
Elastic Hierarchies: Combining Treemaps and Node-Link Diagrams

Shengdong Zhao1

University of Toronto

Michael J. McGuffin2

University of Toronto

Mark H. Chignell3

University of Toronto

ABSTRACT

We investigate the use of elastic hierarchies for representing
trees, where a single graphical depiction uses a hybrid mixture, or
“interleaving”, of more basic forms at different nodes of the tree.
In particular, we explore combinations of node-link and Treemap
forms, to combine the space-efficiency of Treemaps with the
structural clarity of node-link diagrams. A taxonomy is developed
to characterize the design space of such hybrid combinations. A
software prototype is described, which we used to explore various
techniques for visualizing, browsing and interacting with elastic
hierarchies, such as side-by-side overview and detail views,
highlighting and rubber banding across views, visualization of
multiple foci, and smooth animations across transitions. The paper
concludes with a discussion of the characteristics of elastic
hierarchies and suggestions for research on their properties and
uses.

CR Categories and Subject Descriptors: I.3.6 [Computer

Graphics]: Methodology and Techniques–interaction techniques;
E.1 [Data Structures]: trees

Additional Keywords: Elastic Hierarchies, Treemaps, node-

link diagrams, hybrids, combinations, overview+detail, multiple
views, trees, interaction techniques, interactive visualization

1 INTRODUCTION
Trees are a fundamental organizing structure, with menu

hierarchies and file directories being prominent examples of their

use. The data size of a tree typically grows exponentially with its
depth, which raises many challenges for visualization. Showing
the structure is space consuming, and the exponential growth in
the number of nodes from the root to the leaves creates difficulties
for laying out the items of large trees effectively in a given space.

Many tree representations have been proposed in the past.
Various styles have unique visual and interactive properties that
may be useful in different scenarios, but they also have limiting
constraints, creating tradeoffs in their use. For example, the
classical node-link diagram [15] is probably the most natural way
to display nesting structure, but fails to scale to large datasets. In
contrast, Treemaps [17] are space efficient, scaling up to
thousands of nodes, but at the cost of making the different levels
within the tree harder to perceive and distinguish.

Trees are often complex and can have very different local
properties across nodes. In addition, trees are often dynamic,
making a single style of representation harder to adjust to
variations over time. In this paper we explore the concept of
allowing different styles of representation at different places in a
tree. The resulting hybrid may allow designers to combine the
best features of different representations, enabling a user to view
each part of the data in the most effective way. However, hybrids
may carry the disadvantage of being less uniform and less familiar
to users, making it all the more important to use good visual
design. Our research investigates the properties and affordances of
such mixed-representation trees, or elastic hierarchies, as a first
step toward determining when and how to use hybrid tree
representations. “Elastic” refers to the flexibility allowed by
arbitrarily interleaving representations (right image, Figure 1,
Figure 4). I.e., we allow the representation portraying nesting at
each point to be chosen independently of the representation
choices made at other points in the tree.

Elastic hierarchies, as described below, are a means of
exploring the large design space of 2D hierarchical visualization.
As multi-representational views where the representational form
of each subtree can be modified on the fly by the user, they allow

Figure 1: an illustration of the same tree drawn in three styles, with certain branches highlighted. Node-Link diagrams show topology
clearly, but distribute nodes unevenly, leaving upper level nodes separated by white space, and lower nodes densely packed. Treemaps
use space efficiently, but are less familiar and can be difficult to interpret. Elastic Hierarchies combine the two techniques, allowing chosen
structures and content to be emphasized and clearly presented in a flexible and space-efficient manner.

Node–Link Diagram Treemap Elastic Hierarchy

1sszhao@dgp.toronto.edu
2mjmcguff@cs.toronto.edu
3chignell@mie.toronto.edu

researchers to explore how many representations can usefully be
shown within a tree, and what forms of transition should be used
between different types of representation. Studies of how people
use elastic hierarchies can help researchers determine what tools
and interaction techniques should be provided to assist users in
transitioning from one representation to another in viewing a large
hierarchy.

In this paper, we describe the design space of elastic hierarchies
made up of interleaved Treemaps and node-link diagrams, and
discuss ways in which such hybrids may be more suitable than
traditional visualizations. We describe a prototype that
implements our more promising design ideas, including support
for visualizing multiple foci. We also identify a set of research
questions concerning elastic hierarchies to be addressed in future
studies.

