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1 Introduction

Computer graphics (CG) and animation are reaching previously unparalleled levels. They are now virtually
ubiquitous in most visual media; so much so that the general audience is starting to develop a blasé attitude
towards them. For example, nowadays only the most extensive computer graphics and animation efforts in
movies manage to draw any admiration from the viewer. Computer animation in TV ads and commercials
is completely taken for granted. The saturation has reached such levels that even computer games cannot
rely anymore on technical advances in graphics and animation to sell the product, something that they have
been notorious for in the past. Rather than mark the end of interest in the domain, this ubiquity only serves
to highlight the underlying immense demand for graphics and animation.

Over time, a plethora of animation techniques have been proposed, each suited to some particular task.
Some of the general approaches taken include global and local motion planning, global and local behavioral
modeling, physical simulation, optimal control, motion capture, and puppetry. This abundance of method
stems from each application imposing different requirements and constraints on the animation algorithm,
and being open to different trade-offs. A case in point is the predominant area for computer animation, the
entertainment industry. Movies often make use of CG for animating various digital stuntmen or chimerical
beasts, and ever more frequently, for the entire productions themselves. Here, great importance is placed
on the most minute details and realism of motion and appearance, while rendering time is of little con-
sequence; CG-rendered cartoon features often further trade-in realism for “cartoon physics” and stylized
over-exaggerated motions. Video games, on the other hand, usually require real-time animation at the ex-
pense of detail. Simulators, such as military trainers or sports games, present an even greater challenge as
both, real-time animation and realism are a must. More specialized applications, like sport prototyping tools
(motion feasibility and analysis for gymnastics, diving, etc) and choreography tools, pose yet another set of
demands.

One of the key objects being animated are human or human-like characters. Whether it is the narcissist
in us, or that we find human interaction very compelling and fertile ground for storytelling and drama,
natural-looking human animation has been a long-sought goal. Although our present animation methods
can indeed produce some impressive results, they require an immense amount of time and effort, and very
often have the animator working at very low levels of abstraction, such as directly specifying limb position
and orientation. This is dictated by the animator’s tools. A much more natural approach would have the
animator direct his characters, much like a movie director directs his cast of real life actors. Ideally, one
would like to create animations by working at task-level: “pickup skull, slowly; look at it; wander to the chair
and sit down heavily; gaze thoughtfully at skull, and recite ‘To be, or not to be...’ ” What we need, in short,
are virtual actors. Although it’s not the panacea of computer animation, there is reason to believe that there
would be a very large demand for this concept. The advent of virtual actors would make computer animation
accessible to a much larger user base, bringing it to ordinary people, ones without any particular animation
skills. Veteran animators would also derive benefit, as they could then concentrate on expressing their vision
rather than having to contend with technical issues and limitations. Conventional movie directors could even
start conducting these virtual actors directly, without any intermediation of animators. The development of
such highly autonomous character animation methods thus seems like a useful research direction.

Any implementation of a virtual actor must confront three key areas: the directing of the character, motion
planning, and animation. The character direction problem addresses the question of how to communicate
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the animator’s intentions to the virtual character. Motion planning, often also called path planning, concerns
itself with working out the body logistics in the global context, such as planning a path between trees in a
forest, and limb logistics in a more local context, such as planning hand motion to grab an awkwardly placed
object. Animation then attempts to implement these plans in a natural looking way. More often than not,
there are no sharp boundaries between these areas; a lot of character animation algorithms incorporate all
three areas to various degrees.

Our current understanding and ability in these areas is insufficient to be able to implement such general
virtual actors. Motion planning is arguably the area that requires the least of new research towards that
goal. We can plan paths for simple robots in most environments, although full human-like objects are still
unmanageable due to their complexity and the “curse of dimensionality”. Fortunately, most of the time one
can approximate the human model with a simpler object, one for which path planning solutions are easily
obtainable. Similarly, in the animation field we have a large variety of methods to animate simple characters,
but again, more complex characters are outside our grasp, at least in the context of virtual actors. Animation
remains very time consuming, requiring a lot of work from highly skilled animators.

Current methods for directing a character are very much dictated by the animation method used. These
methods often provide only a particular specialized interface for specifying required motion, and it is up to
the user to translate his or her intent to this representation. This is often difficult, time-consuming, and
frequently requires a certain amount of skill or intimate knowledge of the system being used. The situation is
further exacerbated by a prevailing trade-off of control vs. automation. That is, most animation techniques
either allow great flexibility in motion specification at the cost of requiring much user input, or vice versa,
are highly autonomous but offer little control over the generated motion. Either alternative is a thorn in
the user’s side. This suggests that animation techniques are not mature enough yet to make discussing the
directing of virtual actors practical, and hence will not be covered in any great length in this paper.

