher described water as the primary principle, or the foundation of all matter. The

polymorphism of water and its optical magnificence demands awe and often trepidation

upon the high seas. It inspired the ancient Greek god Poseidon, ruler of the seas lending

him the ability to change shape at will.

This thesis engages the problem of capturing the shape of dynamic water from images.

We present a method for finding points on water surfaces using images from a stereo
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Chapter 1. Introduction 2

camera rig. Our system is able to generate sequences of captured surface geometry of

flowing water.

1.1 Motivation

The goal of producing realistic imagery of water was long been sought after by the

computer graphics community [60, 46, 29, 28, 25]. Work in this area has taken the form

of simulating the flow of water by modeling approximations of the physical laws that

govern fluids. At best these are approximations and often subtle water surface effects are

missing.

The approach taken by our work and those in the computer vision community as

well as those in oceanography has been to extract the shape of water surfaces from

images of water [69, 78, 41, 56, 42]. This previous work has sought to take advantage

of water’s optical properties to reconstruct a surface. Techniques that have used water’s

reflectivity to reconstruct the surface have had less success than those that utilize the

refractive property of water [42]. Most of these refraction methods use a single viewpoint

and assume an orthographic projection [56, 47, 23]. This requires a relatively distant

camera to minimize the projection distortion. Our work, in contrast, utilizes a refractive

approach with stereo cameras. We thus avoid some of the assumptions and inaccuracies

of these previous methods. Our solution also requires no special sensors or equipment

such as laser rangefinders or external lenses.

Although the motivation for this reconstruction in the oceanography community is

often for analysis of wind-driven waves, we are also motivated by the possibilities of using

this data to obtain or enhance the appearance of novel computer generated images of

water. We expect that our work could contribute to any of the following applications:

• The capture of liquid phenomena for composition into animation or film footage.

• Creation of a library of liquid effects allowing the generation of arbitrary liquid
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flows out from a composition of the library effects.

• Oceanographic studies of wind-driven waves.

• For precise measurement of transparent objects for Engineering.

• As a first step toward determination of internal fluid flow.

1.2 Contributions

Here is a summary of the primary contributions of this thesis:

• We provide a review of image and sensor-based reconstruction techniques for specu-

lar, transparent and refractive objects. We build up this by examining the viability

of using these techniques for water surface reconstruction.

• We present a novel reconstruction algorithm for refractive liquids that combines

stereo reconstruction with a shape from refractive distortion approach.

• We present and analyze two metrics for testing the validity of surface points on

refractive surfaces within the context of a multi-view system.

• We propose an experimental configuration for our algorithm. We present and dis-

cuss the results achieved from this setup and compare them to a simulation of our

algorithm.

1.3 Thesis outline

This thesis is organized into five chapters. Following this introduction, in Chapter 2, we

present background on reconstruction techniques in computer vision. We review stereo

reconstruction methods followed by techniques for determining the shape of transparent,
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shiny and refractive objects. We also examine previous techniques for reconstructing

water surfaces. A review of water simulation is also included.

In Chapter 3 we present our algorithm for reconstructing water surfaces. We dis-

cuss issues involved in the implementation as well as our solutions and the resulting

implications.

We present our results in Chapter 4. We provide details on the experimental setup

and imaging procedure. This is followed by a description of our experimental simulation

algorithm. We present and discuss the simulation results, comparing them to experimen-

tal results. Finally we present results from reconstructed sequences of dynamic water.

The thesis is concluded in Chapter 5 where we discuss the implications of our work

and future avenues of research that build upon this foundation. We include additional

algorithmic details in the Appendix.



Chapter 2

Related work

“Let us have wine and women, mirth and laughter, sermons and water the day after.”

-Lord Byron

The complex dynamics of water present a major challenge when attempting to capture

the behaviour and appearance of water in a virtual environment. Two primary approaches

have been explored to reach this end. The first approach involves the simulation of both

the hydrodynamics and the optical properties of water in order to generate a virtual

model of water. Rendering techniques have been developed to produce realistic images

from these models. The second approach attempts to interpret and exploit images or

sensory data of water in order to infer the physical shape and behaviour of water, thus

allowing the creation of new images.

In fact the necessity of shape inference in this second path is not clear. Therefore we

initially present techniques that attempt to model phenomena directly from images and

then transition to techniques that infer the geometric shape. We examine reconstruction

methods that reconstruct scenes with simple lighting models proceeding to more compli-

cated systems that handle specular reflections and transparency. We then discuss how

effective each technique is for water surface reconstruction.

Subsequently we present research that takes the approach of simulating liquid phe-

5
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nomena and how improved physical models have enhanced the accuracy of these tech-

niques.

We conclude the chapter with a summary of the major obstacles and short-comings

of the current techniques for generating virtual models and imagery of water.

2.1 Appearance modeling

Appearance modeling seeks to generate novel views of scenes without attempting to

infer shape information from the scene itself. The focus is to capture the appearance of

the scene through images and then produce novel views of the scene from either a new

viewpoint, or by modifying another aspect of the scene, such as the background. We will

examine a number of techniques that follow this process.

2.1.1 The plenoptic function and light fields

One key concept in appearance modeling is the plenoptic function. It is a function that

fully describes all the light rays converging at a particular point from every direction

[1]. The plenoptic function is directionally parameterized by spherical coordinates θ

and φ. The light intensity of the rays is also dependent on wavelength (λ). Three

more parameters specify the location of the point in space (Vx, Vy, Vz), and a temporal

parameter (t) can also be included when measuring a temporal sequence. Here is the full

description of the plenoptic function P :

P = P (θ, φ, λ, t, Vx, VyVz) (2.1)

Typically, a camera view of a scene captures a pencil of rays converging on the centre

of projection of the camera. If the plenoptic function were to be known for every point

in a scene, then it would be possible to view the scene from any position and angle.

Knowing the plenoptic function at every point allows us to compute the plenoptic function
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directionally parameterized by the camera’s field of view and located at the camera’s

centre of projection.

Plenoptic measurement

One branch of research in computer vision has developed around utilizing the idea of the

plenoptic function sampling for recreating novel views of a scene. This work leverages

on the idea that the plenoptic function is redundant in ‘free-space’, where there are no

occluding objects. In other words, a ray through a scene has the same intensity at every

point as long as it does not strike any occluding object. Thus any light ray in a scene can

be parameterized by two points on two parallel planes, rather than the five parameters

described above [48, 34].

Images are used to sample the light rays converging on the centre of projection of

a camera. The CCD elements of the camera record the light intensity converging from

a particular directional footprint, rather than individual rays. Thus the image pixels

represent the average intensity of bundles of rays. So measurement of the plenoptic

function starts with many images or samples of the scene. Then new views of the scene

are generated by interpolating between sampled light rays collected from the set of im-

ages. Interestingly, Chai et al. have shown that fewer images are necessary when some

geometric properties of the scene are known [20].

Sampling the plenoptic function for water is especially problematic. Water is not

static, so the plenoptic function may change at each time instant. This means that sam-

pling must be done instantaneously from all expected angles. Water’s optical properties

present another challenge, as its appearance is predominantly a reflection or refraction

of light emitted from the rest of the scene. This means the plenoptic sampling may need

to be performed within the desired scene, rather than a controlled laboratory environ-

ment. The reflective and transmissive properties of water may also cause elements of the

sampling rig to appear in the images.
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2.1.2 Matting and environment matting

Matting for composition

Matting is a technique for separating the background from the foreground in images,

usually so that the foreground can be composited over a new background. Typically a

matte is formed that is opaque over the background, partially transparent at the edges

of the foreground and fully transparent over the rest of the foreground.

Environment matting for transparent and reflective objects

Matting can be used to approximate the appearance of transparent objects by blending

the matte with the background in those areas that are transparent. This technique breaks

down when the foreground object significantly refracts or reflects light, since a direct

blend with the background is insufficient to describe the distortion actually occurring.

A technique called environment matting attempts to resolve these issues by determining

what background footprint best maps to a particular pixel in the refracting or reflecting

foreground object [81]. The end result is a function for every foreground pixel that

includes the traditional matte, as well as the contribution of light from refraction or

reflection of the surrounding environment.

The general approach is to take a series of images of the foreground object with struc-

tured textures on screens surrounding the object. The texture set consists of a hierarchy

of vertical and horizontal stripes of varying thickness and are used to determine the best

axis aligned rectangular region whose average pixel value maps through a particular fore-

ground pixel. This rectangular region is computed by optimizing over the set of images

that were collected with the set of environment textures.
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A

q

B

Figure 2.1: Environment matting setup. For a given pixel q that is part of the image

of the object, the colour of the pixel is composed of a reflected region of the pattern on

the side A and a refracted region of the background pattern B. Several images are taken

with varying stripe thickness and orientations for the patterns.
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Environment matting extensions

The original technique for environment matting requires static objects, since multiple

images must be captured to determine the background mapping as described above.

This limitation can be overcome by simplifying the model and capture setup [21]. This

is achieved by capturing the object in a darkened room, with a single colour gradient

map background. A background smoothness constraint is used to reduce the complexity

and the lack of ambient light allows the foreground colouring to be discarded. Given

these assumptions, sequences of dynamic refractive objects, such as water pouring into

a glass, can be captured and matted against arbitrary backgrounds. Unfortunately this

reconstruction is only suitable for a single viewpoint.

Environment matting extended to multiple viewpoints

Another major restriction of the environment matting technique is its fixed viewpoint.

Several methods that capture the reflectance field of objects from multiple viewpoints

have been proposed [52, 24]. One of these focuses on reconstructing transparent objects

using an extension of the environment matting technique. They utilize a rotating camera

and lighting rig that captures the visual hull of objects as well as the environment matte

from multiple viewpoints. A form of unstructured light field interpolation is used to

determine the lighting for every visible point of the object. Although this technique is

only suitable for static objects, it effectively captures many optical effects not previously

attempted. Since objects are captured from multiple viewpoints, the data is much more

useful in terms of animation and visualization.