2 BACKGROUND
The most common representational form for a tree is the node-

link diagram [15]. While node-link diagrams show nesting
structure very clearly, they use screen space inefficiently, and do
not scale well to large datasets. As a result many approaches have
been proposed to supplement node-link diagrams. Well known
alternatives include Treemaps [17], cone trees [16], and the
hyperbolic browser [11].

Since many visualization methods have been proposed, it is
useful to organize these into categories. Besides node-link
diagrams (Figure 2 A), another major style involves nested
containment or nested enclosure (Figure 2 B). Two other forms
use alignment and adjacency (Figure 2 C), and the indented
outline style (Figure 2 D). Most other proposals can be viewed as
extensions or combinations of these. For example, the hyperbolic
browser [11] arranges a node-link diagram (A) radially, with a
focus point that can be manipulated interactively by the user.
Cone Trees [16] extend A into 3D. Treemaps [17] are an example
of B where the area of nodes encodes additional information
associated with them. Information slices [2] and Sunburst [19] are
variations of C using polar coordinates.

Although hybrid tree forms have not been systematically
explored in depth, various hybrid techniques have been used to
visualize trees and graphs. Fekete et al. [7] have described a
graphical representation for graphs that uses both a Treemap, to
represent a spanning tree over the graph, and curved links, to
represent the remaining edges. In addition, Harel [8] and Sindre et
al. [18] have described representations for graphs that are richer
than simple node-link diagrams, and that can encode additional
information by using various graphical conventions and symbols.
In their work, different types of relationships between nodes are

shown simultaneously using different conventions, such as
connection (Figure 2 A) and containment (Figure 2 B). By
contrast, in elastic hierarchies, only one type of relationship needs
to be shown, that between parent and children nodes, but we allow
multiple conventions to be used for this, e.g., connection and
containment, creating a range of choices in the graphical layout,
and allowing the user to pick the one desired.

Various hybrid representations of trees have been implemented
in 3D. Information pyramids [1] combine nested containment
(Figure 2 B) in 2D with adjacency (Figure 2 C) along a 3rd
dimension, by stacking nodes in a layered fashion. Balzer and
Deussen [3] present a visualization which uses two styles: nested
enclosure and linked nodes are shown simultaneously to represent
the same tree. In these hybrids, the combination of representations
is fixed, and cannot be independently changed at different
locations of the tree.

Given all these variations in tree representations, and research
that identifies their pros and cons, a single representation style, or
even a fixed hybrid form, may not accommodate the needs of
complex and dynamic real world problems. Our work investigates
improving tree representations using dynamically adjustable
hybrids, i.e. elastic hierarchies, and focuses on the case of
combining Treemaps and node-link diagrams in a single display.

3 DESIGN SPACE
In theory, hybrids between any of the forms in Figure 2 might

be feasible; however, we note that nested containment (Figure 2
B) differs from the 3 others in that child nodes are inside parent
nodes, whereas they are outside in the other forms. Furthermore,
node-link diagrams (Figure 2 A) and nested containment are
perhaps the most contrasting forms. Node-link diagrams show
topological structure well, while Treemaps are space efficient.
Treemaps tend to allot more screen space to shallow nodes,
making them easier to see, independently of how deep the subtree
under a node may be. Treemaps also allow for visual comparison
of the relative sizes of nodes. Node-link diagrams, however, are
more familiar to users, and perhaps better at showing the different
levels and depth of a tree.

Due to their complementary properties, Treemaps and node-
link diagrams are especially suited for hybrid combinations that
access a continuum of intermediate forms. These two styles can

Figure 2: common tree representations, each showing the
same tree in a different way. A: node-link. B: nested
containment, or nested enclosure. C: use of alignment and
adjacency. D: indented outline style. (Note that D is not simply
a variation on A. In D, the edges are implied by the positioning
of the nodes, which is not generally the case in A.)

Figure 3: a taxonomy of graphical representations of the
relationship between a node x and its child y. The
neighbourhood of nodes above x, and the neighbourhood of
nodes below y, can each by drawn in node-link (NL) or
Treemap (TM) style.

be mixed in a straightforward manner without introducing
ambiguity, as will be shown.

