

Collaborative Energy Conservation in a Microgrid

mohitjain@in.ibm.com IBM Research India

KBFSC

Kuala Belalong Field Studies Centre

In Brunei, a country in SE Asia, close to Malaysia

A research centre located in a tropical evergreen rainforest

Visited by biologists and ecologists from all over the world.

KBFSC

India \rightarrow Bandar Seri Begawan \rightarrow Bangar \rightarrow Temburong \rightarrow KBFSC 1 day of travel with 4 different modes of transportation

State-of-the-art

40 occupants (30 researchers+10 staff)

Primary Appliances: lights, fans Secondary Appliances: dryer, washer, heater, lab equipment

State-of-the-art

40 occupants (30 researchers+10 staff)

Primary Appliances: lights, fans Secondary Appliances: dryer, washer, heater, lab equipment

No direct grid connection

3 diesel generators (DG) for 5 buildings

DG hours: 6-9am and 4-11pm (~10 hrs)

DG consumption: ~30 L/day

State-of-the-art

40 occupants (30 researchers+10 staff)

Primary Appliances: lights, fans Secondary Appliances: dryer, washer, heater, lab equipment

No direct grid connection

3 diesel generators (DG) for 5 buildings

DG hours: 6-9am and 4-11pm (~10 hrs)

DG consumption: ~30 L/day

Transporting diesel is difficult

Objective

Increase Power Availability

Objective

Increase Power Availability

Reduce Diesel Consumption

Objective

Increase Power Availability

Minimize Visitor Inconvenience

Further Constraints

Wind speed too low

Only about **1-2 hrs** of direct sunshine per day

River too shallow

State-of-the-art Analysis

Underutilized DG

- Loaded to only 30% of its capacity
- DG fuel efficiency characteristics is non-linear
- At KBFSC, DG is sized for worst load

State-of-the-art Analysis

Underutilized DG

- Loaded to only 30% of its capacity
- DG fuel efficiency characteristics is non-linear
- At KBFSC, DG is sized for worst load

Fixed (unrequired) DG hours

- DG being ON even with no (or small) loads
- Increasing DG hours can lead to inadvertent wastage, while decreasing DG hours can lead to visitor inconvenience

Inconvenient DG hours

No DG = No load (not even fans or lights)

Solution

Solution

Battery bank

To supply power to small but convenience (*primary*) loads, such as lights and fans

Solution

Battery bank

To supply power to small but convenience (*primary*) loads, such as lights and fans

Collaborative Scheduler

Provides visitor a UI to choose when they want to use a particular *secondary* appliance

TBM

Solution

Battery bank

To supply power to small but convenience (*primary*) loads, such as lights and fans

Collaborative Scheduler

Provides visitor a UI to choose when they want to use a particular *secondary* appliance

DG Optimizer

A software that uses load of secondary appliances and battery status, to suggest optimal DG hours

Solution

ПВŅ

I. Battery Bank

Supply power to small *primary loads*

Lead acid batteries were deployed

Extra advantage:

High loaded DG is efficient Battery bank can act as load aggregator

II. Collaborative Scheduler

Walk-up-and-use kiosk | Minimal interaction

II. Collaborative Scheduler

Walk-up-and-use kiosk | Minimal interaction | Minimal learning curve

II. Collaborative Scheduler

Problem Schedule running time of each request Compute DG running schedule

Problem Schedule running time of each request Compute DG running schedule

Objective Minimize the diesel consumption

Input Scheduling requests power rating, usage duration, selected time period Current battery charge level

Step 1: Schedule running time of each request

DG efficiency is highest when DG is loaded close to its capacity

Heuristic: Run as many appliance as possible, at any given time (Bin Packing problem).

- a. Start with the most constrained appliance (with minimal padding between usage duration and selected time period).
- b. Schedule successive appliances by maximizing the overlap with already scheduled appliances.

Step 2: Compute DG running schedule

Use the aggregate power profile generated in Step 1.

This formulation is solved using DP approach (full algorithm in paper)

IBM

Original Scenario

Original Scenario

Altered Scenario

Original Scenario

Altered Scenario

Original Scenario

Results

Only DG Run DG whenever there is non-zero demand (state-of-the-art)

- Hybrid Run all appliances from battery; run DG optimally to recharge the battery
- **C Hybrid** Run primary appliances from battery, and secondary appliances from DG

TBM

Results

Only DG Run DG whenever there is non-zero demand (state-of-the-art)

Hybrid Run all appliances from battery; run DG optimally to recharge the battery

C Hybrid Run primary appliances from battery, and secondary appliances from DG

Results

C Hybrid performs almost as good as pure Hybrid

Hybrid: both primary and secondary loads run from the battery, and DG is used only to recharge the battery

- Higher wear and tear of the battery
- As electricity is freely available from the battery at any time of the day, users may tend to be less economical in their usage

Summary

Solution designed for reducing diesel consumption at KBFSC, a remote ecological field study centre in Brunei

The system consists of

- a **battery bank** to increase power availability to primary loads
- a **collaborative scheduler** for access to power for secondary loads
- a DG optimizer ensures that the DG run at the appropriate times to minimize diesel consumption while keeping the batteries charged and meeting user needs

Simulations modeled on real data suggest that our system:

- provides uninterrupted power, oppose to 10 hours in the past
- reduces diesel consumption by 33.3% and total cost by 20.1%

Thank You!

Mohit Jain IBM Research India mohitjain@in.ibm.com Harshad Khadilkar Neha Sengupta Zainul Charbiwala Deva P. Seetharam

Kushan U Tennakoon Rodzay bin Haji Abdul Wahab

Institute for Biodiversity & Environmental Research

Liyanage Chandratilak De Silva Universiti Brunei Darussalam