A Comparison of Hyperstructures: Zzstructures, mSpaces,
and Polyarchies

Michael J. McGuffin
Department of Computer Science
University of Toronto
Toronto, Canada

mjmcguff@cs.toronto.edu

ABSTRACT

Hypermedia applications tend to use simple representations
for navigation: most commonly, nodes are organized within
an unconstrained graph, and users are presented with em-
bedded links or lists of links. Recently, new data structures
have emerged which may serve as alternative models for both
the organization, and presentation, of hypertextual nodes
and links. In this paper, we consider zzstructures, mSpaces,
and polyarchies from the perspective of graph theory, and
compare these models formally. The novel aspects of this
work include: providing a sound, graph-theoretic analysis of
zzstructures; the identification of a new class of polyarchies
associated with mSpaces; and the comparison and classi-
fication of these and other structures within a taxonomy.
The taxonomy that results from our comparison allows us
to consider, first; what the distinct characteristics of each
model are at a fundamental level, and second; what model
or attributes of a model may be most appropriate for the
design goals of a given hypermedia application.

Categories and Subject Descriptors

H.5.4 [Information Interfaces and Presentation]: Hy-
pertext/Hypermedia—navigation, theory; E.1 [Data Struc-
tures]: graphs and networks; G.2.2 [Discrete Mathemat-
ics]: graph theory

General Terms

Human Factors, Theory

Keywords

Connective structures, ZigZag, zzstructures, mSpace, pol-
yarchies, multitrees, edge-coloured graphs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HT 04, August 9-13, 2004, Santa Cruz, California, USA.

Copyright 2004 ACM 1-58113-848-2/04/0008 ...$5.00.

m. c. schraefel
School of Electronics and Computer Science
University of Southampton
Southampton, United Kingdom

mc@ecs.soton.ac.uk

1. INTRODUCTION

In the era of the Web, hypertext has largely been expe-
rienced as the click and the page: single clicks on single
anchors within single pages lead users to other single pages
(that do not themselves link back to the invoking page).
In hypertext research, this type of link, that points to but
one instance, and works in only the outgoing direction, is
a unary link. The unary link has defined interaction on
the Web to be a perpetual message of “go somewhere else:”
each click takes one from where they are currently to some-
where else. Similarly, the page as the smallest datum has
meant that information can largely only be rendered as huge
chunks, where each click loads a new page/chunk and re-
places the previous chunk. In other words, in clicking on a
link, the original context is frequently lost because a new
complete page (or new location in that same page) loads
in a browser window, replacing the previous page. Occa-
sionally, clicks open new windows containing the new page,
with the new window partially occluding the previous one.
Similarly, some browsers let users open links into “tabbed”
windows, where tabs allow users to move quickly between
these pages. With both multiple-open and tabbed windows,
however, the problem is the same: links point to individu-
ally huge chunks of information (pages) rather than to either
(a) flexibly sized information chunks (as in Web-based ap-
proaches such as ConTexts [20] or Fluid Links [27]) or (b)
multiple possible references (as supported by linkbases [1]).
As such, with current Web-based presentation strategies,
contextual information is occluded or lost from view. Once
pushed into memory like this, cognitive load for constructing
information context is increased.

Over the past few years, there has been work both in the
hypertext and interaction communities that has considered
how to represent smaller-than-page-sized amounts of data
to deliver more flexible ways to interact with information,
and to maintain context of that information. These models,
developed independently of each other, include zzstructures?
[18], mSpaces [21], and polyarchies [19]. In each case, the
approach has been to use models which rely on the schema or
semantics of the information in order to represent both the
desired information itself, as well as the relations among the
information. Further, these contextually associated pieces
of information are themselves actively available to the user:
the user can move immediately from their current focus of

!Some researchers prefer the form zzStructure, with a capi-
tal s; we, however, have followed the example in [14].

interest to the new focus of interest, without losing how that
new information is related to the previous focus.

The effect of these approaches is that it is possible to gen-
erate richer models for interacting with information than
with the single click-to-page approach. Each approach sup-
ports the representation of persistent context: one sees the
node of interest in relation to other associated nodes. But
more than this, one sees the node of interest from that
node’s position relative to multiple perspectives or orien-
tations. For instance, in representing a Classical Music do-
main, one could look at Mozart from the perspective of Ro-
mantic composers, or from the perspective of music used in
contemporary films, or recordings made on non-traditional
instruments. By presenting both the information and the
possibility of a variety of contexts, people have the oppor-
tunity to go beyond the current Web paradigm of accessing
only the information itself. We can begin to access informa-
tion from multiple perspectives and a variety of contexts.

While the deployment of these models relies on the real
data being metatagged in such a way that it can be auto-
matically associated, this is no longer an outrageous concept
for the heterogeneous, distributed Web. Much local data is
already generated on the Web from database schemas. Like-
wise, the Semantic Web effort [4] is chiefly involved with
research into tools and approaches that will support the co-
ordination and connexion of heterogeneous sources in se-
mantically meaningful ways — ways that can be reasoned
over to create associations of the type we are describing.

That said, we wish to step back from the implementation-
level view of applying these approaches to the Web, to look
at them from a graph-theoretic perspective. By considering
zzstructures, mSpaces and polyarchies as graphs, we can
investigate formal comparisons to find where these mod-
els overlap, and where they are distinct. In addition, our
graph theoretic analysis of these structures has produced
some valuable by-products. First, identifying the precise
graph structure of zzstructures has provided new insights
about zzstructures, facilitating a deeper understanding of
their key properties. Second, analysis of mSpaces has un-
covered a new class of polyarchies associated with mSpaces,
with interesting properties. Finally, in comparing these and
other structures, we present a taxonomy of models, with ini-
tial observations of their key differences. As a whole, this
serves as a first step in aiding hypermedia designers assess
which models best support their design goals, and which
attributes of the models are most appropriate for their sys-
tems.

In the following sections, we review each model, and ex-
tend or rephrase their current descriptions where necessary
to provide graph descriptions of each. From these descrip-
tions, we present a taxonomy of the models. Our research
goal beyond this work is that, through this taxonomy, we
can begin to build heuristics for selection, so that hypertext
designers can determine which model might best support
the representation and interaction aims of their systems.