2.2 Stereo reconstruction of Lambertian scenes

Appearance modeling avoids making inferences about the shape of the scene by relying on

large numbers of images of the scene to generate novel views. By extracting information
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about the scene geometry, fewer images are needed to construct new views. This is

especially important for reconstructing dynamic phenomena such as water.

Before we can examine the complex case of water, we will first look at some of the

background of stereo work for simple Lambertian scenes. We will cover previous work on

stereo reconstruction techniques that extract geometric scene information from binocular

parallax. We then outline several different approaches to the problem and the issues

involved with each.

2.2.1 Basic stereo reconstruction

Stereo reconstruction is one of the most common techniques for determining geometric

information about a scene. It is derived from the human visual system, and works by

leveraging the parallax between corresponding points in two views of the scene (see Figure

2.2). The relative displacement of the corresponding points in the two views is known

as their disparity. Conventional stereo vision determines the depth (z) of the point from

the stereo baseline or the line connecting the centre of projection of both views [59]. The

formulation for the depth given an binocular view with parallel optical axes is:

z =
BF

d
, (2.2)

where B is the length of the stereo baseline, F is the focal length of the cameras and d

is the disparity between the images of the point.

Most stereo algorithms have at least a subset of the following stages:

• Matching cost determination - Determination of point correspondences between

views and the assignment of a cost to each candidate

• Cost aggregation - Aggregation of the costs of all points

• Computation and optimization of the disparity
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B

d

d

F

z

Figure 2.2: The figure shows two cameras separated by a baseline B. Both cameras image

an object at depth z away from the baseline on their image planes. Both cameras have a

focal depth of F . The dotted circles on the image planes indicate the image location of

the object in the other view. The disparity of the image of the object between the two

views is d.
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The rest of this section will discuss various techniques for solving parts of the stereo

reconstruction problem as well as some of the difficulties faced in stereo reconstruction.

We examine whether stereo is appropriate for extracting geometric shape from images

of water surfaces and how the challenges of conventional stereo approaches apply to our

problem area. An extensive review of dense, binocular stereo algorithms can be found in

[66].

Dense stereo vs. feature-based and sparse reconstruction

Stereo reconstruction techniques can be divided into dense and sparse point matching

methods. Dense methods attempt to find a correspondence between every pixel in the

stereo images [27, 14]. Often optical flow or incremental algorithms are used in this case

and the displacement between corresponding pixels constitutes the stereo disparity [13].

Sparse stereo methods often rely upon feature matching between images such as edges

or corners that can be accurately localized [54, 49, 79]. Correspondences between image

features in the images are then determined.

Although water surfaces are smooth and relatively featureless, sparse techniques can

be used for indirect stereo reconstruction. The water’s reflectivity or refractivity can be

utilized to redirect a sparse pattern that can be used in turn for reconstruction purposes.

Global vs local/window disparity

Most techniques can also be divided into global or local reconstruction algorithms. Global

techniques typically compute disparity values for every point and then minimize an energy

function based on the sum of costs for every point along with a smoothness term. Local

or window approaches attempt to optimize each point separately by aggregating the cost

of the neighbourhood or support region around the point, given some disparity estimate.
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2.2.2 Matching cost determination

The most basic methods for matching pixels between stereo views measure the squared

[59, 37] or absolute difference between pixels [44]. In order to reduce the impact of

mismatched pixels, several techniques have been developed. These include robust es-

timators using truncated quadrics and contaminated Gaussians that help to eliminate

outliers [13, 14]. Another matching technique is normalized cross-correlation that is sim-

ilar to the sum of squared differences but also normalizes the matching window before

comparison.

Intensity gradients are sometimes used for matching, having the benefit of being

insensitive to camera bias and gain. Often these camera artefacts are removed in a pre-

processing stage [22]. Sparse reconstruction techniques sometimes use a binary matching

technique when seeking to match detected edges or other features [4, 35, 19].

An important innovation suggested by Birchfield and Tomasi is to match pixels in one

image with interpolated sub-pixel offsets in the other image, rather than merely seeking

matches at integral offsets [12]. Matching can be especially problematic when there are

objects with repeated textures or edges. This can easily lead to mismatches, although

reconstruction with multiple views can help to alleviate this [59].

Stereo reconstruction on water surfaces has some apparent advantages over general

scenes. Typically a water surface is smooth and exhibits few occlusions when viewed from

overhead as long as splashes are discounted. Thus many of the matching cost techniques

for handling discontinuities are unnecessary. On the other hand, stereo matching with

water is non-trivial due to its specular reflectance and its refractive nature. Matching

would have to be performed indirectly using either a reflection or a refracted image which

may be discontinuous or warped by the water surface.
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2.2.3 Cost Aggregation

Stereo reconstruction techniques have used a wide range of support regions to enhance

matching. Two-dimensional support regions can be aggregated over square windows [59],

shiftable windows [16, 2], and windows with adaptive size [58, 45]. Three-dimensional

aggregation techniques attempt to match surfaces with areas of similar disparity or a

similar disparity gradient [61, 62]. This permits sloping surfaces to be more accurately

detected.

Aggregation on fixed windows can be performed by convolution or box filters. Another

method that is used is iterative-diffusion, where the weighted cost of neighbouring pixels

are added to the local pixel [65, 68].

2.2.4 Computation and optimization of the disparity

Local methods typically just take the disparity associated with the minimal cost as

determined by the aggregation stage. This has the problem that points in the reference

image may not have a one-to-one mapping to points in the second image.

Global methods tend to concentrate on this stage. They typically minimize an energy

function as follows:

E(d) = Edata(d) + λEsmooth(d) (2.3)

The data function, Edata(d), measures how the disparity function d matches the ref-

erence image to the second image using some aggregate matching cost function. The

smoothness term Esmooth(d) measures the energy associated with smoothness or discon-

tinuity in the support region around the point. Previous work has focussed on robust

smoothing functions that handle smooth surfaces as well as discontinuities [73, 14, 65, 33].

Colour and intensity discontinuities have also been used to predict surface discontinuity

[18, 30, 16].
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Another area of research has looked at how best to minimize the energy function

defined above. Some traditional energy minimization routines are continuation [15],

simulated annealing [33, 50, 6], highest confidence first [19] and mean-field annealing

[31].

Another class of global optimization algorithms use dynamic programming to min-

imize Equation (2.3) on a scanline basis by finding the minimum-cost path through a

matrix of matching costs of pixels in the two corresponding scanlines [8, 7, 32, 22, 16, 12].

2.3 Reconstruction of opaque non-Lambertian scenes

Many reconstruction algorithms make the implicit or explicit assumption of view indepen-

dent lighting, or a Lambertian shading model. This assumption breaks down for shiny or

specularly reflective surfaces. This is particularly relevant to water reconstruction, since

water surfaces are highly specular.

In this section we examine a variety of reconstruction methods that attempt to re-

construct shape in non-Lambertian, opaque scenes. We look at several stereo-based

techniques that model general non-Lambertian scenes. We then examine methods that

focus on purely specular or mirroring surfaces. The first technique of this type infers

shape from distortions in the reflected images of curved specular surfaces. This is fol-

lowed by a description of a voxel-based technique for mirroring objects. Then we discuss

how polarization sensors and laser rangefinders may be used to determine the shape of

reflective objects.

2.3.1 Stereo reconstruction

Recently there has been a concerted focus on reconstruction of specular surfaces with

stereo [10, 11]. One approach is to remove specular highlights in a pre-processing stage

before reconstructing as before [57]. Another technique leverages Helmholtz reciprocity
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to capture the shape of objects with arbitrary reflectance properties. An image pair

of the object is taken with a reciprocating camera and light. This guarantees that the

pixel intensities in both images of corresponding points on the object depend only on the

surface shape and not on the object’s reflectance properties [80].

More recently Treuille et al. also proposed a method for capturing the shape of objects

with general reflectance properties [74]. Their technique avoids the reciprocity constraint

of the camera and light set up. Instead they rely on observations of the target object

along with a known example object that exhibits the same reflectance properties. They

use the known normals and observations of the reference object to determine orientation

consistency in the target object. In addition they describe a technique for handling

self-shadowing on the objects.

2.3.2 Shape from reflection

Another technique that has been applied to determine the shape of objects that mirror

light has been to leverage distortion and non-linearity that occurs during this redirection.

Although reflected images project linearly across flat mirrors, distortions in the mirror

will in turn distort the reflected image allowing shape inference of the mirror surface.

Curved specular surfaces have been reconstructed by inferring shape from the distor-

tion of lines and line intersections [64]. A formula was derived to determine the tangent

normal of the specular object for a calibrated point defined by the intersection of two

lines. The formula utilized the curvature of the images of the intersecting lines to de-

termine the surface normal and then the surface location at that point. Other methods

have used the distortion of patterns to infer surface slope [36].

Another approach to reconstructing purely specular surfaces is to model the surface

by localizing features or a pattern in the reflected image. One technique that seeks to do

this uses a multi-view voxel carving technique with a normal consistency check [17]. The

technique reconstructs mirror-like surfaces, discretizing the space around the surface into



Chapter 2. Related work 18

voxels. Next, each voxel is assigned a normal from each camera view that would account

for the reflected image had the specular surface passed through that voxel. Voxels which

have inconsistent normal sets are then eliminated, leaving the voxels that best represented

the true surface.

2.3.3 Shape from polarization

When light reflects off of a surface, some of the light becomes polarized in the direction

of the surface normal. The phase image of the object encodes the orientation of the

reflection plane which is defined as the plane spanned by the surface normal and the

incident ray.