Figure 3 presents a taxonomy that can be used to generate and
explain different methods for graphically combining Treemap and
node-link styles of representation within a visualization of a
hierarchy. The structure of an elastic hierarchy can be catalogued
in terms of the types of transition that occur between different
representational styles within the hierarchy.

While child nodes in a node-link diagram are always “outside”
the parent node, this is not true for Treemaps, where a child node
may be represented as either inside or outside a node (e.g., in
Figure 4 C and D show Treemaps where parent nodes are linked
to child nodes that are placed outside the parent, whereas Figure 4
E and F show child nodes that are nested inside the parent node.)

Based on the above description, six possible transitions can
occur between node-link and Treemap styles as documented in
Figure 3. The two rightmost columns of Figure 3 distinguish
conditions where node-link style is used below some node y (left
column), from conditions where a Treemap is used below the y
node (right column). The three rows in the body of the table refer
to the parent node x that is immediately above node y in the tree.
The first row shows the case where the portion of the tree above
node x is shown in node-link form. Thus, in the left column of the
first row the entire subtree of interest is shown in node-link form
(with node-link style used above node x and below node y),
whereas in the corresponding column on the right a Treemap is
shown nested underneath the node-link subtree that is above node
x, leading to a mixed representation with the node-link style above
a Treemap. The remaining two rows of the table show cases
where a Treemap is used above node x. The middle row shows the
situation where node y is shown as being outside node x, while the
final row shows node y as being nested inside node x.

In both Figure 3 and Figure 4, panels A and F illustrate pure
node-link diagram and Treemap styles, respectively. The

remaining four transitional forms (B-E) use hybrids, and each of
them will now be discussed.

3.1 Treemap outside of Node-Link
In this first transitioning form (Figure 4 B, Figure 5) a subtree

in a node-link diagram is shown as a Treemap. Since node-link
diagrams of large hierarchies typically become more crowded at
lower levels, the space saving properties of Treemaps allow more
of the hierarchy to be shown within a given space. In contrast to a
branch that might have hundreds of nodes that cannot be shown
on the screen using nodes and links if fully expanded, a Treemap
of those same nodes could be much more compact.

If the topology of the tree is of primary interest, this hybrid
technique can show as many of the higher levels as convenient in
node-link form. When the node-link style becomes too dense,
Treemaps may be used to represent the deeper subtrees, making
more information visible.

Small Treemaps can act as previews or thumbnails of the
subtrees they contain, but with additional useful properties. First,
they are not only previews but also overviews, containing
information on the entire subtree, rather than just the first few
nodes. Second, they are not just views, but also fully functional
sub-hierarchies that can be operated on directly using a rich set of
interaction techniques.

3.2 Treemap/Node-Link outside of Treemap
In Figure 4 C and D, subtrees are "pulled out" of the Treemap,

and shown as either node-link diagrams or additional Treemaps.
This process might become confusing if used with a large number
of nodes in a Treemap, but when used with a small number of
nodes it may be well suited for focusing on particular subtrees,

Figure 5: example of Treemap outside of node-link
(screenshot). The node-link parent “postgres” has three
subtrees (directories): “data”, “include”, and “share”, and each
has many children laid out using the Treemap algorithm.

Figure 4: here, the same tree is depicted 6 different ways
(illustration): in A, with a traditional node-link diagram, in F, with
a Treemap, and in B-E, with mixed, hybrid representations.

Figure 6: example of drilling down (screenshot). A combination
of the Treemap outside of Treemap, and node-link outside of
Treemap techniques is used to show deeper nodes.

while retaining surrounding context in a space-efficient manner.
This could function as an effective technique for drilling down.
For example, in Figure 6, following the links from right to left, the
leaf nodes “Lindeman” and “Perth” are node-link children of the
Treemap node “Australia”, which is itself a child of the Treemap
node “timezone”. The “timezone” node is a descendant of the
“share” directory, and that node is a child of the node-link parent
labeled “postgres” (an example of scheme B). Each of the
Treemap nodes in the figure has numerous children that cannot fit
inside the screen when fully expanded. By combining C and D,
we are able to display all the relevant subtrees along the path
within the screen. Note that because the edges connecting subtrees
to the parent Treemap are overlaid on the Treemap, this results in
mild occlusion which may be inconvenient if many subtrees are
pulled out.