2. BACKGROUND

The most familiar data structures for hypermedia appli-
cations, hypermedia navigation, and organization of infor-
mation in general, are 1D arrays (i.e. lists), 2D arrays (e.g.
spreadsheets or tables), hierarchical trees, and graphs. The
constraints imposed to varying degrees by each structure
have advantages and disadvantages: constraints help sim-

plify user interfaces, but also limit a user’s freedom. A 1D
list can be navigated with a very simple interface, but may
only be useful if the data to be organized is very small in
number (such as a navigation list for a website), or has only
one natural ordering (such as an alphabetic list in a dictio-
nary). The value of this organization breaks down if the
representation does not readily support the kind of access
needed by the user. An online dictionary, for instance, with
an alphabetic ordering of words, may be difficult to search
if only the phonetic pronunciation of a word is known.

As another example, trees are widely used, for example,
to organize file systems, sections of documents, and web
site maps. A common problem encountered by users forced
to use trees is difficulty in adding a new object, or finding
an existing object, that may have multiple, equally valid
locations in the tree.

One alternative to imposing any connective structure on
a data set is to use a “flat” database. Each data item can
be given a set of keywords or attributes which can then
be searched on. A disadvantage of using this approach
alone is that users cannot exploit their spatial memory and
learn where things are located [2, 5], or remember paths of
links to find them. Furthermore, there is no reason that
attribute-based search cannot be combined with an under-
lying organizing structure. For example, at least one op-
erating system supports the addition of arbitrary, search-
able, user-defined attributes within a hierarchical file sys-
tem [10]. Thus, whatever promise a searchable database
approach may hold, there is still value in seeking a useful
connective structure to further organize data items.

To address some of the shortcomings of lists, 2D arrays,
and trees, we may look to graph theory for alternative struc-
tures. General graphs are very flexible, but without con-
straints, they can be unwieldy: they usually cannot be drawn
without edges crossing, and if large and dense enough, may
appear to the user as a tangled, uninformative mess. How-
ever, there may exist variations on or extensions to graphs,
that impose useful constraints, while affording more flexi-
bility than trees. For example, hypergraphs (see Cormen et
al. [7] for a description of these and other kinds of graphs,
and for a review of some of the standard graph theory ter-
minology used in this paper) generalize links to be between
more than 2 nodes, and can be compared to hypermedia sys-
tems that support multi-pointing links, as well as set-based
hypermedia [25]. It is also interesting to consider connec-
tive structures that have an inherently dynamic structure,
as with HTL* [24], though in this paper, we focus more on
properties of static structures. Note that static structures
could nevertheless be snapshots of a dynamic process.

Other structures have been introduced more recently. Mul-
titrees [9] are a kind of directed acyclic graph (DAG) that
can contain multiple overlapping trees that share subtrees.
Multitrees can be used to encode multiple alternative hierar-
chies, and are also suitable for modelling human genealogies
(“family trees”). Each node in a multitree has a tree of an-
cestors and a tree of descendants (Figure 1), and this serves
as the basis for the centrifugal view visualization proposed
by Furnas and Zacks [9].

Polyarchies [19] are another structure which can contain
multiple overlapping trees. Unlike multitrees, where trees
may only share subtrees, the trees in a polyarchy may over-
lap or intersect at arbitrary nodes. Furthermore, whereas
the trees in a multitree are implied by the structure of the

/I\W\ [
A A AT A A
T\ TN

/N M

STU STU

Figure 1: Left: an example multitree. Right: Node
M is highlighted, along with its tree of ancestors and
its tree of descendants.

multitree, in a polyarchy data structure, some extra infor-
mation is required to somehow mark or identify each tree.
Mathematically, one way to model this extra information is
by colouring edges to identify different trees. A polyarchy
can thus be thought of as an edge-coloured multigraph (Fig-
ure 2). Robertson et al. [19] developed a technique for
smoothly transitioning from one tree in a polyarchy to an-
other, by rotating the trees in 3D around a pivot point, i.e.
a node where the two trees intersect.

A B A B
/
C D E

//\\i f/f\fM;\o
///’L /Al

T——U—V—W—X]T U V W X

A B A B

Figure 2: Top left: an example polyarchy of 3 trees,
each marked with a different edge colour. The other
3 images show each constituent tree.

Zzstructures [14, 16, 18] is the generic name for Ted Nel-
son’s ZigZag®), which generalizes (i.e. subsumes) lists, 2D
arrays, and trees. Zzstructures also allow multiple instances
of lists, 2D arrays, and trees to coexist within the same data
set, each organizing the data in a different way. Applications
proposed for zzstructures include hypermedia [17], personal
schedules [16], and programming [15]. Previous introduc-
tions [14, 16, 12] to zzstructures emphasize a non-Euclidean
spatial mental model, based on dimensions along which con-
nections are made. In our experience, this has tended to
make zzstructures difficult for novices to understand, and
also makes it difficult to compare the formal structure of
zzstructures to other connective, graph-like structures. In
Section 3, we use standard graph-theoretic concepts to de-
fine a special kind of graph equivalent to zzstructures. This
enables a better understanding of zzstructures, and eases
comparison with other kinds of graphs.

mSpace [21, 11] is an approach for visualizing and inter-

acting with multidimensional or multivariate data (e.g. the
type of data found in a tabular database, where each data
point, corresponding to a row in the database, has the same
number of attributes, each corresponding to a column in
the database). The interaction in mSpace combines “pre-
view cues, dimensional sorting and spatial context” and is
geared toward “user-determined adaptable content” [21]. In
Section 4, we show that the structure exposed for navigation
by an mSpace interface (e.g. Figure 3) is a special kind of
polyarchy.