Several methods exist for determining the surface normal once the reflection plane

is determined. One technique is to use a second view to constrain the normal to an

epipolar line and then use a global minimization approach to solve the surface normals

as well as depths [63]. Another approach assumes surface smoothness and the normal at

object boundaries is perpendicular to the viewing angle. Once the normal is determined

at these edge points, degree of polarization images are used to propagate the solutions

over the rest of the object [53].

2.3.4 Laser rangefinders

An alternative method to determining shape of objects from images it to use laser range-

finders. These typically work by projecting laser light onto the object surface and measur-

ing this reflected light at a known receiver. The process accurately triangulates points on

the object surface but usually requires a Lambertian surface. Recently, laser rangefind-

ers have been developed that are able to effectively reconstruct the shape of specular

objects as well [3]. This is done by restricting the angle of the incident light to a single

direction by attaching several parallel plates at an angle in front of the CCD elements.

The vertical plates, along with a horizontal slit block incident light except from the one
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expected angle, allowing surface triangulation. Clearly this technique would not be suit-

able for scanning fluctuating water, yet it is a certainly an advance for reconstructing

static specular surfaces.

2.4 Reconstruction of transparent media

For many years, transparency reconstruction has been common in medical imaging sys-

tems. These approaches are meant for purely transparent scenes and do not deal well with

occlusions. Recently methods have been developed to integrate common computer vision

techniques with scenes containing opaque and transparent objects. Instead of treating

transparent objects as an obstacle, another approach has been to utilize the refractive

properties of transparent objects as a means to reconstruct the surface of the objects.

2.4.1 Computerized Tomography

Transparent media have long been reconstructed with medical imaging systems using

Computerized Tomography. CT techniques use density images to reconstruct slices of

the structure of a volumetric object [43]. Each image records the density of the object

within the each projected pixel cone. This information is all compiled together and then

interpreted to produce a density map of the transparent object. One of the primary

methods for this compilation is called back-propagation [43].

2.4.2 Multi-view reconstruction with transparency

Voxel carving techniques have been applied to transparent objects. One such volumetric

carving technique seeks to deal with transparent objects through a modified version of

voxel carving. For each ray through each pixel the voxels along the ray are assigned

weights that govern how much that particular voxel contributes to the pixel colour. The

weights translate to transparency values. The algorithm uses an iterative approach to
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find the most consistent set of voxels and weights given all the views of the object. These

weighted voxels are known as ‘Roxels’. In this technique, uncertainty is modelled by

transparency, so if the precise location of a surface edge is uncertain it will appear to be

blurry.

Tsin et al. provide a method for handling stereo reconstruction in the presence of

translucency and reflections [75]. They describe how a scene can be reconstructed with

multiple layers under these conditions when computing depth. So reflected objects are

assigned a depth layer as well as the reflector. The work also describes a method of

extracting the correct colours of the component layers.

2.4.3 Shape from distortion

Shape from distortion techniques can also be applied to transparent objects by inferring

surface shape of a refractive object from the distortion it causes to light transmitted

through it.

One recent method has been presented for inferring shape and pose of transparent

objects from a moving camera’s image sequence [9]. Features are tracked throughout the

sequence and an objective function that characterizes the shape and pose of the trans-

parent object is minimized. The work restricts the target objects to be parameterized by

a single parameter such as super-quadrics. This is a clear step forward in reconstructing

shape from transparent media, although the low-dimensional parameterizations reduce

the generality of the method and makes it inappropriate for dynamic transparent objects

such as water.

2.5 Reconstruction of water

In order to reconstruct water surfaces, its optical properties must be exploited to infer the

surface shape. When a light ray strikes a water surface from air, part of it is mirrored and
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reflects off of the surface. The rest of the light is refracted and transmitted through the

water. Water can be considered as a transparent, reflective or refractive object, leading

to a multitude of reconstruction approaches. In this section we examine the feasibility of

techniques that attempt to reconstruct water in each of these ways.

2.5.1 Reconstruction using transparency

Most of the methods for reconstructing transparent surfaces break down when they are

applied to water in a similar way to plenoptic sampling. CT techniques would require

many simultaneous images of the water and it would be difficult to avoid imaging the

capture equipment at the same time. The imaging technique also presents a problem.

Neither direct optical images nor ultrasound will work due to the surface refraction.

Magnetic resonance is also unusable due to the slow rate of capture. The Roxel algorithm

has the same problems as CT techniques since it does not consider refraction and must

be simultaneously imaged from multiple views.

2.5.2 Reconstruction using light reflection

Shape from shading

Shape from shading techniques attempt to infer geometric shape from the shading of a

surface given some expected or known reflectance and lighting model [40]. If the object’s

reflectance properties are known and the light source location is known, then the surface

shading depends only on the surface normal. Thus from an image of the object, it is

possible to infer surface normals from the pixel intensities.

Traditional shape from shading algorithms assume a Lambertian reflectance model

as it is isotropic and the shading is independent of the viewing angle. Reconstructing

purely specular surfaces, such as water, presents several challenges. Using a single point

light source is often insufficient, as the surface will only receive a highlight where the
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viewing angle and the light incident angle on the surface are equal. With a point light

source only part of surface will be lit, where the surface normal is such that the incident

light reflects directly toward the camera.

Several attempts have been made to reconstruct water surfaces using reflected light.

One approach utilizes stereo images taken under natural lighting conditions and then

uses traditional stereo image matching for Lambertian surfaces [69]. The resolution of the

reconstruction appears to be insufficient for the determination of small wavelength waves.

The second problem is that of correspondence error resulting from specular bias between

the binocular views. Other specular artefacts plague waves with limited amplitude.

Another technique directly uses the specular highlight falloff to compute shape [67].

Several images of the surface from different orientations are used to determine surface

slope at various points on the surface. Once these seed slopes are found, solutions are

grown around these points by searching for the best surface orientation that minimizes

the difference between the expected irradiance given that orientation and the observed

irradiance.

Reconstruction of water surfaces typically do not have some of the common prob-

lems of occlusions or discontinuities found in many reconstruction scenarios except when

splashing occurs. There is high degree of non-linearity when determining surface slope

from irradiance due to the transparent nature of water [42]. Reflectivity on the water

surface is governed by Fresnel’s coefficients, causing a high degree of reflection at graz-

ing angles but very little at acute angles. Also a very large light source is required for

reconstruction at grazing angles.

Shape from polarization

Shape from polarization algorithms typically cannot handle internal reflections although

some predict general internal reflections and reduce the polarization images accord-

ingly. This is only an approximate solution and error is still accumulated from the
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inter-reflections.

Theoretically, a multi-view or binocular stereo shape from polarization approach could

reconstruct water, although according to our knowledge this has not been attempted.

Polarization methods tend to deviate from our motivation to design a simpler, pure

image-based system for accurate water surface reconstruction.

2.5.3 Shape from refraction

Water reconstruction techniques that have treated water as a refractive medium have

produced the most promising results and avenues of research. Determining shape from

refraction techniques avoid many of the problems associated with shape from reflection

algorithms. Refraction non-linearities are much lower than those for reflection, allowing

a smaller light source or pattern and since most refraction techniques light the surface

from below, specular artefacts do not occur.

Shape from refractive distortion

Water surfaces have also been reconstructed through refractive distortion [56]. One

algorithm for reconstruction has four parts: First optical flow is computed on the image

of the pattern as it is distorted by the water. Then the average of the optical flow

displacements is taken to be the true location of a particular pattern point. Then the

surface normal for every point in every frame is computed given the displacement from

the computed ‘true’ location. Finally a surface is integrated from the surface normals.

This technique assumes a distant camera and only works on low amplitude waves and

the surface is reconstructed up to some unknown scale factor.

Shape from refractive irradiance

Several image intensity based techniques for recovering surface shape from transparent

media using refraction have been presented in the past [78, 41, 47, 23]. Most techniques
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have been designed to determine the slope of water surfaces. The classic imaging setup

is show below in Figure 2.3.

Light rays from a screen pass through the lens that collimates them so that certain

intensities or colours correspond to parallel light ray columns and are then refracted by

the water surface to the distant camera. This has the result of associating colour or

intensity with particular surface slopes.

There are several techniques for generating the screen, some using an attenuated light

source from one end, some using an HSV coloured gradient and others just a lit monotone

intensity gradient [78].

An important assumption in all these techniques is that of an infinitely distant camera.

This is to assure parallel incoming rays from the water surface. Yet distortions are still

going to affect results as this assumption cannot be modeled precisely. Also error is

bound to be introduced by the collimating lens. Light attenuation from the water will

also affect the slope intensities differently in different parts of the image as the underwater

path lengths will vary.

Laser rangefinders

Laser rangefinders have been developed to measure water surfaces typically by projecting

a laser ray through the water and measuring the ray’s deflection due to refraction. This

has been done both by firing the ray from beneath the surface and detecting it’s projection

on a screen above the water [77], or the reverse where the deflected ray projects on to a

screen beneath the water. Geometrically the surface normal can be determined by the

detection of the refracted ray, and an iterative method can be used to determine the

water surface intersection point.
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Figure 2.3: Rays of light (gi) from a point on the gradient radiate out and are collimated

by the lens into a common direction (k). These rays strike the water surface and only

one certain surface normal (n) will refract them toward the distant camera. Thus in the

camera’s image, pixel colours correspond to surface normals.
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2.6 Simulation of water

Early work in fluid simulation typically focused on wave generation and used simple hy-

drodynamic models for sinusoidal waves [60, 51]. Splines were used to simulate wave

refraction [76]. Detailed fluid pressure and viscous effects were largely ignored or approx-

imated by particle systems for splashing or breaking waves.

The progression in fluid simulation in computer graphics has been to more closely

approximate physical models and the result has been increased realism. Fluid advection

and pressure flow are governed by the Navier-Stokes equations and many papers have

attempted to approximate these non-linear equations to capture the desired realism.