Having multiple foci in a hierarchy raises challenges for
navigation and display. Points of interest could reside at distant
locations within the hierarchy (or, in the case of a Treemap,
appear very tiny), causing difficulties in showing them
simultaneously on the same screen. Using techniques C and D,
multiple foci can likely be shown more effectively than if viewed
using non-hybrid representations (Figures 8 and 11).

3.3 Node-Link inside Treemap
In this fourth kind of transition between styles (Figure 4 E), a

node-link diagram is nested inside an enclosing Treemap. The
Treemap acts as a kind of overview, and local features are
presented using the node-link diagram. Globally, a space saving
representation is used; while a standard node-link diagram is used
locally. This can be thought of as a kind of detail-in-context
technique with different representations used for the context and
detail.

This scheme can be enhanced using an interaction technique
where a portion of the Treemap is enlarged (similar to elastic
windows [9]), either interactively or automatically, when
transformed into a node-link diagram by the user (Figure 7).
However, as different portions of the Treemap are expanded, this
would change the sizes of subtrees and nodes within the Treemap,
distorting substructures within the tree, which may hinder the
formation and use of perceptual landmarks. Alternatively, one
could limit the amount of distortion/expansion allowed, in which
case the amount of space available to show embedded node-link
diagrams would also be limited, thereby reducing the scalability
of the method. Thus there may be a tradeoff between flexibility of
presentation using distortion/expansion, and ease of perceptual
orientation and landmark recognition and retention. It is possible
that individual differences in perceptual and cognitive ability and

preferences may determine how this tradeoff can best be handled
for different users.

3.4 Combining the different techniques
Finally, these techniques may be used together and combined

to create useful visual presentations. Figure 6 (described in
section 3.2) and Figure 8 show combinations of B, C, and D.
Likewise, B and E can also be combined. For example, in Figure
7, if the nodes labeled “16723” and “16724” each had many
descendants, they could be replaced with two small Treemaps.
There are many possibilities for such combinations from the four
basic elastic hierarchical hybrid techniques B-E. Empirical
research is needed to determine when different combinations of
the basic techniques are useful.

4 CHARACTERISTICS OF ELASTIC HIERARCHIES
As already explained, elastic hierarchies are graphical

depictions of trees containing multiple representation forms
interleaved at different nodes, and that can be modified
dynamically and interactively.

Ideally, compatible animation and interaction techniques
should be used to facilitate exploration and interpretation of the
hybrid structure in an elastic hierarchy. Elasticity can be exploited
during interaction, as shown in the following examples. First,
users may view different portions of a tree with different
representations, and may transition between the different
representations at will. This enables the fine-grained
differentiation of nodes. For example, children of the same parent
may be presented in different styles, with transitional animations
being provided to guide or facilitate the transformation. Second,
the size of a node (whether of Treemap, or node-link, or other
style) could be resized to reflect user interest or structure
priorities. Third, various other interaction techniques (coloring,
brushing, etc.) could be used to support the perceptual and
cognitive operations associated with manipulating and using the
tree.

The main advantage of elastic hierarchies is how they allow
flexible arrangement and display of contents and structures within
a large tree. This is particularly useful for visualizing multiple
foci. Typically, display of multiple foci in large trees using
conventional methods creates challenges for navigation and

Figure 7: a design sketch showing a node-link diagram inside
a Treemap. The subtree within the Treemap on the left is
transformed into a node-link diagram on the right. The parent
Treemap node adjusts its internal boundaries accordingly.

Figure 8: elastic hierarchy techniques allow users to explore
and drill-down multiple branches of large trees and still fit much
contextual information within a limited screen space
(screenshot).

display. Points of interest may reside at distant locations within
the tree (or, in the case of a Treemap, appear very tiny), causing
difficulties in showing them simultaneously on the same screen.
This difficulty can be addressed using elastic hierarchies, where
multiple foci can be highlighted within a single view (Figures 8
and 11).