806 List View
Welcome to the MSpace Music Search Software

Conlextof Song: Barogue=>J.S.Bach=>Suite=>Violin

‘ stop

Now playing: J.S.Bach : Iil. Sarabande

Period Composer Form A
Early 4) . Biber 4y Chorale 4i Cello)
Renaissance 4) . Falkenhagen) Concerto 4j = Orchestra)
Baroque 41 Fasch) - Fugue 4 . Organ/Harpsic...)
- Classic 4) . Ceminiani) Mass 4i = Violin L]
Romantic 4) Hagen) Prelude 4
Modern 4) Handel 4) Recitatave 4
Contemporary 4 - Haydn) Sonata 4
J.5.Bach i Suite Ll
Marcello) Symphony i
Mendelssohn i Variation Ll
Molter Ll
Pachelbel 4
Platti L
Your Favourites. Delete from list

Figure 3: An mSpace multipane browser, viewing
a database of classical music. The columns, from
left to right, are Period, Composer, Form, and Ar-
rangement. Each column corresponds to a level in a
tree of choices. The children of the root node are
in the left-most column, and leaves are in the right-
most column. Selecting an item in every column
corresponds to specifying a path through the tree.
The left-to-right ordering of columns may also be
changed, changing the structure of the tree, thereby
allowing many possible trees to be browsed.

3. ANALYSISOF ZZSTRUCTURES

Zzstructures can be formulated according to at least three
different points of view, or interpretations: graph-oriented,
list-oriented, and space-oriented. We begin with a graph-
oriented approach, and define zzstructures as a kind of graph,
because this approach allows for a simple and unambiguous
definition of zzstructures, and can be easily understood by
readers familiar with graph terminology. Relationships with
the other two approaches are then identified.

We define zzstructures as a kind of directed multigraph
— by directed, we mean that the edges of the graph have a
direction associated with them, as shown by arrows in depic-
tions of the graph; by multigraph, we mean that each pair of
nodes may have multiple edges between them. Specifically,
a zzstructure is a directed multigraph, with coloured edges,
satisfying the following restriction:

Restriction R: each node in a zzstructure may
have at most one incoming edge of each colour,
and at most one outgoing edge of each colour.

The effect of restriction R is that the edges of each colour
form paths and/or cycles that do not intersect within the
same colour (Figure 4).

F

> W«
0

/7%4

R

J)K LJK//M

Figure 4: Top left: an example zzstructure involv-
ing 3 edge colours. The other 3 images show the
edge subsets of each colour. Note how each subset
of edges is a set of non-intersecting paths and/or
cycles.

According to the list-oriented approach [12], a zzstruc-
ture is a set of nodes together with a set of lists of nodes.
Each list has an associated (not necessarily unique) colour,
and each node may appear in at most one list of each colour.
Thus, each list gives the nodes forming a path or cycle whose
edges are of the list’s colour. The zzstructure in Figure 4
could be described with the following lists, where each list
is prefixed with its colour: (red,(J,H,A)), (red,(B,F,LE,B)),

(red,(C,G,M,L)), (green,(D,A,B,F,C)), (green,(J, H,E,I,G,M)),

(blue,(B,I,K)), (blue,(C,F,L,G,C)). Each list corresponds to
what Nelson calls a rank of cells [14]. (Interestingly, we
could have defined zzstructures as a kind of hypergraph [7],
where each hyperedge is an ordered tuple corresponding to
one list (or rank), and hyperedges of the same colour may
not intersect.) The list-oriented approach emphasizes paths
through the structure, which is relevant within the context
of path-centric browsing research [8].

To understand the more usual space-oriented point of view,
let N be the number of edge colours in a zzstructure Z.
Imagine embedding Z in an N-dimensional space, where
each of the edge colours corresponds to a different spatial
dimension. For example, the 3 edge colours red, green, and
blue in Figure 4 can be identified with 3 spatial dimensions
z, y, and z respectively. The green edge connecting nodes
A to B corresponds to a connection along the y spatial di-
mension. Thus, travelling from a node to an adjacent node
along an edge of colour C' corresponds to moving through
the space along C’s dimension; furthermore, ranks of the
same colour are parallel. The space containing Z, however,
is not necessarily Euclidean: edges in a zzstructure can act
as “wormholes” that “teleport” the user to arbitrary, seem-
ingly distant, nodes. For example, in Figure 4, starting at
node B, we may travel a distance of one edge along the
positive blue (z) direction to arrive at node I, or travel a
distance of two edges along the positive red (x) direction
(which is orthogonal to the blue direction) and arrive at the
same node I! It is in this sense that the space associated
with a zzstructure is non-Euclidean.

Returning now to the graph-oriented point of view of

zzstructures, some remarks can be made regarding our def-
inition of zzstructures. The essential role played by edge
colours in our definition is providing a way of “typing” the
edges. In an alternative definition, labelling each edge with
an integer from 1 to N would do just as well. Secondly,
the reason the edges of a zzstructure are directed is so we
may differentiate between what Nelson calls posward and
negward [14] directions — i.e., with or against an edge’s di-
rection. As per graph theory conventions, directed edges are
depicted with one-way arrows in our figures. However, we
do not suggest that the links in a zzstructure may only be
traversed in one direction, nor that the zzstructure should
be implemented with one-way pointers. Quite the contrary:
links in zzstructures should be traversable in either direc-
tion.

Visualizing zzstructures is challenging, since the space as-
sociated with a zzstructure may have a large number of di-
mensions and be non-Euclidean. Drawing such a structure
can result in multiple edge crossings, and/or inability to
straighten out or flatten dimensions, and/or occlusion prob-
lems, depending on the drawing strategy employed. One tra-
ditional approach to visualizing zzstructures is a 2D cursor-
centric view [14, 16] where a subset of nodes, arranged along
2 dimensions and centred at a cursor, is extracted and dis-
played in a flat, 2D view. To make it easy to flatten the
subset, it must match one of the templates in Figure 5: a
column view, or H-view, so named because the columns are
reminiscent of the vertical bars in a capital letter H; or a
row view, or I-view, with rows reminiscent of the horizon-
tal serifs in a capital letter I. These templates extract ranks
(i.e. “columns” or “rows”) along the 2 chosen dimensions
(Figure 6). The non-Euclidean nature of the space is dealt
with by displaying virtual copies of nodes that have multiple
apparent locations with respect to the cursor (e.g. Figure 6,
top right: from A, we can arrive at C by travelling right two
units, or up one unit).

Figure 5: Templates of nodes that can be extracted
from a zzstructure and easily flattened for viewing.
In both cases, the cursor is located at the centre
node. Left: an H-view. Right: an I-view.

