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Since Derek made slides. ..



The Rendeing Equation___________BHdy

) = g0 ) )+ [ o x50

I: intensity of light from x to x’
e g: geometry
e e emission

e p: intensity of light from x” to x from x’



e |dgp

e Time-averaged transport intensity
e No phasees

e No diffraction

e Homogeneous refractive index of base medium

e Could let g handle this (single scattering)
e Could solve this equation volumetrically (Eikonal)
e Could solve this equation with sparse paths (path integration)
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e How should we set / (that didn't exist before this paper)?
e Isn't it more natural to talk about angles around a point?

e Use stoichiometry to connect with standard radiometic intensity!
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dE = I(x, x")dtdxdx’

dE ~ joule
2

dx,dx’ ~ m

e dt ~ sec

Jjoule
m*sec

= I(x,x") ~
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Visible(x, x")

/
g(x,x") ~ 2

e Unitless!



B 3

1
dE = ﬁe(x, x")dtdxdx’

dE ~ joule
2

dx,dx’ ~ m

e dt ~ sec

Jjoule
m2sec

= I(x,x") ~
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1
dE = ﬁp(x, X', XX, x"") dtdxdx dx”

e dE ~ joule
2

dx,dx’, dx" ~ m
e dt ~ sec

I(x,x) ~ o

= unitless!
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* i(6,9)
e per time (dt)
e per unit projected area (dx;)
e per unit of solid angle (dw)

dE = i(6', ¢')dwax,dt
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o After defining maps between points and angles. ..

!’
r=llx = x|

dxfy = dx’ cos 0

cos @ = %(n‘x—xl)
cos 0’ = %(n/,xfx/)
cos ¢’ = 1(t’,x—x’>
r
cos 6 cos 6’

dE = i(0',¢') 5 dtdxdx’
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Radiometric Intensity to Intensities dgp

e After defining maps between points and angles. ..

9/
1, )t = dE = i(8", ¢) 2205 g
r

cos 0 cos 6’

I(x,x") =i(¢',¢) >
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e After some more boring algebraic manipulation with several
variables. . .

(0, ¢") cos B cos b
(0, ¢4 0") cos B cos 0’

e(x, x")

p(x,x',x")

f

5

g
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e The basic rendering equation is really elegant and now we have a
bunch of cos everywhere, which is important

e Now we can try solving it maybe?
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e seies _________QHe

e As the equation is an affine transformation we can rewrite it as
| = ge+ gMl
e We can solve a steadystate by. ..

(1—gM)I = ge

e Taylor expansion of hte above provides

o0
(1-gM)'ge=g <Z [/V’g]'> €
i=0
e |Intuitively,
e /=0 is light directly emitted
e /=1 is light bounced once
e /| = nis what?

14



bdwea  |dgp

e If we have a precomputed illumination €q
| = g€+ gMeo

e this is too easy?

e Well Whitted proposed something slightly more general

| =ge+g (Z[Mog]i> €0

i=1

e My is delta functions with a cosine. ..
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e What if there is no angular dependence?
/)(0/, ¢/7 wla OJ) = Po
e Well radiosity dB,(x) (a reduced [ turns into

dB,(x") = dx'porH(x")

e for H hemispherical incident energy per time per area

e With emission we get

dB,(x") = 7leo + poH(x")]dx’
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e By energy conservation, |M|| < 1.

Consider

oo
x+a+) Mta
k=1
e We can construct a probability of a path of length n, w € S" to
obtain the contribution from o7 to x; by

‘ 1
Xp = <g mgi_170i> agim

Apply splitting to say

14

p(w) = p(wo) [ ] plwi,wis1)

0
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e To not oversample they construct a hierarchy with one sample per

cell
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