Some early attempts, such as the work by Kass and Miller [46], simplified the equations for

shallow water and used them to generate animated height fields. This work did not take

into account rotational or pressure based effects, preventing the characteristic eddying

and swirling effects of fluid. Following this work, Foster and Metaxes [29] utilized work

done in the Computation Fluid Dynamics field by Harlow and Welch [38] who described

the full characterization of the Navier-Stokes equations. The fluid was discritized into

a grid of cubes. The Navier-Stokes equations were then solved explicitly and the fluid

advected. Further attempts to improve efficiency and robustness of the system were

examined [28]. Stam presented an improvement in his ‘Stable Fluids’ [71] to implicitly

solve the system with much larger time steps while still maintaining robustness.

An important aspect of fluid simulation research is to improve the visualization of the

fluid effects. Work on liquid surface representation using level sets introduced the most

realistic looking examples seen so far. Level sets were combined with particles to allow

for splashing [25]. Liquid rendering was then further improved by focusing on accurately

representing and rendering the liquid surface using an improved particle and level set

approach [26]. Photorealistic results have been produced by such simulations, yet these

methods are computationally intense and by nature simplifications of the actual physical

processes, potentially losing secondary motion and subtle effects (Figure 2.4).
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Figure 2.4: Two frames from water simulation results [26]

Significant work has gone into simulating fluids with particle systems, often to sim-

ulate waterfalls or other dynamic effects [70]. Recently this work has begun to generate

fluid effects at interactive rates. One effective method has been to simulate a liquid with

particles but to render the surface using an interpolation method known as Smooth Par-

ticle Hydrodynamics to achieve interactive simulation rates [55]. The method computes

a Navier-Stokes simulation for each particle and interpolates between particles using a

radial basis function to determine the fluid surface.

2.7 Summary

The simulation of water in computer graphics has received a good deal of attention in

recent years and impressive images have been developed. Despite this, simulations still

rely on simplified physics models and complex phenomena such as breaking waters are

difficult to produce.

Water simulation must deal with complex hydrodynamics and surface tension, solving

or approximating non-linear partial derivative systems in order to generate believable

images and flows. In contrast to this, water capture techniques manipulate the relatively

simple optical properties of water to capture the shape of water, without the need for
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hydrodynamic models.

The decision for what optical property to use is vital to accurate reconstruction.

Techniques that use specular reflection suffer from water’s non-linear Fresnel reflection

coefficient. This results in very little reflection when viewing a surface perpendicularly

but much greater reflection at grazing angles. The inverse is true of refraction. In view

of this, it is not surprising that refraction based techniques have been more successful at

reconstruction water surfaces.

Although the sensor-based techniques appear to produce effective results, we are more

interested in the more accessible image-based approaches. Of the image-based refraction

based techniques, shape from refractive irradiance and shape from distortion techniques

seem to be the most effective. Despite this success, these techniques often suffer from

inaccuracies in their image modelling assumptions, such as a distant orthographic camera

and a collimating lens.

These inaccuracies could be improved by combining the refractive reconstruction ap-

proach with the well developed stereo techniques seen earlier. In light of this, we propose

that a multi-view stereo approach that uses an indirect matching technique similar to

the shape from distortion technique in [56] could improve reconstruction accuracy and

remove some of the imaging assumptions.
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Imaged-based reconstruction of

Water

“Only a fool tests the depth of the water with both feet.”

-African Proverb

In this chapter we discuss the physical properties of water, and how those properties

influence our design for a system to reconstruct water surfaces from images. We will

present a system that addresses many of the concerns with previous techniques outlined

in the last chapter.

Our design attempts to fulfill the following goals:

• Physically-consistent water surface reconstruction,

• Reconstruction of rapid sequences of flowing, shallow water,

• High reconstruction resolution,

• Use of a minimal number of viewpoints and props.

Our work focuses on recreating a precise definition of the water surface from images.

We consider the problem of reconstructing internal flow as beyond the scope of this work,

although accurate knowledge of the surface can be considered an important first step.

29
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We present a sparse multi-view approach to determine the water surface. Multi-view

reconstruction approaches have been used before for water surfaces, but only within

the context of shade-from-shading [69]. Instead we propose that stereo, combined with

shape-from-distortion, is an effective and accurate approach to the problem, gaining from

the benefits of refraction over reflection reconstruction. Previous work has utilized water

surface distortion but only viewed from a single camera [56]. Also, our stereo technique

does not assume distant, orthographic views of the surface, making our model more

physically consistent. Having a stereo system also negates the need to have an extra

collimating lens under the water, as used by some previous single camera techniques

[78, 41, 47].

We also describe how our system is capable of accurately reconstructing very shallow

water.

3.1 Imaging water

3.1.1 Physical and optical properties of water

Light is refracted or bent when there is a density change in the media it is traveling

through. The well known Snell’s law governs light refraction; its general form is as

follows:

r1 sin θi = r2 sin θr (3.1)

Where r1 is the refractive index of the first medium, r2 is the refractive index of the

second and θi and θr are the incident and refracted angles. At the interface between water

and air, there is a significant change in density and light rays are noticeably refracted. We

can simplify Snell’s law in this case, since the refractive index of air is 1 as in Equation

(3.2). It is important to understand that the incident and refracted rays always lie on
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a plane, regardless of the surface normal. Thus it is valid to visualize refraction at an

interface in two dimensions (Figure 3.1). Snell’s law is written as

sin θi = rw sin θr. (3.2)

n

p

 θ

r
θ

i
air

water

Figure 3.1: A ray is refracted at a surface point between water and air with a surface

normal n.

When light strikes the water-air interface, part of the light is reflected and part is

refracted. The ratio of reflected to refracted light increases as the angle of incidence

increases. If we continue to increase the incident angle, the refracted angle approaches

90 degrees. At this point we say that the incident angle has reached the critical angle.

Any further increase in the incident angle results in total internal reflection, with no light

refracted.

Refraction of light also depends on the wavelength of the light. So red light has a

higher refractive index than blue light. This property is commonly utilized in prism light

dispersion experiments.

3.1.2 Imaging of water surfaces

Water tends to exhibit slight absorption primarily in the green and red spectra, thus re-

sulting in its typical blue hue. It would be possible to determine depth from absorption,

but the absorption rates are so low (approximately 0.005 cm−1 for red light [72]) that
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accurate measurements of shallow water would be difficult with typical imaging equip-

ment. Thus, rather than directly attempting to image water, we examine constraints for

indirect surface measurement.
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Figure 3.2: Imaging of points beneath the water surface. Feature f is refracted at point

p toward the camera c and is imaged on the image plane at q′. When no water is in the

tank, f is directly imaged at q. Feature f ′ is the projection of the refracted image point

q′.

Consider the imaging setup in Figure 3.2. The figure shows rays traced from points

beneath the water surface to an ideal camera, with its centre of projection located at

c. The points are imaged on the image-plane (I) where the rays intersect it (q and

q′). q corresponds to the image of the point f without water and q′ is the image of the

point f with water. We have two unknowns, the distance of the surface point from the

camera (z) and the surface normal (n) that define our solution space. Figure 3.3 shows a
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solution space for surface normal, depth pairs (n1, z1), (n2, z2)...(nm, zm). Note that for

every depth value, we have a unique surface normal that could account for the refractive

disparity. As the depth value is increased, the slope of the normal must also increase to

compensate until the physical limits of refraction are reached. Depth is computed from

the points as follows1 :

zi = ‖pi − c‖. (3.3)

The solution space is restricted to surface normal and depth pairs that refract the

ray of light coming from f to the image point q′. The physical properties constrain this

solution, as light cannot be refracted beyond the critical angle. The other restriction is

the maximum surface normal.

We also note that the distance to the water is not linearly related to the surface

normal as can be seen in Equation (3.4) as a result of the non-linearity of Snell’s law

(Equation (3.2)). Equation (3.4) relates depth (z) to the angular difference between the

incident and refracted rays (θδ) as well as the refractive displacement angle (α). This

equation results from applying the sine law, given the geometric arrangement of Figure

3.2 as follows,

z

sin(θδ − α)
=

‖f − c‖

sin(π − θδ)
,

z = ‖f − c‖
sin(θδ − α)

sin θδ

. (3.4)

Bearing in mind that water is a highly dynamic liquid, we are unable to obtain

multiple views of the surface from a single camera. So if we consider an imaging setup

with a second camera as in Figure 3.4, we can use the second refractive displacement

information to triangulate the common surface point and surface normal. Note that

1In contrast, conventional stereo depth is determined as distance to the projection of the point onto
the optical distance.
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Figure 3.3: The Figure shows how a set of surface points (p1, p2...pm) at different depths

with corresponding normals (n1, n2...nm) could all refract f to the camera c through q′.

although the rays c1pf1 and c2pf2 are shown on the same plane, this is not a necessary

requirement for our algorithm. In Figure 3.5, we illustrate how the cameras may be

oriented to one another in three dimensions. For clarity all further figures are consistently

presented in two dimensions even though the rays may not be coplanar. Also note that

all points of intersection are marked on the figures.
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Figure 3.4: Points f1 and f2 on the plane T are both refracted at point p and imaged

in camera c1 and c2 respectively. Since both rays c1pf1 and c2pf2 intersect the water

surface at p, they share the common surface normal n. So, when two points are imaged

through a common surface point, they also share a common surface normal. This gives

us our stereo normal constraint for determining true surface points.
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Figure 3.5: This figure shows the imaging system in three dimensions. Point f1 on T is

refracted at p toward camera c1 and point f2 is also refracted at p toward camera c2.