Within a 2D cursor-centric view, three actions are avail-
able to the user for navigation, and each may hide, reveal, or
rearrange nodes in a different way: changing the cursor po-
sition, changing templates (compare Figure 6 top right and
bottom left), and changing the 2 dimensions used in the 2D
view (compare Figure 6 bottom left and bottom right).

Zzstructures generalize, or subsume, lists and 2D arrays
— Figure 7 shows how these can be realized as special cases
of zzstructures. Although restriction R precludes use of one-
to-many links within the same edge colour, there are “work-
arounds” that enable zzstructures to also generalize trees
(Figure 8). Figure 9 shows how H- and I-views can be used
to navigate a hierarchical menu. Additional examples of
zzstructures are available online [14, 13].

Figure 6: Top left: an example zzstructure involving
3 edge colours. Top right: an I-view with the cursor
at A. Bottom left: an H-view with the cursor at
A. Bottom right: same as bottom left, but with a
different edge colour mapped to the vertical axis.

A=B—C—D | »A++B++C+3D4

A=—»B-—-C—D

E=—F=—G—H | 2ET*F13G1oH4

| =)= K= L r-bl-—bJ-—bK-v—bL h

r*A—’B—iC—iD |

M=3N-30-3P | #M+>N+20+>P4

Figure 7: Example zzstructures. Upper left: a 1D
array, or list. Lower left: a wrap-around list, or
cycle. Middle: a 2D array, or spreadsheet, or table.
Right: a wrap-around 2D array, or torus.

Not only can lists, 2D arrays, and trees be encoded in
zzstructures, but even multiple instances of each of these

may be encoded simultaneously, by using different edge colours

for each instance. For example, one might organize nodes
within a tree using two edge colours, and also organize them
within a list using a third edge colour, and also organize
them within an alternative tree using two more edge colours,
all within a single zzstructure. Each sub-structure can be
viewed by mapping the appropriate edge colours to the axes
of the 2D cursor-centric view. Such combinations allow the
user to have many alternative sub-structures available, each
organizing and arranging the nodes in a different way.

4. ANALYSISOF MSPACE

mSpace interfaces have the ability to organize the data
points in a multivariate space as a tree, and allow this tree
to be browsed, for example with a multipane browser (Fig-
ure 3). Furthermore, the levels of the tree, which each corre-
spond to a dimension of the space, may be re-ordered (using
dimensional sorting [11]), changing the structure of the tree

R c B=—>C—D,
/\F G/L\ B—sC—3D \‘B. \‘D.

E—F G—H—I D"

E—F G—H—

Figure 8: Left: a traditional tree, involving one-
to-many links. Middle: a zzstructure encoding the
same tree, without using explicit one-to-many links,
but at the cost of using 2 edge colours. This en-
coding is analogous to the left-child, right-sibling
pointer implementation of trees [7]. Right: an alter-
native encoding of the tree in a zzstructure, requir-
ing 3 edge colours. Parent nodes are cloned along
the 3rd edge colour.

Main=#File=+0O
ain ile pen
Save
‘ Main F File
Save As...
Edit=—»Copy
Edit |-
Cut
Paste
Help |-
Help=*About
Index

Figure 9: Left: a tree of menu commands, encoded
in a zzstructure. Middle: an I-view with the cursor
at “File” shows menu items at the same level as
“File”. Right: an H-view with the cursor at “File”
shows menu items under “File”.

and allowing many possible trees to be browsed. This is
different from merely changing the ordering of items within
a dimension, e.g. sorting composer names alphabetically by
given name rather than by family name or by birth year.

We use the notation (a1, ...,ar) to denote an mSpace tree
with L levels (not counting the root, which is at level 0),
where ai,...,ar, are the attributes corresponding to each
level in the tree, from root to leaves (i.e. the left-most to
right-most columns in a multipane browser). For exam-
ple, the tree browsed in Figure 3 is the (Period, Com-
poser, Form, Arrangement) tree. Dimensional sorting al-
lows columns to be re-ordered, so that the user may, for ex-
ample, swap (or transpose [11]) the first and second columns,
revealing the (Composer, Period, Form, Arrangement) tree.
This tree, unlike the former, makes it easy to see the pe-
riod(s) corresponding to a selected composer, because Com-
poser is the top-level choice.

As another example, Figure 10 shows the structure of the
(z,z,y) tree for a small multivariate space. (Note that, for
simplicity, the multivariate space in Figure 10 is shown fully
populated with data points. In general, however, a multi-
variate space may only be sparsely populated.) Each dimen-
sional sorting, or permutation of dimensions, corresponds to
a different tree. With an L-variate space, there are L! differ-
ent trees, each of depth L, and each covering the data points
with their leaf nodes. For example, Figure 10 shows one of
3! = 6 possible trees, the other five being (z, vy, 2), (z, z,y),
(Y, 2, 2), (Y, 2,), and (z,y,z).

Figure 10: Left: an example multivariate space (of
3 dimensions), populated by 3 x 3 x 3 data points.
Right: one possible tree that covers the space. The
three levels of the tree, from root to leaves, corre-
spond to selecting values for z, z, and y, respectively.
There are 3! = 6 different permutations of the 3 di-
mensions, each corresponding to a different tree.

The L! trees are alternative, overlapping trees, and thus
constitute a polyarchy which we call an mSpace polyarchy.
It is important to understand that mSpace polyarchies are
in fact a special case of general polyarchies. An mSpace
polyarchy contains all the possible mSpace trees for a given
multivariate space, where the structure of each tree is con-
strained by the attributes (or dimensions) of the multivari-
ate space, i.e. with one level per attribute. Removing a
single tree from an mSpace polyarchy, or adding other trees
that don’t have a one-level-per-attribute structure, would
still result in a polyarchy, but not an mSpace polyarchy.
Thus, mSpace polyarchies are a specialized or constrained
kind of polyarchy.