In other words, elastic hierarchies generalize how nodes in a
tree can be “collapsed”. Conventional tree representations often
only allow any subtree to be collapsed entirely, to “roll up”
deeper nodes and save space. However, in an elastic hierarchy,
any connected subgraph of the tree, such as intermediate levels
between shallow and deep nodes, can be collapsed into a
Treemap. Given a connected subgraph S of a tree, and the
shallowest node N in S, we can display the subtree under N as a
Treemap, and “pull out” of the Treemap any nodes under N that
are not in S. Thus, distant branches under S can be shown pulled
out and side-by-side, with the Treemap of S providing a compact
overview of the context above the branches.

In order to experiment with elastic hierarchies, and investigate
appropriate interaction and animation techniques, we created an
interactive prototype that allows rapid transitioning between the
different representational forms.

5 IMPLEMENTATION
There are many ways in which elastic hierarchies can be

constructed and used. Our current prototype implements the
transitional forms in Figure 4 B, C, and D, and allows them to be
mixed and used together. Ideally, we would eventually like to
support all of the possible schemes and allow arbitrary mixing of
them, however the current implementation supports the most
important possibilities and enables investigation of a large part of
the design space.

Figures 5-12 show screenshots of various aspects of the
working prototype, except for Figures 7 and 11 which are
mocked-up design sketches. The prototype divides the screen
vertically into two windows (Figures 9, 11, 12), with an overview
on the left and a detail view on the right, to support
overview+detail visualization, as discussed in more detail later.
The overview shows a Treemap of the entire tree, and the detail
view shows an elastic hierarchy of the same tree in which the user
may zoom and pan.

Having two side-by-side views of the trees not only enables
investigation of overview+detail visualization techniques [10, 12,
13], but also serves the following second purpose. Just as a single
elastic hierarchy may help a user learn an unfamiliar tree style
(e.g. Treemaps) by interactively transitioning between the
unfamiliar style and a more familiar one (e.g. node-link), it may
also be true that showing two views side-by-side, i.e. an elastic
hierarchy in tandem with a non-elastic view (in this case, the
Treemap on the left), could help reinforce a correct mental model
in the user of the elastic hierarchy’s meaning.

5.1 Platform & Code
The prototype was developed in Java 1.4.2 using the Piccolo

Toolkit from the University of Maryland. Piccolo was chosen for
its built-in support for zooming, panning, and certain types of
animations. For laying out the Treemaps, we used a variant of the
Strip Treemap algorithm in the open source Java library written
by Ben Bederson and Martin Wattenberg [6]. We chose this
algorithm because it preserves the ordering of the nodes, has
better readability than the ordered Treemap algorithm, and has a
reasonable running speed. The algorithm used for laying out
node-link diagrams in 2D is similar to Walker’s algorithm [20]
and that used in SpaceTree [14]. The prototype can read in a tree
described in a file, or can read in the tree structure of a hard
drive’s file directories (screenshots in this paper mostly show the

directory structure of Postgres, a database consisting of almost
1000 files and folders installed on a hard disk).

5.2 Data Structure & Algorithms
Internally, the tree is stored in a data structure where each node

can take on one of various graphical states corresponding to
different representations, allowing the Treemap and node-link
styles to be intermixed. Although our internal data structure
allows for all the hybrids sketched in Figure 4, the supporting
code so far only implements the schemes in Figure 4 A, B, C, D,
and F, which are the most promising of the transitional forms.

Two complementary approaches are available for choosing
representational forms and generating a layout of an elastic
hierarchy: (1) automatic methods, which might use heuristics
based on local attributes of a tree such as branching factor or
depth, and (2) manual interaction, where the user explicitly
specifies the representation to use for each node. We tried to
strike a balance between these two approaches in the prototype,
whereby the software makes a best first guess as to which style to
use for each node, and the user may subsequently adjust specific
nodes as needed.

When our prototype reads in a tree, it computes a layout that
fills the available screen space with a hybrid of the type in Figure
4 B. Our intent is to give the user an initial view of the tree that
uses the node-link style as much as possible, without excessive
crowding, and to use Treemaps to show large subtrees wherever
necessary.

Thus, the primary goal of the algorithm is to first maximize the
number of higher-level nodes shown in the node-link style. To do
this, the algorithm performs a greedy breadth-first traversal of the
tree, setting the node type of each node encountered to be node-
link, and stopping and/or backtracking when there is no room to
continue.

