2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) | 978-1-6654-9772-5/22/$31.00 ©2022 IEEE | DOI: 10.1109/VLSITechnologyandCir46769.2022.9830315

A 39,000 Subexposures/s CMOS Image Sensor with Dual-tap Coded-exposure

Data-memory Pixel for Adaptive Single-shot Computational Imaging
Rahul Gulve*!, Navid Sarhangnejad*!, Gairik Dutta!, Motasem Sakr', Don Nguyen', Roberto Rangel',
Wenzheng Chen?, Zhengfan Xia!, Mian Wei?, Nikita Gusev', Esther Y. H. Lin?, Xiaonong Sun', Leo

Hanxu!, Nikola Katic', Ameer Abdelhadi!, Andreas Moshovos!, Kiriakos N. Kutulakos?, Roman Genov'
1 Dept. of ECE, University of Toronto, Toronto, Canada. 2 Dept. of CS, University of Toronto, Toronto, Canada.

Abstract

A dual-tap coded-exposure-pixel (CEP) image sensor is
presented and demonstrated in several computational imaging
applications. The NMOS-only data-memory pixel (DMP)
reduces transistor count in CEP yielding 39,000
subexposures/s at 320x320 sensor resolution with 7 um pitch.
The outputs of a frame-rate 12-bit ADCI and a 1-bit
subexposure-rate ADC2 are adaptively combined to boost the
native dynamic range of coded-imaging modalities by over
57dB, demonstrating over 101dB dynamic range in intensity
imaging. The CEP camera combined with machine learnt
projection patterns enables single-shot structured-light 3D
imaging at native resolution and video rate.

Keywords: CMOS image sensors, high-speed imaging
systems, 3D imaging, high dynamic range imaging

Introduction

High-frame-rate image sensors reduce motion artifacts,
such as motion blur and ghosting, but may be prone to high
read noise, power consumption, and output data rate. The
emerging class of coded-exposure pixel (CEP) image sensors
[1-3] eliminate these drawbacks by implementing exposure-
time programmability for each individual pixel in order to
perform multiple subexposures for a single readout, while
reducing motion artifacts. This has enabled new applications
such as compressive sensing [1,2] and 3D imaging [3],
performed in a single shot at native resolution. Other coded-
exposure image sensor designs use pixel subarrays that share
the same code among many [4,5] or all [6] pixels. As shown in
Fig. 1 (left), the total exposure time of one frame is divided into
multiple (N) programmable subexposures, or “subframes.”
The photogenerated charge is selectively accumulated on one
or two nodes known as “taps”, as controlled by 1-bit binary
coefficients, or “codes” organized in frame-sized matrices
referred to as “masks.” In the case of CEP image sensors,
arbitrary codes can be sent to each pixel individually, in each
subframe, for fine per-pixel temporal control of exposure. The
taps are read out only once per frame resulting in a lower read
noise compared to high-frame-rate cameras where a fast
readout contributes noise in each short frame. We present a 2-
tap CEP image sensor that includes a true single-shot adaptive
HDR mode as well as other emerging single-shot imaging
modalities, such as auto-tuned structured-light 3D imaging,
depth-gated imaging and multispectral imaging.

Architecture and Operation

As shown in Fig. 1 (right), this CEP image sensor includes
two ADCs, ADC1 and ADC2, which operate at the frame rate
and the subframe rate, respectively. Similar to conventional 2-
tap image sensors, ADCI, a 12-bit 2nd-order incremental AX
ADC, provides a high-resolution readout of both taps at a low-
speed standard video rate (up to 100fps). ADC?2 is a high-speed
comparator that compares the taps’ voltage with a near-
saturation reference voltage in each subframe. In the single-
shot HDR application, per-pixel 1-bit ADC2 output from each
subframe is used to decide the mask
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for next subframe to avoid saturation.

Figure 2 depicts the closed-loop system comprised of two
ICs: a 110nm-CIS image sensor and a 65nm-CMOS mask
generator and their micrographs. The image sensor shown in
Fig. 2 (left) includes a 320x320 array of 2-tap DMP . The two
column-parallel ADCs, ADC1 and ADC2, digitize the taps
outputs at the maximum frame rate of 100fps, and the peak
subframe rate of 39,000sfps (subframes-per-second),
respectively. To reduce the power of wireline communication
and external memory, the CIS image sensor can be stacked
with a digital-CMOS mask generator, such as the one shown in
Fig. 2 (right). The mask generator IC includes: (1) a custom
low-power mask generator (2) a RISC-V processor and (3) a
lossless Huffman-decompression engine each for different
types of masks and power requirement. The two dies were
tested separately, not in a stack, for the ease of experimental
characterization.

The pixel implementation is shown in Fig. 3. All existing
CEP image sensor pixels [1-3] belong to the class of Code-
Memory Pixels (CMP). They require in-pixel digital memory
with PMOS transistors to store the exposure code at the cost of
a large and slow pixel. Here, we introduce an NMOS-only two-
tap Data-Memory Pixel (DMP) architecture that eliminates the
need for in-pixel storage of the exposure code and yields a 7
um-pixel. Figure 3 (left) shows the equivalent pixel schematic
and timing diagram of operation. Figure 3 (right) shows the
layout and charge transfer from the photodiode to each tap
through an intermediate charge-storage node called “data-
memory”. The transfer takes 80ns per row or 25.6 us per
subframe for the whole array. The photogenerated charge
across all subframes of a frame is selectively integrated on the
two taps according to the per-pixel code sequence and is read
out once at the end of the frame as two images.

Applications and Results

Figure 4 shows the scene-adaptive single-shot HDR
imaging results captured using the combination of ADC1 and
ADC?2 outputs for N = 213 subframes. Fig. 4 (left) shows the
masks at 15 different subframes within one frame exposure
period. The mask for the subframe [n] is equal to the output of
ADC?2 in subframe [n-1]. Fig. 4 (middle-left) shows the per-
pixel exposure time realized using the ADC2 output for the
adaptive mask control, including three insets with pixels with
mostly low (cyan), medium (red) and high (blue) integration
time. The HDR image is calculated by dividing ADC1 output
with per-pixel exposure time. The tone-mapped HDR image
scaled to 8-bits is shown in Fig. 4 (middle-right). Figure 4
(right) depicts the experimentally measured dynamic range of
101.5dB at 30fps, where pixel coding boosts the native (non-
coded) pixel dynamic range of 54dB by an additional 57.5dB.
Pixel coding also eliminates dips in the signal-to-noise ratio
(SNR) for larger signals.

Figure 5 (top, left) depicts the principle of operation of the
CEP image sensor in structured-light 3D imaging. Here, 4
optimal illuminations patterns, discovered by stochastic
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gradient descent (SGD)[7], are projected onto the scene, and,

synchronously, 4 masks with Bayer-like mosaic pattern are

submitted to the camera. The sorted photogenerated charge is

read out as two images per frame which are used to compute
disparity and albedo maps. Figure 5 shows the scene, and the
reconstructed 3D maps of the scene captured at native
resolution and 30fps video rate using both conventional

analytical patterns and the optimized patterns
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Fig. 1: The coding (top) and readout (bottom) schemes introduced in this work.
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Figure 6 compares the presented CEP image sensor with the
best coded-exposure image sensors.
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sensor and digital mask generator, and their micrographs.
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BOLD font denotes the best performance among per-pixel coded sensors
UNDERLINE denotes the best performance among all coded sensors
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Fig. 6: Comparison table.
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