1.1 Scope & overview

This paper will concern itself mostly with providing an exposition of the current state of animation techniques,
and to a lesser extent, of motion planning. Furthermore, it will only look at the more interesting case of
active objects, ones which exert internal forces and torques in an attempt to control their motion, objects
usually seen as having sentience or a will of their own. The focus will be on humanoid characters. The paper
will also explore some open problems in these two fields and potential research directions.

The layout of the paper is as follows. In the remainder of this section some essential fundamental concepts
and notation are introduced. This is followed by a section reviewing motion planning, discussing first
the more classic deterministic methods, and then the more recent stochastic and kinodynamic variants.
Similarly, animation methods are reviewed next, using the traditional categorizations. We then discuss
“motion graphs”, a recent animation technique that shows much potential. The paper ends with a look at
some open problems in all these areas.

1.2 Fundamental concepts & notation

This section reviews some fundamental concepts essential to motion planning and animation, as well as the
notation used throughout this paper. Alternate notations found in related literature are also mentioned, if
common enough.

We adopt the usual variable notation:

x scalar
x vector
ẋ first time-derivative
ẍ second time-derivative
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At the center of our attention is the character, or model, to be animated. It is modeled as an articulated
tree, or skeleton, of rigid links that captures the overall dimensions and mobility of the subject. The links are
attached together using various types of joints (prismatic, hinge, etc.), each usually with constraints on the
range of motion. The links usually bear resemblance to the body part or segment which they approximate,
although often they just serve as a skeletal structure to which further geometry can be attached (e.g.,
geometry representing muscles), or over which skin and cloth may be draped. Figure 1 illustrates a simple
humanoid model.

Although real life motion is continuous with respect to time, its rendering on display devices, such as
a computer or movie screen, is achieved by uniformly sampling the motion and displaying the sampled
snapshots in rapid succession. In each such snapshot the character is in a certain configuration. This
configuration, usually denoted by q, is a vector of scalars, each one the current value of one of the character’s
degrees of freedom (DOF). For a human character the configuration usually consists of his or her coordinates
in the world, the overall body orientation, and all the joint angles.

θ3

θ1

θ2

θ9,10,11

θ13

θ4,5

θ25θ24

θ20,21 θ22,23

q = (x, y, z, θ1, θ2, θ3, ..., θ24, θ25)
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root at (x, y, z)

Figure 1: A basic humanoid character model, and one particular parametrization of its configuration q.

All the possible values of q for a given character form an n dimensional space, where n is the length of the
q vector, or alternatively the number of DOFs of the figure. This is the character’s configuration space,
denoted by C, where C ⊆ Rn. A particular configuration of the character is a single point in this space, one
whose coordinates are given by the values within the vector. The character’s motion, on the other hand,
traces out a curve in C. The subset of configuration space in which the character is free of collision with
any obstacles is termed the freespace, and indicated by Cfree. One can also talk of the configuration space
obstacles, or C-obstacles. In general, a C-obstacle is a fattened version of its real world counterpart, obtained
by convoluting the shape of the obstacle with that of the character (Minkowski sum). The union of all the
C-obstacles is referred to as CB. Thus C = Cfree + CB.

A brief example might serve well here to clarify and cement the concepts so far. Consider a character that
needs to cross a warehouse full of crates scattered on the floor. Here the problem can be simplified by
representing the character by a bounding box or oval, and planning in 2D using the bird’s eye view. Note
that any curve in Cfree that connects qinit to qgoal is a motion that brings the character from the initial to
the final configuration while avoiding obstacles. The general idea behind most motion planning algorithms is
finding such a curve. Figure 2 on page 5 further visually illustrates these concepts, using a different simple
example.
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Although a configuration completely specifies the character’s pose, it lacks any temporal information. Much
like in a photograph, there is no way to tell if the character is moving, and if so, how and with what
velocities. For applications that require such information one usually works with the character’s state.
The state augments the character’s configuration with the first time-derivatives of all the DOFs. x or X
are sometimes used to represent state variables. There is also a space analogous to C for states, which is
understandably called the state-space, or less frequently the phase-space. In various work it is denoted by
X , TC, or the abbreviation SS. Again, the character’s current state is a point in this space, while a motion
forms a curve through it. Curves in C are termed paths, while curves in X are termed trajectories. Path
variables tend to use p while trajectories often use τ . This concept of state is very important, and is used
heavily in animation.