Next, the second goal of the algorithm is to maximize the
remaining area allotted to Treemaps used to show lower levels of
the tree. To do this, the system first determines the bounding
boxes of the Treemaps using a heuristic based on the size and
depth of its subtree. The system recalculates the overall space
needed, and resizes the Treemaps so that the entire structure is
scaled to fit within the screen. In order to guarantee that the detail
view has the same visual pattern as the overview, any Treemap
appearing in both views is given the same aspect ratio in both,
creating visual consistency across the views (Figure 9).

Figure 9: screenshot of the initial state of the prototype after
reading in the Postgres dataset. The left window contains a
Treemap overview of the tree. The right window shows an
elastic hierarchy view of the tree. A search box is at the bottom.

5.3 User Interaction
The prototype elastic hierarchy system is designed for easy

switching between Treemap and node-link views at different
points in the tree. Users can right click on the label of a particular
node to bring up a popup menu to change the form (Treemap or
node-link) of the node. Users can also resize a Treemap node by
dragging the bottom left corner of the node (Figure 10, 1-2), after
which the tree layout is automatically adjusted. This allows users
to examine in more detail the content of a Treemap, and select
nodes with in it more easily.

Since the internal (i.e. non-leaf) nodes in a Treemap are
graphically covered almost entirely by descendants, these can be
difficult to select, even with borders and margins around nodes.
Thus, a special selection technique was implemented for
unambiguously selecting nodes of Treemaps. A set of tabs is
displayed above each Treemap node (Figure 10, 3-4). The user
may click on a tab to select the level at which they wish to select a
node. Then, the user can rollover the nodes of the Treemap, and
see the nodes at the chosen level highlighted (Figure 10, 5), with
descendant nodes partially faded. The user can then double click
to transform a node (Figure 10, 6) into a node-link subtree.

5.4 Additional Features
Elastic hierarchies can incorporate Treemaps at any point,

allowing hybrid representations to scale better to large numbers of
nodes than pure node-link diagrams. Ultimately, however, any
incremental improvement in scalability will still fail given a
sufficiently large data set. Thus we built our prototype to support
an overview+detail view of the elastic hierarchy. A pure Treemap
is shown in an overview window, and the hybrid Treemap/node-
link diagram is shown in a detail window (Figure 9). A Treemap
was chosen for the overview rather than a pure node-link diagram
due to its space efficiency. The vertical division between the
overview and detail windows in our prototype can be dragged to
resize windows, accommodating different data sets and changes in
the user’s focus of attention.

 Both elastic hierarchies and overview+detail visualization lend
themselves naturally to viewing multiple foci. Although not yet
implemented in our prototype, Figure 11 shows a sketch of how
the user might select multiple foci in the Treemap overview, and

in response, the detail view adjusts its layout to show the three
foci simultaneously with rubber bands linking between the
windows.

The hybrid mixing of multiple representations in elastic
hierarchies is unfamiliar to users. This, combined with the fact
that elastic hierarchies change form on demand, motivates the
need for mechanisms that help the user understand the
correspondence between nodes during changes of representation,
and across the two views involved in our overview+detail scheme.

To investigate this, our prototype implements multiple
strategies. First, we have experimented with using smooth
animations to display transitions between representation styles, to
help the user maintain context, as has been discussed elsewhere
[4, 5, 21]. Second, whenever a Treemap is visible in the detail
view, its aspect ratio is constrained to match the aspect ratio of the
corresponding (sub)Treemap in the overview window, to make it
easier for the user to visually scan for corresponding subtrees.
This aspect ratio is maintained even during resizing of Treemaps
by the user. Third, rubber bands (Figures 9 and 11) are drawn that
connect selected nodes in the overview and detail view. Fourth,

Figure 10: a sequence of user interaction allowed in the
prototype (screenshots): (1) initiate resizing; (2) node resized,
tabs appeared beside the labels; (3) and (4), click on the “4>”
tab to show the labels of layers for the Treemap node; (5) layer
1 is selected; (6) double click to expand a subtree from layer 1.

Figure 11: a design sketch of multiple foci in the tree. The foci
are highlighted in red in both the overview (Treemap
representation on the left), and the detail view (hybrid
representation on the right). The hybrid representation allows
us to provide much contextual information for the three foci.