These points make up two intersecting planes: points c1, f1, p lie on one plane and points

c2, p and f2 lie on another plane. Notice that p lies on the intersection of the planes.
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3.2 The geometry of stereo water surface reconstruc-

tion

In this section we examine the theory involved in determining surface points in our ideal

imaging model. First we will look at how the surface normal can be determined given a

known surface location. Then we will discuss our indirect stereo triangulation algorithm

for determining depth and surface normals given stereo imagery of an arbitrary surface.

3.2.1 Deriving the surface normal from the incident and re-

fracted rays

We can determine the surface normal n that would cause the refraction of the incident

ray if we know the location of the surface point p. Refer to Figure 3.6 to see the imaging

setup. Using Snell’s law (Equation (3.2)) and our knowledge of the angle between the

incident and refracted rays (θδ), we are able to derive a solution to the surface normal.

We define θδ as

θδ = θi − θr. (3.5)

But θi and θr are both unknown. In contrast, the following points are known: the

surface point p, the image of the feature point q′ and the feature point f . Thus we can

determine the vectors of the incident (u) and refracted (v) rays:

u = q′f ′, (3.6)

v = pf . (3.7)

Both u and v are normalized to obtain û and v̂:

û =
u

‖u‖
, (3.8)

v̂ =
v

‖v‖
. (3.9)
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Figure 3.6: The figure shows the imaging of a point f with water (q′) and without water

(q). If the vectors defined by q′f ′ and pf are known, we can determine the ray vectors u

and v, and hence, the surface normal n.
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The inner product of û and v̂ gives us θδ:

θδ = û · v̂. (3.10)

In order to find the surface normal, we need the incident angle θi (the angle between

the incident ray u and the normal n). We substitute (3.5) into Snell’s law (3.2) and

apply trigonometric identities to find an equation for the incident angle θi:

sin θi = rw sin(θi − θδ),

sin θi = rw(sin θi cos θδ − cos θi sin θδ),

tan θi =
rw sin θδ

rw cos θδ − 1
,

θi = tan−1

(

rw sin θδ

rw cos θδ − 1

)

. (3.11)

So, given θδ and the refractive index for water (rw), we can determine θi. The surface

normal n is then determined by rotating û by θi about the axis defined by û× v̂:

n = R(θi, û× v̂)û, (3.12)

where R(β, x̂) is the rotation matrix of an angle β about an axis x̂.

The size of the incident angle (θi) is strictly increasing as θδ is increased (within the

physical constraints), so there cannot be multiple values of θi for a particular θδ. This

supports our proposition that there is a unique normal for every depth.

Theorem 3.2.1 (Unique normal) For every refractive disparity of a point f imaged

in a camera c1 and hypothesized surface point p there is at most one normal n such that

the ray from the c1 to p is refracted to f .

Proof Without loss of generality, we will show that there can be at most one incident

angle which implies one surface normal.

The physics of refraction constrain the range of the incident angle, such that

0 ≤ θi < π/2.
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By Snell’s Law, the refracted angle is also constrained to the following range,

0 ≤ θr < sin−1(1/rw).

Thus the difference between these angles, θδ, is physically constrained such that

0 ≤ θδ < π/2− sin−1(1/rw).

The incident angle is computed in Equation 3.11. If we can show that this function

is monotonically increasing, then there can be at most one incident angle for any given

refraction.

Equation 3.11 can be written as follows:

tan θi =
rw sin θδ

rw cos θδ − 1
. (3.13)

We know that the numerator is monotonically increasing within the specified range

for θδ. We also know that the denomenator is monotonically decreasing and approaches

zero when θδ approaches π/2− sin−1(1/rw).

This means that the right hand side of Equation 3.13 is monotonically increasing.

The arctangent of this function is again monotonically increasing.

3.2.2 The geometry of indirect stereo triangulation

Figure 3.7 shows the geometric setup for indirect stereo triangulation in an ideal scene.

Suppose that two cameras with their centres of projection at c1 and c2 image a water

surface S above a plane T . The image planes of the cameras are denoted as I1 and I2.

Moreover, suppose that we take two pairs of images of the plane T , first without water

and then with water. From these images reconstruction can proceed.

In order to determine a point on the surface, we use both cameras to triangulate the

surface point. We designate one of the two cameras to be the reference camera and the

other to be the verification camera. We present two metrics for measuring the correctness
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of a surface point. Both of the metrics require us to determine a surface point from the

reference camera and then match the expected surface point against the image data from

the verification camera.

The basic reconstruction algorithm first selects a point f1 on the plane T . The images

of this point are found in the image plane I1 and are denoted as q1 without water and

q′

1
with water. We know from Section §3.1.2 that the water surface intersection point

must lie along the ray traced through c1 and q′

1
(u). The next step of the algorithm is

to traverse this ray, looking for the solution to p that best fits the image data.

We begin this search by hypothesizing a depth from c1 that gives us some surface

point (p′). Given this surface point and the location of the imaged feature point (f1), we

can determine the incident (u) and refracted rays (v) from Equations (3.6) and (3.7).

This allows us to compute θδ as in Equation (3.10). Next we substitute (3.10) into

(3.11) to get θi and then compute the normal n1, that would refract u to f1, from

Equation (3.12).

Since we hypothesized p′, we need some way to verify whether p′ is close to the actual

surface location p. This is where we utilize our second camera. We trace a ray from p′

back to c2, finding the image of a feature (f3) at q3. This gives us a new set of incident

(uv) and refracted (vv) rays and difference angle (θvδ):

uv = c2q
′

3
(3.14)

vv = pf3 (3.15)

θvδ = ûv · v̂v (3.16)

We then use Equations (3.10), (3.11) and (3.12) to compute a second normal n2 for p′.

At this point we apply our error metrics to determine the validity of the hypothesized

point p′.
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The algorithms for computing the metrics begin in the same way. They take a given

surface depth (z) as input for a particular feature. Figure 3.2 shows z as the distance

between the camera c and the surface point p. The feature imaged with and without

water determines a solution set of depths with corresponding normals. Since a depth

is given as input, the corresponding normal n1 is also determined (Figure 3.7). The

surface point associated with this depth is viewed from the verification camera and has

an associated refractive displacement. This refractive displacement also has a solution

set of depths and normals. Since the depth is already constrained by the specification of

the surface point p′, we can compute a second normal n2.

The first metric, which we call the normal collinearity metric, matches the normals

computed by the reference and verification cameras. The value (Enormal) of the metric is

determined as follows:

Enormal = cos−1(n1 · n2) (3.17)

The intuition for this matching differs from the classical stereo problem where points

are matched and the stereo disparity corresponds directly to the depth of the surface

point. In this case, we cannot directly image the surface point due to the refraction.

Instead we must use the view dependent refracted images to find the position. The

refraction is dependent on the orientation and depth of the water surface point and since

we hypothesize a depth we must try to account for the refraction with the surface normal.

Recall that surface normals translate to a unique water depth, so if the surface normals

that explain the refraction from both views are collinear, then this is a strong indication

that we have the true water depth. If the normals are not collinear, then angle between

normals should give a smooth estimate of the depth error.

We call the second metric the disparity difference metric. This metric measures the

difference in disparity that occurs when n1 is swapped for n2 and the incident rays from

the respective cameras are refracted. Figure 3.8 shows the disparities between f1 and f ′
1
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Figure 3.7: The Figure shows the reference camera (c1) viewing a point f1 on the plane

T . Then a depth z is hypothesized, giving a surface point p′ and a normal n1. The

verification camera (c2) is used to verify the hypothesized surface point p′, generating

a second normal n2. Point p′ coincides with the actual surface point p if and only if

the normals computed from both cameras are identical. When p′ is not equal to surface

point p, we therefore obtain two normals, n1 and n2.
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and between f2 and f ′
2
. We define the distances between these paired points as e1 and e2

respectively:

e1 = ‖f1 − f ′
1
‖ (3.18)

e2 = ‖f2 − f ′
2
‖ (3.19)

Then we define the error metric to be the sum of these distances:

Edisp = e1 + e2 (3.20)

The disparity difference metric merges indirect stereo refraction with conventional

stereo. We expect the disparity difference to provide a deeper error surface in shallow

water where the surface normal has less bearing on the displacement. This metric builds

on the same intuition as the first metric, since it also penalizes mismatched normals.

When the water depth is shallow and feature localization errors become comparable to

the water depth, the effect of the normal on refraction becomes insignificant. The metric

models this by relating the error to the depth, so large normal differences at low depths

aren’t given as high an error as the same normal difference at a higher depth.

The theoretic process for verifying a hypothesized depth is shown in Algorithm 1.

Once the problem is broken down like this, we can perform a simple error minimization

routine to discover the actual depth of the water and the surface point p.

3.3 Practical water surface reconstruction

In the previous section we presented a method for determining points on the water

surface given binocular stereo views of the water. The process relies upon pairs of images

of points on the plane T with and without water. In this section we present our method

for localizing points and determining the correspondence between the points imaged with

and without water (refractive correspondence).
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Figure 3.8: The Figure shows a point f1 image by the reference camera (c1) and a point

f2 imaged by the verification camera (c2) generating normals n1 and n2 respectively.

The normal collinearity metric measures the angle between n1 and n2. In contrast, the

disparity difference error metric is then determined by swapping normal n1 for n2 and

tracing rays from each camera and refracting them by the swapped normals to get f ′
2

and

f ′
1
. As in Equation (3.20), the metric is the sum of the distances e1 and e2.
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Algorithm 1: TheoreticDepthVerification

Input: Hypothesized depth z′, point on T : f1, image of the point: f ′
1
, camera

centres of projection c1 and c2, the refractive index of water rw

Output: Error E

1. Compute p′ from hypothesized depth z′ along ray c1f
′;

2. Compute u and v using Equations (3.6) and (3.7);

3. Find θδ from u and v using Equation (3.10);

4. Given θδ and rw, compute θi from Equation (3.11);

5. Given θi, u and v, compute n1 as from Equation (3.12);

6. Intersect p′c2 with I2 to get the image of a point q′

3
. This image point corresponds

to a point f3 on T ;

7. Compute uv and vv using Equations (3.14) and (3.15);

8. In the same manner as before, compute θvδ and n2 using uv and vv;

9. Compute the error E from the disparity difference metric or normal collinearity

metric using Equations (3.20) or (3.17) respectively;

10. Return E;
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So far we have described a system for determining single surface points at a particular

instant in time. Since we would like to be able to capture sequences of dynamic water

surfaces, we also require our system to track the points on T between frames.