Figure 11 shows all the overlapping trees in the mSpace
polyarchy of a tiny, 2 X 2 x 2 space. Not only are leaves
shared between the different trees, but subtrees are also
shared in some cases (e.g. the trees (z,y,z) and (y,z,z)
share the 4 subtrees under nodes (0,0, %), (0,1,), (1,0, %),
and (1,1,%)). Unlike multitrees, however, where only sub-
trees may be shared between trees, the trees in an mSpace
polyarchy can intersect at multiple, not necessarily con-
tiguous, levels. For example, in a 7-variate space with di-
mensions ai,...,ar7, the trees (ai,a2,as,a4,as5,a6,a7) and
(a2,a1,as,a3,a4,a7,a6) share all nodes on levels 0 (root),
2, 5, and 7 (leaves). (The nodes at a given level are shared
between two trees whenever the sequence of attributes from
the root to that level involves the same set of attributes in
both trees. The root and leaves are always shared.)

One additional feature of mSpace interfaces not yet dis-
cussed is that they allow the user to limit their browsing to
a slice of the full multivariate space. The location, orienta-
tion, and dimensionality of the slice currently browsed can
be changed using various operations. Fxpansion operations
add dimensions to the slice, contraction operations remove
dimensions, and substitution operations replace a selected
dimension with another [11]. Each of these operations cre-
ates a variant of the original slice, and each slice and its
variants has an associated polyarchy. However, every slice’s
polyarchy is a sub-polyarchy of the full space’s polyarchy.
Furthermore, every slice corresponds to a node within the
full space’s polyarchy (Figure 11). So, without loss of gener-

S

(0,0,0) (0,0,1) (1,0,1) (1,0,0) (1,1,0) (0,1,0

0,1,1

Figure 11: An mSpace polyarchy for a 3-
dimensional, 2 x 2 x 2 multivariate space. There
are 3! = 6 overlapping binary trees, each structured
differently, but covering the same leaves (i.e. data
points of the space). Each node corresponds to a
slice of the space: the root is the entire 3D space,
its children are 2D slices of the space, their children
are 1D slices, and the leaves are zero-dimensional
data points.

ality, we limit our analysis here to the full space’s polyarchy.

It is informative to consider what happens when a user
transitions from one mSpace tree to another by transposing
(i.e. swapping) two dimensions. Let (a1,...,ar) be the tree
before transition, and let ¢ and j be such that a; and a; are
the dimensions transposed, where 1 < ¢ < 5 < L. Then,
after transposition, the tree is (a1, ..., ai—1, aj, Git1, ...,
aj—1, Qi, Qj41, ..., ar). The last L — 5 dimensions of both
trees are aji1, ..., ar, and on levels j through L the trees
share all nodes. Thus, the two trees share all subtrees that
are at depth j, corresponding to at least the leaf nodes when
j = L. In addition, the first ¢ — 1 dimensions are also the
same in both trees, meaning they share nodes on levels 0 to
i — 1, corresponding to at least the root node when ¢ = 1.
Thus, when transitioning between two trees in an mSpace
polyarchy, there are many nodes in common between the
two trees. This is in contrast to transitions between trees
in a general polyarchy, where trees may only intersect at a
single node.

Examining previous work, mSpace’s multipane browser
is not the only interface that makes the mSpace polyarchy
available for navigation. FOCUS [23], later renamed Info-
Zoom, is a database browser designed for exploration, com-
parison, and dynamic queries within, for example, cata-
logues. Users may sort database entries by one attribute,
then filter out entries that don’t have a given value of the
attribute, then sort remaining entries by another attribute,
and repeat, successively drilling down to a smaller and smaller
set of entries. By changing the sequence in which attributes
are sorted on, users may effectively travel down any tree of
the mSpace polyarchy. However, because FOCUS is moti-
vated by different design goals, the tree-like nature of the
data is not as apparent as in mSpace’s multipane browser.

Interestingly, the connection between InfoZoom’s interface
and trees has only recently been made explicit [22].

Looking at other previous work, Conklin et al. [6] describe
other specialized polyarchies. Of these, the tuple polyarchy is
the most relevant to the current work. In tuple polyarchies,
there is one tree for each dimension, where each dimension
is broken down hierarchically (e.g. geographic dimension:
continent, country, region, etc.). In the case of mSpace,
however, the previous and current work on mSpace does not
involve dimensions that are each broken down hierarchically
in this fashion. Furthermore, in an mSpace polyarchy, each
tree involves all the dimensions of the space.

5. COMPARISONOFHYPERSTRUCTURES

The two previous sections identified the underlying graph
structures in zzstructures and mSpace. We may now com-
pare these to polyarchies and other graph structures, and
consider their respective properties.

5.1 Taxonomy

Figure 12 gives our taxonomy of structures, in the form
of a subsumption diagram. A class of structures subsumes
another class if the former is more general and can capture
the latter as a special case.

—3» edge-coloured

zzstructures . .

directed multigraphs

digraphs
polyarchies T

\ DAGs

n'I1SF’Ef1f's multitrees \

polyarchies T graphs
rooted trees
free trees 2D arrays
1D lists tori
cycles

Figure 12: A subsumption diagram. Structures that
appear higher in this diagram (i.e. that are at the
receiving end of arrows) are more general than, and
subsume, lower structures. Here, “graphs” refers to
simple, undirected graphs. Black arrows show when
a class of structures is a subset of the class pointed
at (e.g. multitrees are a special kind of DAG). Grey
arrows are used when the class is not technically a
subset, but still subsumed “in spirit”. For example,
free trees are not a kind of rooted tree, hence the
former is not a subset of the latter. However, any
given free tree can be encoded as a rooted tree with
no loss of information.

The relationships shown in Figure 12 depend in part on
how each class of structures is defined precisely (e.g. are pol-

yarchies defined as collections of intersecting rooted trees, or
free trees?). In the interest of space, we do not list mathe-
matically rigorous definitions for each class of structures to
justify our diagram. Even without such a list, however, we
feel that Figure 12 highlights important relationships that
are based on fairly reasonable definitions.

Perhaps most interesting in Figure 12 are the two classes
of structures at the top of the diagram, zzstructures and

edge-coloured directed multigraphs, which subsume each other!

Zzstructures are a subset (i.e. a kind) of edge-coloured di-
rected multigraph, and are subject to restriction R, hence
the black arrow from zzstructures to edge-coloured directed
multigraphs. Although restriction R forbids multi-pointing
(i.e. many-to-one or one-to-many) links within the same
edge colour, such multi-pointing links can be “simulated”
in a zzstructure through cloning (Figure 13). Thus, any
given edge-coloured directed multigraph can be converted
to a zzstructure with no loss of information (establishing an
isomorphism between the nodes of the former and subsets of
nodes of the latter), which explains the grey arrow pointing
back to zzstructures in Figure 12. Although zzstructures
are a strict subset of edge-coloured directed multigraphs,
zzstructures are no less expressive.