Figure 12: node searching in the prototype (screenshot). The
key word is typed in the search box at the bottom. Matches are
shown in orange in both the Treemap overview on the left and
the detail view on the right.

because the representation in the overview is persistently a
Treemap, the user may change a subtree in the detail view from
Treemap style to node-link style, and still see the Treemap form
of the subtree in the overview.

Thus, the user has a choice of either (a) looking at different
representations simultaneously of the same nodes, each in
different windows, or (b) toggling in-place between
representations of nodes that are shown within a single, integrated
view (i.e. the detail view).

6 DISCUSSION AND CONCLUSION
Elastic hierarchies have many valuable properties. They may be

useful in dealing with a wider range of information. Since our
hybrid tree representations can use compact Treemaps for various
portions of the tree, it is possible to introduce space-efficiency as
needed. Thus different nesting strategies within elastic hierarchies
create a continuum of space efficiency between node-link
diagrams at one end of the continuum and Treemaps at the other.
A side-benefit of elastic hierarchies is that, by allowing the user to
toggle between traditional node-link diagrams and Treemaps at
any point in the tree, this may help users to better learn and
understand Treemaps (which are themselves unfamiliar to most
users) by seeing how they relate to familiar node-link diagrams.

Elastic hierarchies can be combined with other visualization
strategies, such as the use of multiple views, or focus+context
approaches. While this creates a large design space, it is one
where there may be a number of useful “sweet spots” that will
only be discovered after there is an opportunity to examine the
properties of the space with prototyping and user studies. The
provision of multiple representations both within a tree (i.e., using
an elastic hierarchy) and between multiple views may help users
learn and understand the content and structure of hierarchies
better. The ability to see the same tree rendered in different ways,
and to see the correspondence between elements in the different
views, may encourage the development of more accurate mental
models of information structure.

There is a large design space of possible elastic hierarchy
implementations of which this paper has considered a small
portion. Systematic research is needed to reinforce and challenge
the design intuitions that underpin this form of hierarchy
visualization. One obvious research issue which overlaps with
both the present work and earlier research on hierarchy
visualization is the relationship between the number of nodes in a
hierarchy and which representational forms should be used at
different levels of the hierarchy. Other research questions (a
selection from many that could be posed) that may be worth
pursuing with reference to the design and use of elastic
hierarchies include:

• How and when should users be able to choose which
representations to use (vs. having layouts assigned
automatically)?

• What elastic hierarchies using representations other than
Treemap and node-link diagrams could be designed?

• What types of design cues and strategies can be used to
facilitate the formation and use of cognitive/perceptual
landmarks within large hierarchies?

• How can smooth animation facilitate the use of multiple
views (e.g., overviews, “you-are-here” diagrams, detail
views, etc.)?

• How should elastic hierarchies be personalized for
different types of user?

One possible future direction for elastic hierarchy prototypes
would be to generalize the roles played by the overview and detail
views, and to link multiple views with various types of
visualization and animation to highlight correspondences.

In our exploratory prototype, the local file system is chosen as
the content for the elastic hierarchies. A next step could be using
elastic hierarchies for other kinds of real world data, and further
investigating their characteristics under these domains.

In conclusion, the research reported in this paper investigated
the use of elastic hierarchy representations for trees. A design
space for elastic hierarchies was characterized where a single
graphical depiction uses a mixture of Treemap and node-link
views at different levels of the tree. A prototype was created to
demonstrate and explore related design features and to illustrate
some of the properties of elastic hierarchies. Empirical research is
now needed to determine if, when, and how, elastic hierarchies
can be used.

7 ACKNOWLEDGMENTS
Thanks to Ben Bederson and Ben Shneiderman for some

detailed feedback and pointers to related work. Thanks to Amy
Zhu, Maneesh Agrawala, Joe Laszlo, Jim Chengming Cai, and
Noah Lockwood for support and feedback. Thanks to Ravin
Balakrishnan and other members of the DGP lab at University of
Toronto for feedback during an early stage of this work. Thanks
to John Hancock for technical help with making the video. Thanks
to University of Maryland’s HCIL for making Piccolo,
SpaceTree, and Treemap demos, code, and datasets available to
the public. Thanks also to the anonymous reviewers for their
constructive feedback and suggestions.

REFERENCES

[1] Andrews, K., Visual exploration of large hierarchies with
information pyramids. Proceedings of Sixth International
Conference on Information Visualisation. 2002: IEEE Computer
Society Press. 793-798.