Finally, we present the implementation of our water surface reconstruction algorithm

that uses a finite set of feature points on T . We also present our algorithm for recon-

structing captured sequences.

3.3.1 Pattern specification for feature localization and corre-

spondence

In order to locate points on T we require feature points that can be reliably localized in

images. In our system we place a pattern with sharp features onto T in full view of both

cameras. For reconstruction, the pattern must be fully visible, especially when covered

by water.

There are several challenges to localizing the features on the pattern. We require both

feature localization at particular frames and feature tracking of the apparent movement

of the features over time. Note that it is not the features that move, but their refracted

images that shift due to changes in the water surface between frames. We also need

to compute two correspondences. First, we must match features between our binocular

views of the pattern in order to determine refractive stereo disparity. Secondly, we need

to be able to find correspondences between the images of the pattern and images of

pattern through water.

The choice of pattern is crucial for our reconstruction algorithm and its accuracy. Our

system is implemented to use a monotone chequered pattern that provides hard edges

and distinct corners. The density of the pattern also affects reconstruction. If the pattern

is too dense, localization may suffer since the support region for the corners is smaller.

Also, a dense pattern is subject to a greater degree of feature elimination and separation

due to refraction of opposing normals. Elimination occurs when a feature point becomes
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invisible to the camera due to refraction limits and separation occurs when two adjacent

features appear separated after refraction. These effects are also more pronounced in

deeper water.

In order to determine both the frame to frame correspondence and the corner localiza-

tion, our system utilizes a Lucas-Kanade type template matching technique [5]. Template

images are generated around the checker corners from an image of the pattern without

water. We then match these templates against the corners in subsequent frames. The

support region around the corners allows for high localization precision. The templates

are locally specific and will not match against any of the four nearest corners since those

corners have reciprocated black and white checkers. This makes the algorithm more

robust to some elimination.

Finally our system is designed to handle two cases of refractive correspondence. For

reconstruction sequences that begin with no water, corner localization at the start of the

sequence is used to locate the feature positions on T and subsequent images are used for

reconstruction. The other case we handle is for sequences beginning from calm water.

In this case we require an image of the T to locate the features without water. We then

detect the features from the calm water images at the start of the sequence. Since the

water is calm, we assume there is no elimination or separation and the only distortion

is the monotonic refractive distortion. We are then able to locate the corners accurately

by stretching the grid to match at the boundaries and relocalizing each corner, giving a

correspondence for the refractive disparity.

3.3.2 Implementation of indirect stereo triangulation

Here we will outline the process for computing point locations and normals on the water

surface given a finite set of feature points on T .

We implemented the surface point triangulation algorithm as a one dimensional min-

imization problem. The cost function (C) takes in a hypothesized depth z′ and returns
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an error associated with that depth:

Edepth = C(z′) (3.21)

Recall that in our error metrics, we utilize the second camera to verify the hypothesis.

Section §3.2.2 describes how verification works in theory, where a feature point exists at

the end of the verification ray, allowing direct verification of p. In practice, we only have

a finite number of spaced out features on T . We must therefore interpolate between the

nearest features in order to perform the verification. Figure 3.9 shows the scenario in

two dimensions with linear interpolation.
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Figure 3.9: When verifying a surface point p, due to the discrete placement of features,

we cannot assume that there will be a feature projecting through p to c2. So we find

the refractive disparity of the nearest features and interpolate to get an approximate

disparity that we use to find the verification normal at p.
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Verification is computed through the determination of the surface normal along the

verification ray. As can be seen in Figure 3.9, the normal of the verification ray itself

is not known. Instead we must compute the refractive disparities of the features that

project closest to the desired point. We then perform an interpolation step to find the

approximate refractive disparity along the verification ray (c2p). This is then used to

find the verification normal. Although Figure 3.9 shows the scenario in two dimensions,

our implementation had to be three-dimensional. Thus we implemented a bilinear in-

terpolation to approximate the normal, interpolating the normals at the four nearest

non-collinear corners. The interpolation is computed as shown in Figure 3.10.

Since the Snell’s law (Equation (3.2)) is non-linear and our surface is not necessarily

linear, the bilinear interpolation is not absolutely accurate. Despite this, water’s inherent

smoothness and a dense feature set with features located every few pixels means that we

can reasonably approximate the verification surface normal.

3.3.3 The algorithm

We utilized some of the physical constraints of the system in our depth estimation routine.

We assumed spatial smoothness of the water by limiting our depth search to values close

to the depth of neighbouring points.

We can put together all the pieces described previously to form an algorithm for

determining the error for a particular hypothesized water depth shown below:

Our global algorithm processes frame sequences and uses the DepthVerification algo-

rithm to determine the water surfaces. The process cycles through each frame, tracking

the feature points as they are distorted by the water. It passes the tracked features

and a hypothesized depth into the DepthVerification algorithm which returns the error

associated with the hypothesis. This process is repeated and the error is minimized in

order to determine the best depth estimate and thus the location of the surface point. A

surface mesh is then generated from all the surface points in each frame.
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Figure 3.10: Bilinear interpolation on imaged feature points in the reference camera.

Since our features are not dense and the refractive disparity is only known at these

features, we must interpolate to get disparity values for points lying in between the

feature points. The refractive disparity of a point x is approximated from the known

disparities of four localized feature points t1, t2, t3 and t4. x is projected onto t1t2 to

get a and onto t3t4 to get b. Then x is projected onto ab to get c and the disparities at

the end points of t1t2 and t3t4 are interpolated to get disparities for a and b. Then the

disparities of a and b are interpolated to get a final disparity for c, which is the bilinear

approximation of x.
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Algorithm 2: DepthVerification

Input: Hypothesized depth z′, feature f1, feature image f ′
1
, set of all pattern

features F, set of features F2 imaged from the reference camera c2, camera

centres of projection c1 and c2

Output: Error E

1. Compute p′ from hypothesized depth z′;

2. Compute u and v using Equations (3.6) and (3.7);

3. Given p′, u and v compute n1 from Equations (3.10), (3.11) and (3.12);

4. Find the four non-collinear features in F2 that project closest to the hypothesized

surface point from the view of the verification camera;

5. Bilinearly interpolate the refractive disparity of four features to get the approximate

refractive disparity of the verification ray. Then compute the verification normal

n2;

6. Swap n1 and n2 to compute the error distances e1 and e2;

7. Return E = e1 + e2;
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Algorithm 3: SequenceReconstruction

Data : Binocular frame sequence of pattern through water. Calibrated camera

system. Initial feature locations. Start and end frames.

Result : Water mesh sequence

i← startFrame ;

while i < endFrame do

foreach feature point f do

Minimize DepthVerification using Golden section algorithm to give best-

Depth;

Determine surface point from bestDepth;

Generate mesh from set of surface points;

Perform Lucas-Kanade localization on each feature in the next image i + 1

using the previous feature location as a seed point;
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Results

“If you wish to drown, do not torture yourself with shallow water.”

-Bulgarian Proverb

In this chapter we describe the apparatus and physical setup for our system. We then

analyze the performance of our reconstruction system. We begin by selecting several

parameters that govern the error in our reconstruction. In order to measure this error

we present a set of metrics that allow us to examine the effect of our parameters. We

then explain how we designed a simulation of our algorithm to test the error parameters.

Subsequently, we present results from the simulation and compare them to results from

real world data. Finally we present results of reconstructed water sequences.

4.1 Apparatus and Physical Setup

We are also forced to constrain our system due to physical limitations of our apparatus.

Since our imaging system is not a perfect pinhole camera and nor does it produce an

orthographic projection we were careful to calibrate our system to take into account a

reasonable approximation of these imperfections. In this section we describe our physical

apparatus and setup. We describe the assumptions we make and the constraints we

54
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employ.

4.1.1 Apparatus and imaging system

We decided to use a glass tank to constrain the water we were reconstructing. The tank

was raised on a frame (Figure 4.1) to allow an image to be projected onto the tank

bottom. We placed a back-lit chequered screen on the tank bottom to allow the image

to be viewed from above. The screen was in direct contact with the water to avoid any

other refraction. During our experiments, the only lighting of the scene came from the

lighting below the surface of the water.

We viewed the water from above with two cameras aiming from opposite ends of the

tank. A trade off exists between baseline length and the size of the reconstructable area.

A longer baseline produces greater disparity between refracted features, but the result is

a smaller overlap between the refracted images and thus the reconstructable area, as can

be seen in Figure 4.2. The overlap is necessary for our stereo triangulation as described

in Section §3.2.2.

We used twin Sony DXC-9000 3CCD cameras in progressive scan mode to feed syn-

chronized image data into two Matrox Meteor II video capture boards. The images were

captured with a resolution of 640x480 pixels at 60 frames per second.

4.1.2 Camera calibration

In order to enhance the accuracy of our technique we wanted an accurate model for our

cameras and physical setup. To this end we performed intrinsic and extrinsic calibration.

We performed intrinsic camera calibration according to the technique described in

[39]. This allowed us to estimate the focal length, centre of projection and lens distortion.