Wy [V Y

A A= APA"SA"A™

Figure 13: Left: a node with multi-pointing links,
forbidden by restriction R. Right: one way of sim-
ulating the same node in a zzstructure. Node A
has been cloned once for each of its original edges,
producing A, A’, A”, A, A", and the clones are
linked together with an edge colour not in the orig-
inal structure.

One relationship was intentionally omitted from Figure 12.
Technically, a digraph (directed graph) can always be en-
coded as a polyarchy, with no loss of information, by simply
making every edge of the digraph a distinct, trivial tree in
the polyarchy. However, such an encoding is not reflective of
how digraphs and polyarchies are used in practice: it would
be very cumbersome for a user to browse a digraph encoded
in this way when using an interface designed for polyarchies
of non-trivial trees. Hence, our taxonomy does not show
polyarchies subsuming digraphs.

5.2 The Generality of Zzstructures

As explained toward the end of Section 3, zzstructures
subsume lists, 2D arrays, and trees. Because zzstructures
can encode multiple alternative sub-structures, they also
subsume polyarchies. Finally, since multi-pointing links can
be simulated in zzstructures, they also subsume all edge-
coloured directed multigraphs — even those not subject
to restriction R. Figure 12 shows zzstructures and edge-
coloured directed multigraphs to be equivalent in terms of
the information they can capture, and also positions them
as the most general structures discussed.

Are zzstructures and edge-coloured directed multigraphs
interchangeable? From the graph theoretic perspective we
have given, restriction R is the defining property of zzstruc-
tures — the only thing differentiating them from edge-coloured

directed multigraphs. In fact, restriction R plays the same
role as Nelson’s two “Axioms of ZigZag®”, namely, that “In
any dimension, a cell can have at most one neighbor in each
direction”, and “In any dimension, a cell’s positive side may
only connect to a cell’s negative side, and vice versa” [14].
Edge-coloured directed multigraphs have the same ability as
zzstructures to encode multiple, overlapping sub-structures,
and also allow true multi-pointing links within the same edge
colour. One may wonder what value restriction R has, es-
pecially since, as shown by Figure 13, zzstructures can, in
some sense, bypass it. It might seem that, at best, zzstruc-
tures and edge-coloured directed multigraphs are two dif-
ferent faces of the same essential concept, or at worst, that
restriction R is an inconvenience, because it requires cloning
of nodes to encode multi-pointing links.

We, however, feel restriction R is valuable in certain re-
spects. Recall that restriction R requires each node have at
most one incoming and one outgoing edge of each colour.
As illustrated in Figure 4, this results in each colour corre-
sponding to a set of non-intersecting paths and/or cycles.
Furthermore, the absence of branching paths implies there
is a unique way to move backward or forward along the path
of each colour through a node. This means that the links
in a zzstructure, though directed, are “2-way” links in some
sense: if a user arrives at a given node from a given direction,
returning to the previous node is simply a matter of moving
back in the opposite direction. This would not be the case
with multi-pointing links, where a user could arrive at the
same node via the same “direction” (i.e. edge colour) from
many different previous nodes. With restriction R, backing-
up along an edge requires only remembering which colour
was traversed. Without restriction R, backing-up requires
remembering which node the user came from.

Another useful aspect of restriction R is that it can sim-
plify viewing, and hence understanding, of a structure. With-
out restriction R, a node with multi-pointing links might
have multiple neighbouring nodes to its immediate “right”
and immediate “left”. The 2D cursor-centric view for zzstruc-
tures would no longer apply — nor would a 3D extension
of it that maps only one edge colour to each spatial dimen-
sion at a time. In fact, without restriction R, the whole
spatial interpretation of zzstructures — of edge colours as
dimensions — would be less workable.

Thus, there are definite ways in which the constraints im-
posed by restriction R can be valuable. At the same time,
zzstructures can also circumvent restriction R (Figure 13)
when needed, in which case it may be more appropriate to
use a visualization interface designed to take cloned nodes
into consideration.

5.3 Additional Comparisons

Figure 12 allows us to compare structures in terms of gen-
erality and differences in the kind of information captured
by each. It also led us to think of additional ways in which
structures may be compared, which we now describe.

Some structures can be compared in terms of the space
associated with them. Many of the structures in Figure 12,
such as graphs, trees, and polyarchies, have no particular
space associated with them, although they could be em-
bedded in one of many different spaces. Zzstructures and

mSpace polyarchies, however, do have closely associated spaces

that are, in some sense, intrinsic to the structures. The
space usually associated with a zzstructure, and which we

consider here, is the multi-dimensional, non-Euclidean space
described in Section 3, where each edge colour corresponds
to a spatial dimension. An mSpace’s space, on the other
hand, is the multivariate space containing data points, hav-
ing one dimension for each attribute used to describe the
data points. These two spaces differ in nature on many
levels, which should help in determining which of them, if
either, should be used in a given hypermedia application.

First, although both spaces can involve a high number of
dimensions, a zzstructure’s space is generally non-Euclidean,
making it more difficult to flatten and visualize, hence the
need for extraction of orderly subsets (Figure 5). In contrast,
an mSpace’s multivariate space is Euclidean, like a high-
dimensional regular grid. This means that, for example, a
2D slice of the space can be taken, and shown on a 2D screen,
without distortion.

Second, a zzstructure’s space may be designed and changed
independently of the content of the data nodes in the zzstruc-
ture. Given a set of nodes, the user may link them together
in whatever zzstructure they please, whether manually, or
by using algorithms to generate links, or some mixture of
both. With mSpaces, however, the space is entirely deter-
mined by the choice of attributes used to describe each data
point. Although the location of a data point within the mul-
tivariate space may be changed by changing the values of the
point’s attributes (i.e. its coordinates), and many different
views of an mSpace are possible (e.g. by viewing different
trees of the mSpace polyarchy), the multivariate space itself
does not change.