[2] Andrews, K. and Heidegger, H., Information slices: Visualising and
exploring large hierarchies using cascading, semi-circular discs.
Proceedings of IEEE Symposium on Information Visualization, Late
Breaking Hot Topics. 1998. 9-12.

[3] Balzer, M. and Deussen, O., Hierarchy based 3D visualization of
large software structures. Proceedings of the Conference on
Visualization Posters Compendium. 2004: IEEE Computer Society.
81-82.

[4] Bartram, L., Can motion increase user interface bandwidth?
Proceedings of IEEE Conference on Systems, Man, and Cybernetics.
1997. 1686-1692.

[5] Bartram, L., Perceptual and interpretative properties of motion for
information visualization. Proceedings of the 1997 Workshop on
New Paradigms in Information Visualization and Manipulation.
1997, Las Vegas, Nevada, United States: ACM Press. 3-7.

[6] Bederson, B. and Wattenberg, M., Treemap Java Algorithms.
http://www.cs.umd.edu/hcil/treemap-history/Treemaps-Java-
Algorithms.zip.

[7] Fekete, J.-D., Wang, D., Dang, N., Aris, A., and Plaisant, C.,
Overlaying Graph Links on Treemaps. Proceedings of IEEE
Information Visualization Symposium Posters Compendium. 2003:
IEEE Computer Society.

[8] Harel, D., On visual formalisms. Communications of the ACM,
1988. 31(5): p. 514-530.

[9] Kandogan, E. and Shneiderman, B., Elastic Windows: a hierarchical
multi-window World-Wide Web browser. Proceedings of the 10th

annual ACM symposium on User interface software and technology.
1997, Banff, Alberta, Canada: ACM Press. 169-177.

[10] Kumar, H.P., Plaisant, C., and Shneiderman, B., Browsing
hierarchical data with multi-level dynamic queries and pruning.
International Journal of Human-Computer Studies, 1997. 46(1): p.
103-124.

[11] Lamping, J., Rao, R., and Pirolli, P., A focus+context technique
based on hyperbolic geometry for visualizing large hierarchies.
Proceedings of ACM Conference on Human Factors in Computing
Systems. 1995. 401-408.

[12] Mukherjea, S., Foley, J.D., and Hudson, S., Visualizing complex
hypermedia networks through multiple hierarchical views.
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 1995, Denver, Colorado, United States: ACM
Press/Addison-Wesley Publishing Co. 331-337.

[13] North, C., A user interface for coordinating visualizations based on
relational schemata: snap-together visualization, Ph.D. Thesis,
Computer Science Department, University of Maryland, 2000.

[14] Plaisant, C., Grosjean, J., and Bederson, B.B., SpaceTree:
Supporting exploration in large node link tree, design evolution and
empirical evaluation. Proceedings of IEEE Symposium on
Information Visualization. 2002. 57-64.

[15] Reingold, E.M. and Tilford, J.S., Tidier drawings of trees. IEEE
Transactions on Software Engineering, 1981. SE-7(2): p. 223-228.

[16] Robertson, G.G., Mackinlay, J.D., and Card, S.K., Cone trees:
Animated 3D visualizations of hierarchical information. Proceedings
of ACM Conference on Human Factors in Computing Systems.
1991. 189-194.

[17] Shneiderman, B., Tree visualization with tree-maps: 2-d space-
filling approach. ACM Transactions on Graphics, 1992. 11(1): p.
92-99.

[18] Sindre, G., Gulla, B., and Jokstad, H.G., Onion graphs: aesthetics
and layout. Proceedings of IEEE Symposium on Visual Languages.
1993. 287-291.

[19] Stasko, J. and Zhang, E., Focus+context display and navigation
techniques for enhancing radial, space-filling hierarchy
visualizations. Proceedings of IEEE Symposium on Information
Visualization. 2000. 57-65.

[20] Walker, J.Q., A node-positioning algorithm for general trees.
Software--Practice and Experience, 1990. 20(7): p. 685-705.

[21] Woods, D.D., Visual momentum: a concept to improve the cognitive
coupling of person and computer. International Journal of Man-
Machine Studies, 1984. 21: p. 229-244.