We then extrinsically calibrated our stereo camera pair by imaging a common pattern

on the bottom of the tank. This gave us the transformation for both cameras to a new

coordinate system originating at the calibration pattern on the tank bottom. We per-
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Figure 4.1: Physical setup and apparatus
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Figure 4.2: Trade-off between baseline length and reconstructable region size
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formed the rest of the implementation using this coordinate system. Figure 4.1 shows the

calibration pattern on the tank bottom, ready for extrinsic calibration. The calibration

pattern was subsequently used in the reconstruction phase.

We calibrated the cameras using a short exposure time (1/500 s) so that motion blur

would not affect the reconstruction process. Another important step was to make sure

the camera was focused precisely on the pattern and calibrated well around that depth

range. We required bright lighting to compensate for the quick shutter speed and to allow

for as small an aperture size as possible. The small aperture was necessary to reduce

depth of field blurring.

4.2 Water surface reconstruction simulation

We performed several experiments using a simulation of our system in order to analyse

the expected performance and behaviour of the system on real data. First, we describe

how the simulation was created and how it approximates real world results. We then

analyze the performance of our two error metrics, selecting the disparity difference metric

as more effective. The remainder of our results are all computed using this metric. Then

we present and discuss results that compare the main error contributing factors in the

system. Finally we compare our simulated results to real world data.

4.2.1 Simulation implementation

Since our system is image-based and all our measurements are computed from the images,

reconstruction errors occur from the calibration of the cameras and the ability to localize

features within the images. We selected two parameters to quantify the error in the

system. These error parameters cover the two primary aspects noted and can readily

be estimated in our experiments on real data. We also selected a third parameter that

affects the system performance, the height of the water.
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The first parameter is the calibration error. This is the error caused by misalignment

of the homographies of feature points in the images of both cameras projected onto an

extrinsic plane. The calibration error is caused by imperfect intrinsic calibration as well

as errors in the calibration of the extrinsic plane for both cameras. Figure 4.3 shows how

the calibration error affects the computation of the verification normal n2.

The calibration error parameter is incorporated into our simulation by perturbing

the feature homography of the verification camera by some amount (∆fi), normally

distributed around a mean. This mean is our input parameter and we label it as the

calibration error (ρ), measured in millimetres.

Secondly, our system cannot perfectly localize the features in the images due to camera

noise and limited resolution. Figure 4.4 shows how the localization error affects point

reconstruction. Since the reconstruction relies on the vectors formed from the imaged

feature points, error in those points translates in to reconstruction error for the surface

point. It is important to note that a drastic error in the localization may results in a

physically impossible reconstruction scenario, where the surface normal or depth cannot

achieve the refractive displacement. Our system disregards such points.

We incorporated this error into our localization error (ψ) parameter. The localization

error parameter is the mean of a Gaussian perturbation on the image plane applied to

all imaged feature points (∆q), measured in pixels.

Our third parameter, the height of the water h, affects reconstruction as it affects the

distance of the surface from the cameras, as well as the refractive disparity. In order to

simplify the simulation, the interpolation step and error associated with it is ignored.

The simulation works in a similar way to the global sequence reconstruction algorithm

as described in Section §3.3.3. Instead of tracking features through a sequence of images,

we generate feature points and compute the refractive displacement given the simulation

input parameters. The simulation works under the assumption of a flat water surface.

The simulation algorithm is designed to compute a set of behaviour and performance
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Figure 4.3: Calibration error. When c2 is used to verify a surface point p, the point

is projected into the image plane of c2. The feature imaged at the projection point q2

is used to compute the verification normal as described in §3.2.1. Due to calibration

error, the feature imaged at q2 may in fact by offset from the feature f2 imaged from

the reference camera c1 by some amount ∆f2. This causes the verification normal n2 to

become slightly skewed.
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localized. Thus there is some perturbation ∆qi in our image point. This perturbation in

turn causes a shift in the reconstruction point from p to p′. The surface normal is also
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gauges given varying heights and system errors.
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Figure 4.5: Reconstruction gauges. The Figure shows a reconstructed point p′ a distance

λ away from the true location p and a distance ω from c1. The reference camera c1

produces a normal n1 and the verification camera generates n2. The error metric Edisp =

e1 + e2 computed as described in §3.2.2. The angle between the true normal n and the

reconstructed normal n1 is γ.

The simulation measures the following behaviour gauges. The measured quantities

are displayed in Figure 4.5.

• The average error metric (E) returned by Algorithm DepthVerificationSimulation

4.2.1. The error metric is computed as E = e1 +e2, where e1 and e2 are determined

as described in §3.2.2.

• The standard deviation and the mean distance (λ) between reconstructed and ac-



Chapter 4. Results 63

tual surface points. The distance is computed as λ = ‖p′ − p‖.

• The reconstruction system accuracy, defined as the average distance between the

reconstructed point and the actual surface point divided by the distance to the

camera (λ/ω).

• The mean and the standard deviation of the normal error, defined as the size of the

angle (γ) between the reconstructed normal and the actual normal. It is computed

as γ = cos−1(n1 · n).

We implemented a slightly simpler version of the DepthVerification algorithm de-

scribed in Section §3.3.3. This algorithm computes the error associated with a given

hypothesized depth but uses the input features, rather than searching for the closest

verification features and interpolating.

Algorithm 4: DepthVerificationSimulation

Input: Hypothesized depth z′, shifted feature f1 + ∆f1, image of shifted feature

q1, shifted feature f2 + ∆f2, Camera centres of projection c1 and c2

Output: Error E

1. Compute surface point p′ = c1 + z′‖q1 - c1‖;

2. Compute incident ray u1 = p′ − c1;

3. Compute refracted ray v1 = f1 + ∆f1 − p′;

4. Given p′, u1 and v1 compute n1 from Equations (3.10), (3.11) and (3.12);

5. Compute incident ray u2 = p′ − c2;

6. Compute refracted ray v2 = f2 + ∆f2 − p′;

7. Given p′, u2 and v2 compute n2 from Equations (3.10), (3.11) and (3.12);

8. Return error metric value E;
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Given the DepthVerificationSimulation algorithm, we implemented a simulation algo-

rithm that would take a given height and compute the behaviour gauges outlined above

for a range of localization errors and calibration errors. We generated the appropriate

refractive distortion given the input height and camera locations. Then we perturbed the

features for the localization error and we shifted the feature homographies to approximate

the calibration error. The algorithm is outlined in detail in Appendix A.

We implemented a second version of the Simulation algorithm that compared the

localization error to varying heights, while maintaining a constant calibration error. The

purpose of this was to examine the effect of water height upon the results.

4.2.2 Error metric analysis

In Section §3.2.2 we discussed two methods for matching features between the reference

and verification cameras. We presented the normal collinearity error metric which mea-

sured the angle between the normals computed by the reference and verification cameras

(4.1). The second metric, the disparity difference, measured the difference in disparity

between features viewed through the surface point from both cameras and the corre-

sponding projected features computed when the normals are swapped (4.2),

Enormal = cos−1(n1 · n2), (4.1)

Edisp = ‖f1 − f ′
1
‖+ ‖f2 − f ′

2
‖,

Edisp = e1 + e2. (4.2)

We ran a set of simulation experiments using both metrics to determine the behaviour

of each as seen in Figure 4.6. Both metrics showed similar behaviour above water heights

of 1mm. It is in the relatively shallower water that differences can be seen. The key

difference is in the distance error gauge (λ) where the error and error deviation for the

normal collinearity rises sharply as the depth drops below 1mm. The disparity difference
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in contrast exhibits a relatively slight peak at depths below 0.3mm. Both metrics produce

a similar normal error (γ). The remaining experiments all employ the disparity difference

error metric.

4.2.3 Feature localization error and calibration error compari-

son

Our comparison between the localization error and calibration error suggests that local-

ization affects the reconstruction to a much greater degree than the calibration (Figures

4.7, 4.8 and 4.9). Although the calibration and localization errors are measured in dif-

ferent units, in our set up 1 pixel distance projected to approximately 1mm in the tank

bottom. The results are all computed for a constant height of 5mm.

The calibration error causes the misalignment of the projected features from the

cameras. This means that the verification test does not occur at precisely the correct

location. Since we are dealing with flat water, the surface normal is constant over the

water and the only difference is the angle of the incident ray. Our cameras are not oblique

to the water surface and there is only a small change in the incident angle so only a small

change in the refractive displacement occurs. The refractive displacement is what is used

to determine the surface normal for verification, explaining why the calibration error has

little effect on the reconstruction depth.

We can see that the error metric results closely match the depth error gauges, sug-

gesting that it is a valid error metric.

4.2.4 Analysis of localization error at varying depths

We used the second version of the simulation algorithm to generate graphs comparing the

effect of the localization error at varying depths (Figures 4.10, 4.11 and 4.12). We fixed

the calibration error to be 0.55mm, comparable to the calibration error determined from
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Figure 4.6: Error metric analysis. The normal collinearity metric is shown above the

disparity difference metric.
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Figure 4.7: Simulation graphs showing the mean distance between reconstructed points

and the actual points (top) and the standard deviation the depth reconstruction accuracy

(bottom) for varying calibration and localization errors
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Figure 4.8: Simulation graphs showing the mean error metric (top) and the standard

deviation of the reconstructed depths (bottom) for varying calibration and localization

errors
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our real world apparatus. Depth slightly affects the reconstruction error but to a much

lesser extent than the localization error (Figures 4.10 and 4.11). These results suggest

that our algorithm robustly reconstructs a range of depths. Figure 4.12 demonstrates

the degeneration of the surface normal as the water depth approaches zero.

4.2.5 Simulation data compared to real world data

Next, we performed a set of experiments, reconstructing flat water surfaces at varying

water heights. We attempted to gauge the results in a similar manner to our simulation

gauges. The error metric gauge is directly comparable, but the true location of the

surface is unknown so the other gauges must be approximated. Since we were dealing

with flat water, we approximated the true surface by a best fit plane through all our data

points. This was achieved with Single Value Decomposition on the point set to determine

a planar basis.