Third, the nature of the dimensions are different in the two
spaces. With an mSpace’s multivariate space, each dimen-
sion, or attribute, corresponds to a discrete variable, such as
a category (e.g. “period”, “composer”, “style”), or a quan-
tity that is discrete, or that has been discretized through
binning (e.g. “year”, “cost”), or a string of characters (e.g.
“name”). Furthermore, every data point has a value (such
as “17th century”, or “Beethoven”) along every dimension
(e.g. if “composer” is a dimension in the space, then every
data point will have a composer attribute). In contrast, with
zzstructures, dimensions are more often used as containers
(e.g. “nodes of type x”) than as variables, and nodes do
not have an absolute value along each dimension, but rather
have a location relative to their neighbours (e.g. “negward
from node A”). Furthermore, a node in a zzstructure may
only be connected along some dimensions, and have no con-
nections along other dimensions. For example, if blue is an
edge colour, there is no requirement that all nodes have a
blue path through them.

This table provides a summary of our observations so far:

zzstructure’s space mSpace polyarchy’s space |

non-Euclidean Euclidean

Space determined by
attributes on the content

Space may be changed
independently of content

Dimensions are variables;
Data points have a value
along every dimension

Dimensions are like containers;
Nodes have a relative position
along some dimensions

Having considered how the structure’s spaces differ, an-
other aspect to consider is the affordances of each structure
with respect to transitioning between different views of the
structures. Since each of these structures may, in general,
be quite large, especially in hypermedia applications, users
will often want to look at only a subset of the structure at

a given time. When transitioning between different subsets,
or views, it is desirable to maintain context during transi-
tions, for example by using smooth animations [26, 3|, so
that users do not become disoriented.

In particular, we consider transitions between different
trees contained in the structures. Polyarchies, zzstructures,
multitrees, and mSpace polyarchies all offer different ways
of combining multiple trees into a single structure. When
viewing an individual tree of any of these structures, the lay-
out and navigation of the tree may be done following one of
the many existing techniques for visualizing trees. However,
when transitioning from one tree to another, it is not always
clear how to best display the transition. Different kinds of
overlap between the two trees suggest different approaches.

In the case of polyarchies, the two trees involved in a tran-
sition can intersect in arbitrary ways, and may only intersect
at a single node. The visual pivot technique of Robertson
et al. [19] uses 3D rotation and fading to gradually reveal
a new tree while removing the original tree. Because both
trees are temporarily visible together, the user has an op-
portunity to simultaneously see both the old context they
are leaving, and the new context they are entering. How-
ever, the only node shown to be shared by the two trees is
at the pivot point, and this is the only node that is visually
preserved throughout the transition. Even if the two trees
overlap at multiple nodes, the visual pivot technique does
not show this. Furthermore, because the two trees can in-
tersect in arbitrary ways, it is unobvious how to to design a
transition that visually preserves all the shared nodes in a
way that is easy to understand for the user.

Zzstructures suffer from the same problem just described
for polyarchies. With zzstructures, the mechanism of transi-
tion between trees may be different (e.g. changing the map-
ping of axes in a 2D cursor-centric view from the dimensions
of one tree to the dimensions of another), however, the issue
is the same: the two trees can intersect in arbitrary ways,
possibly only at a single node.

With multitrees, when moving from one tree to another,
the trees may only overlap by sharing subtrees. Contrary
to polyarchies, the overlap in this case is regular and pre-
dictable, and is easier to exploit during display of the transi-
tion. As the user moves from one tree to another, a smooth
animation could “scroll” the user’s view over the multitree,
visually preserving the entire subtree shared by the old and
new trees. In a centrifugal view [9], this can even be shown
in two different directions — when moving from one focal
node to another, overlap may occur between the descendant
trees of the focal nodes, and also between the ancestor trees
of the focal nodes.

With mSpace polyarchies, there is also predictable over-
lap between trees. As described toward the end of Section 4,
when moving from one tree to another via a transposition
of dimensions, the two trees share all subtrees at a cer-
tain depth, depending on the dimensions transposed. This
presents interesting opportunities for visualization during
the transition. How can we best display the multiple, shared
subtrees during a transposition operation? In the multipane
browser, this has not been a concern, because the multipane
browser only displays one path through an mSpace tree at
a time, rather than the entire tree. However, alternative vi-
sualizations may display larger portions of an mSpace tree,
in which case the shared subtrees become an important con-
sideration for designing smooth transitions.

Again, we summarize the foregoing comments with a ta-

ble:
Structure Nature of overlap between
two trees in the same structure
polyarchy arbitrary
zzstructure arbitrary
multitree one subtree is shared
mSpace polyarchy | all subtrees at a
certain depth are shared

6. FUTURE DIRECTIONS

The structures discussed in this paper have been ana-
lyzed from a theoretical point of view. To learn more about
these structures in practice, they need to be applied to more
problems and more domains. Such applications would open
the way to more meaningful, user-based evaluations of the
models, and would also help in the development of practical
heuristics for choosing one model over another.

Developing new visualization and interaction techniques
for these structures could prove very valuable, e.g. for priv-
ileging structural attributes not exploited in existing tech-
niques. This, however, remains challenging, due to the rel-
atively sophisticated properties of the structures.

In particular, developing better visualizations for smooth
transitions between substructures could help users main-
tain context during navigation. In the case of mSpace pol-
yarchies, this may require considering the multiple, overlap-
ping subtrees between trees, and how best to display this
overlap during transitions.

Finally, there is still room to explore other kinds of hybrid
or extended structures not yet identified. For example, fu-
ture work on mSpace could combine the concepts of a tuple
polyarchy [6], where each dimension is broken down hier-
archically, and an mSpace polyarchy. Such a combination
would at least require extending the multipane interface of
Figure 3 to handle hierarchical dimensions.

7. CONCLUSIONS

By considering new models for representing information
which go beyond generic organizing structures, we can con-
sider equally new approaches for representing hypermedia
information spaces. To better enable innovations in these
directions, we have presented a comparison of three such
models, from a perspective based in graph theory. This ap-
proach has yielded a new definition of zzstructures (specif-
ically: an edge-coloured directed multigraph subject to re-
striction R), and identified a new class of polyarchies associ-
ated with mSpaces. It has also allowed us to compare some
of the fundamental attributes of each model. This formal
comparison is a first step toward better equipping hyperme-
dia designers to choose how to conceptualize the domains
they wish to represent. Future work should build on this
comparison to develop heuristics for designers who wish to
provide new ways to think about and access domains. Even
at this stage, however, we hope the current formal compar-
ison provides designers with a taxonomy of conceptual as
well as functional models through which they can consider
how they will engineer their hyperspaces.

8. ACKNOWLEDGEMENTS

Thanks to Theophanis Tsandilas, Michael Wu, Alex Her-
tel and Gonzalo Ramos at University of Toronto, to Leslie

Carr at University of Southampton, and to our reviewers, for
valuable feedback. Thanks also to Bill Buxton for encour-
agement and support, and to Ted Nelson for some valuable
comments during an earlier stage of this research. Early
stages of the mSpace work have been funded by CITO and
NSERC, Canada; ongoing work is supported by the AKT
project, EPSRC, UK.

9. REFERENCES

[1] C. Bailey, S. R. El-Beltagy, and W. Hall. Link
augmentation: A context-based approach to support
adaptive hypermedia. In Proceedings of 3rd Workshop
on Adaptive Hypertext and Hypermedia, pages 55—62,
2001.

[2] D. Barreau and B. Nardi. Finding and reminding: File
organization from the desktop. SIGCHI Bulletin,
27(3):39-45, July 1995.

[3] L. Bartram. Can motion increase user interface
bandwidth? In Proc. IEEE Conference on Systems,
Man and Cybernetics, pages 1686-1692, 1997.

[4] T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. Scientific American, May 2001.

[5] C. Chen and M. Czerwinski. From latent semantics to
spatial hypertext—an integrated approach. In
Proceedings of 9th ACM Conference on Hypertext and
Hypermedia, pages 77-86, 1998.

[6] N. Conklin, S. Prabhakar, and C. North. Multiple foci
drill-down through tuple and attribute aggregation
polyarchies in tabular data. In Proceedings of IEEE
Symposium on Information Visualization (InfoVis),
pages 131-134, 2002.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. 1990.

[8] P. Dave, U. P. Karadkar, R. Furuta,

L. Francisco-Revilla, F. Shipman, S. Dash, and

Z. Dalal. Browsing intricately interconnected paths. In
Proceedings of 14th ACM Conference on Hypertext
and Hypermedia, pages 95-103, 2003.

[9] G. W. Furnas and J. Zacks. Multitrees: enriching and
reusing hierarchical structure. In Proceedings of ACM
CHI 1994 Conference on Human Factors in
Computing Systems, pages 330-336, 1994.

[10] D. Giampaolo. Practical File System Design with the
Be File System. Morgan Kaufmann, 1999.

[11] N. Gibbins, S. Harris, and m. c. schraefel. Applying
mSpace interfaces to the semantic web, 2003.
http://eprints.ecs.soton.ac.uk/archive/00008639/.

[12] T. Lukka. A gentle introduction to Ted Nelson’s
ZigZag structure. (An incomplete work in progress)
http://www.nongnu.org/gzz/gi/gi.html.

[13] M. J. McGuffin. A graph-theoretic introduction to Ted
Nelson’s zzstructures, January 2004.
http://www.dgp.toronto.edu/ mjmcguff/research/zigzag/.

(14]
(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

(26]

27]

T. Nelson. ZigZag tutorial. 1999.
http://xanadu.com/zigzag/tutorial /ZZwelcome.html.
T. Nelson. ZZ cell programming.
http://xanadu.com/zigzag/fw99/ZZcellProg.html.

T. H. Nelson. What’s on my mind. Invited talk at the
first Wearable Computer Conference, 1998.
http://www.xanadu.com.au/ted/zigzag/xybrap.html.
T. H. Nelson. Xanalogical structure, needed now more
than ever: parallel documents, deep links to content,
deep versioning, and deep re-use. ACM Computing
Surveys, 31(4es):33, December 1999.

T. H. Nelson. Zigzag (tech briefing): Deeper
cosmology, deeper documents. In Proceedings of 12th
ACM Conference on Hypertext and Hypermedia, pages
261-262, 2001.

G. Robertson, K. Cameron, M. Czerwinski, and

D. Robbins. Polyarchy visualization: visualizing
multiple intersecting hierarchies. In Proceedings of
ACM CHI 2002 Conference on Human Factors in
Computing Systems, pages 423430, 2002.

m. c. schraefel. ConTexts: Adaptable hypermedia. In
Proc. AH 2000 Int. Conf. on Adaptive Hypermedia
and Adaptive Web-Based Systems, pages 369-374,
2000.

m. c. schraefel, M. Karam, and S. Zhao. mSpace:
interaction design for user-determined, adaptable
domain exploration in hypermedia. In Proceedings of
AH2003 Workshop on Adaptive Hypermedia and
Adaptive Web-Based Systems, pages 217-234, 2003.
M. Spenke and C. Beilken. Visualization of trees as
highly compressed tables with InfoZoom, 2003.
Unpublished entry in InfoVis 2003 Contest, held at
IEEE Symposium on Information Visualization.
http://www.cs.umd.edu/hcil /InfovisRepository/.

M. Spenke, C. Beilken, and T. Berlage. FOCUS: the
interactive table for product comparison and selection.
In Proceedings of ACM Symposium on User Interface
Software and Technology, pages 41-50, 1996.

P. D. Stotts, R. Furuta, and C. R. Cabarrus.
Hyperdocuments as automata: verification of
trace-based browsing properties by model checking.
ACM Transactions on Information Systems (TOIS),
16(1):1-30, January 1998.

H. Van Dyke Parunak. Don’t link me in: Set based
hypermedia for taxonomic reasoning. In Proc. 3rd
ACM Conference on Hypertext, pages 233-242, 1991.
D. D. Woods. Visual momentum: a concept to
improve the cognitive coupling of person and
computer. International Journal of Man-Machine
Studies, 21:229-244, 1984.

P. T. Zellweger, B.-W. Chang, and J. D. Mackinlay.
Fluid links for informed and incremental link
transitions. In Proceedings of 9th ACM Conference on
Hypertext and Hypermedia, pages 50-57, 1998.