We then measured the distance of each point from the plane for our distance gauge

λ and we compared the point normals to the plane normal for the normal error γ. Plots

of the results are shown in Figure 4.13.

In order to compare our empirical results with our simulation results, we needed to

determine appropriate values for the calibration and localization simulation parameters.

The calibration error in our empirical system can be estimated by projecting the

detected features from both cameras onto the tank bottom plane and measuring the mean

correspondence error between the two homographies of feature points. We obtained a

mean error of 0.55 mm and used this as our calibration error parameter in our simulation.

The localization error is not as readily available for measurement as the true location

of the features cannot be accurately known. We ran tests on our system, where we

localized corners for a sequence of twenty frames of our pattern without disturbance.

We determined an average position for the corner from these samples and then found

the mean perturbation of the samples around the average position. This test gauges the
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Figure 4.10: Simulation graphs showing the mean distance between reconstructed points

and the actual points (top) and the standard deviation the depth reconstruction accuracy
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deviation of the reconstructed depths (bottom) for varying depths and localization errors



Chapter 4. Results 73

0

0.1

0.2

0.3

0.4

0.5

0

20

40

60

80

100

0

0.1

0.2

0.3

0.4

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 o

f 
th

e
 N

o
rm

a
l E

rr
o

r 
(γ

) 
(r

a
d

ia
n

s
)

0

0.1

0.2

0.3

0.4

0.5

0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

M
e

a
n

 N
o

rm
a

l 
E

rr
o

r 
(γ

) 
(r

a
d

ia
n

s
)

Localiz ation E rror (ψ) (pixels ) Water Height (h) (mm)    

Localiz ation E rror (ψ) (pixels ) Water Height (h) (mm)    
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precision of our system, but is not able to determine the accuracy. Our experiments

revealed a precision of ˜0.1 pixels.

We ran our simulation using the computed calibration error parameter for several

values of localization error. We varied the localization error from 0.6 pixels to 1.2 pixels

in 0.2 pixel increments. Figure 4.13 shows the comparison between simulation results and

our results from observation. Our empirical results closely match the simulation results

in every category. However the localization error appears to be roughly 0.6-1.2 pixels

larger than the precision of 0.1 pixels. The same characteristic increase in normal error

is found as the depth decreases. The distance gauges show a similar robustness to water

height and the error range to the corresponding simulation results.

4.3 Water surface sequences

We reconstructed several sequences of captured flowing water. For each of these sequences

the input to our algorithm was a stereo view of a chequered pattern over which water

was poured.

The first two sequences were captured during the actual pouring of the water onto

the pattern area. In both cases the water depths were low, beginning at approximately

1-2mm deep and rising as more water was added. We label these sequences: POUR-A

and POUR-B.

Figures 4.14 to 4.17 show four frames from sequence POUR-A, along with the corre-

sponding input images of the pattern from both cameras. This sequence used a pattern

checker size of approximately 4mm.

Figures 4.18 to 4.21 show four frames from the second sequence POUR-B, along with

the corresponding input images of the pattern as before. This sequence was rendered

with ray traced refraction and reflection, with a textured plane beneath the water so

that the results can be compared more closely to input. This sequence used a pattern
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checker size of approximately 3mm. Notice that this sequence has some bubbles on the

water surface (Figure 4.19). The bubbles cause indentations in the water surface and the

reconstruction correctly models this.

Often the subtleties of the reconstruction cannot be seen without viewing animations

of the resulting sequences. In some of our reconstructions, low amplitude waves are

seen to propagate through the reconstructed surfaces that cannot be detected in single

images2.

Our next reconstructed sequence is labelled as RIPPLE. It consists of the reconstruc-

tion of the surface after a few drops are dripped into water several centimetres deep.

We were unable to reconstruct the initial splash as the pattern was too distorted for the

corners to be matched correctly (shown in Figure 4.22). Had the water depth been lower

the initial splash would have been easier to reconstruct since less elimination would have

occurred. The reconstruction checker size was 3mm for this sequence.

We present one frame of the RIPPLE sequence in Figure 4.23. This figure shows

the set of reconstructed points as well as a rendered mesh of the frame. Notice the

sparse areas on the left and right edges of the reconstructed point set. These areas are

the results of overlapping as described in Section §4.1.1. Although these areas cannot be

reconstructed as accurately, their locations can be estimated using the nearest verification

features as shown.

2We refer the reader to the resulting animations that are available here:
http://www.dgp.toronto.ed/˜nmorris/thesis/
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Figure 4.14: Frame of sequence POUR-A. The top two rows are the stereo views of the

water. The bottom row is the reconstructed surface.
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Figure 4.15: Frame of sequence POUR-A. The top two rows are the stereo views of the

water. The bottom row is the reconstructed surface.



Chapter 4. Results 79

Figure 4.16: Frame of sequence POUR-A. The top two rows are the stereo views of the

water. The bottom row is the reconstructed surface.
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Figure 4.17: Frame of sequence POUR-A. The top two rows are the stereo views of the

water. The bottom row is the reconstructed surface.
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Figure 4.18: Frame of sequence POUR-B. The top two rows are the stereo views of the

water. The bottom row is the reconstructed surface.
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Figure 4.19: Frame of sequence POUR-B. The top two rows are the stereo views of the

water. The bottom row is the reconstructed surface.
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Figure 4.20: Frame of sequence POUR-B. The top two rows are the stereo views of the

water. The bottom row is the reconstructed surface.
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Figure 4.21: Frame of sequence POUR-B. The top two rows are the stereo views of the

water. The bottom row is the reconstructed surface.
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Figure 4.22: Image of the pattern distorted by a splash in the water. This pattern has

too much elimination for our reconstruction algorithm to localize enough of the corners

for a reasonable reconstruction.
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a)

b)

Figure 4.23: a) Shows the reconstructed set of points from one frame of the RIPPLE

sequence. b) Shows the rendered mesh of the above point set.



Chapter 5

Conclusion

“The cure for anything is salt water - sweat, tears, or the sea.”

-Isak Dinesen

We have presented a new system for reconstructing the surface of water, utilizing

stereo images of a pattern refracted through the water. Our system builds upon work

that utilizes refractive distortion as well as stereo reconstruction research. We have

provided a theoretical outline of the algorithm that combines these two methods. An

implementation of our system was also presented. The implementation only requires a

simple stereo camera setup with no additional equipment.

We generated input data from a simulation and showed that the simulation results

were consistent with our empirical data. We also proposed two matching metrics for

determining points of the water surface. We showed that our disparity difference metric

outperformed the normal collinearity metric when the water depth approached the size

of the localization error.

We discovered that the localization error of pattern feature points contributes the

most to the error in water surface point determination, especially when the water is still.

The calibration error is expected to affect reconstruction accuracy to a greater extent

when the water is disturbed.

87
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Our system is built to allow the reconstruction of sequences of flowing water and our

results show that it is especially effective at reconstructing shallow flows. At greater

water depths the trade-off between the pattern density and the surface roughness that

can be captured is more noticeable.

While our system is described specifically for water, the technique described here can

readily be applied to other liquids by specifying different refractive indices.

There are several avenues available for improving and extending our system. We

outline them in the next section.

5.1 Future Work

Currently our system is based upon finding individual points on the water surface. In

order to improve the overall smoothness we propose that a global method could be applied

so that the surface is determined by global minimization of the whole set of points. It

may also be feasible to attach a temporal smoothness term to our surface generation, to

eliminate outliers that suddenly appear in a sequence.

Our system currently cannot handle splashing water. While it would be beneficial

to enhance the robustness of our surface determination to splashes, it would also be

interesting to capture such effects. We propose that a volume carving approach could be

applied to the splashing water in order to incorporate it with the generated surface.

Another enhancement to our system would be to remove the constraint of a planar

surface underneath the water. We believe that it would be possible to reconstruct the

ground surface below the water as well as the water surface given sufficient views of the

surfaces.

We foresee that this work may be used as a key piece in several larger bodies of work.

First, the determination of internal fluid flow from images would certainly require precise

knowledge of the surface topology, presenting a vital application for our work. Another
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use for this thesis may be in the collection of a library of liquid flows that may be used

as a tool to compose arbitrary flows.



Appendix A

Simulation algorithm

Here we present the details for our simulation algorithm. This algorithm takes in pa-

rameters for the calibration error range and localization error range and generates the

appropriate inputs for the depth verification algorithm. It returns a result set for the

input parameter ranges.

90
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Algorithm 5: Simulation with constant height

Input: Reconstruction height (z), Calibration error range (calibErrMin,

calibErrStep, calibErrMax), Localization error range (localErrMin,

localErrStep, localErrMax), Virtual camera centres of projection c1 and

c2, Tank bottom plane T , numIterations

Result : Behaviour gauges

for ρ← calibErrMin; ρ < calibErrMax; ρ+ = calibErrStep do

for ψ ← localErrMin; ψ < localErrMax; ψ+ = localErrStep do

Pick image coordinates q1 of feature f1 from Camera c1;

Determine actual surface location p = c1 + z‖q1 - c1‖;

i← 0

while i < numIterations do

Shift q1 by a random amount around a mean of ψ to get q1 + ∆q1;

Determine the adjusted surface point p + ∆p;

Intersect p + ∆p− c2 with T to find the virtual feature f2;

Shift f2 by a random amount around a mean of ρ to get f2 + ∆f2;

Project f2 + ∆f2 to c2 to get image coordinates q2;

Shift q2 by a random amount around a mean of ψ to get q2 + ∆q2;

Compute the shifted images of the features without water;

Minimize DepthVerificationSimulation to find the expected best depth

and error metric result;

i = i+ 1;

Average expected best depths and error metric results;

Return data structure of averaged expected best depths, error metrics, expected

normals, actual depths and actual normals;
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