2 Path planning

Path and motion planning problems were originally first addressed in the robotics field. The problems
studied can be roughly divided into two types: that of freely moving bodies, and that of tethered or fixed
robots. The free motion problem is best characterized by the “piano mover’s problem”: given a piano that
has been unloaded at the curb, how best to move and maneuver it to its final destination inside the house?
The problem is non-trivial as often a particular sequence of rotations is required to clear tight corners and
narrow doorways. The fixed robot problem, on the other hand, usually deals with moving a link chain
that is anchored at the base. The problem was motived by the large demand for motion planning of robotic
manipulator arms in industry. This heritage gives rise to a robotics-biased terminology, such as “workspace”,
the environment in which planning is to occur, presumably derived from the workspace of a manipulator arm.
This paper will discuss motion planning mostly in the original robotics context, but it should be understood
that the concepts apply equally well to animation. In particular, whenever reference is made to the robot,
the animated character can be envisioned instead.

Motion planning in computer animation is generally used to solve the same types of problems as in robotics.
High-level, global context path planning is used for working out collision-free paths for characters, while low-
level, local context motion planning is used for limb movements, especially in object manipulation scenarios
(e.g., oil filter extraction from a car’s innards under the hood). It has also been applied to character motion
planning and animation in highly-constrained environments [Kal99, KvdP00, KvdP01]. This work addresses
a problem that differs from the traditional piano mover’s problem in that the character needs to be in constant
contact with the environment (viz., terrain under foot or overhead), while freespace planning usually tries
to keep as large an obstacle clearance as possible.

As mentioned in the introduction, the motion planner’s task is to find a connecting path in Cfree between
qinit and qgoal. More formally: given a representation A of the robot, its workspace W, as well as its starting
and goal configuration, denoted by qinit and qgoal, find a connecting path p through the freespace Cfree,
which corresponds to a collision-free motion for the robot in W. The path optionally is required to respect
or optimize a number of hard or soft constraints, respectively. Some frequent constraints are limits on speed,
acceleration, and applied torque. Soft constraints often include minimization of expended energy or time
elapsed. A trivial path planning example is illustrated in figure 2.

It should be noted that A also often refers to an object being manipulated by a robot, instead of the robot
itself. For example, consider again the piano mover’s problem: the piano is a passive object, yet it is more
convenient to plot the piano’s motion and only then work out what movements the mover’s themselves should
perform.
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Figure 2: trivial path planning example; consider the L-shaped robot which is only capable of motion along
the x axis and rotation. The workspace on the left illustrates one particular solution; on the right, the same
solution is shown in the corresponding configuration space. Three intermediate configurations of the solution
are marked in either view.

2.1 Types of planners

Much like in animation, the variety of motion planning problems has given rise to a collection of solution
methods. Some common distinctions between planning problems are: fixed vs. mobile robots (as we’ve al-
ready seen), static vs. dynamic environments, single- vs. multi-query planners, and omniscient vs. exploring
robots. Dynamic environments contain moving obstacles, which substantially complicates planning by im-
plicating time in the calculations. Static environments, with all obstacles immobile, often lend themselves to
multi-query planners, where some potentially costly precomputation can be performed for the sake of answer-
ing subsequent queries quicker. Dynamic environments, in contrast, usually lead to single-query planners,
since a change in obstacle positions often invalidates any precomputations. Robotic arm manipulators are
usually assumed to be omniscient about their workspace, while mobile robots in the real world do not have
such well controlled environments and must discover them on their own. This severely limits the potential
for use of global methods in planning.

A more recent distinction is that of kinematic vs. kinodynamic planners. Originally, the motion planning
problem was viewed in a purely geometric manner. In finding a connecting path, and the attendant rotations,
the planner was concerned only about not intersecting the geometry of A with that of the obstacles. In the
context of real world scenarios, this corresponds to a robot or object that is capable of accelerating in any
direction, regardless of its current orientation, and that is not under the influence of external forces, such
as gravity. Many applications can be made to fit this pigeonhole by a number of simplifications (e.g., by
having the robot perform the motion slowly, we can negate the effect of inertia; by being confined to planar
motion on the floor, we can ignore gravity). For example, a holonomic robot moving through a warehouse
full of crates can be thus approximated. Most planners proposed so far fall in this kinematic category.

Although such kinematic planners are capable of handling a large class of motion planning problems, other
methods must be sought for cases where the robot’s dynamics, the physics of their motion, must be taken
into account. This includes, for example, cases where the robot’s inertia plays a large role in its motion,
or where the drive mechanism is non-holonomic, such as in most wheeled vehicles. To this end there has
been some research recently, starting with the seminal paper by Donald et al.[DXCR93], on kinodynamic
planners, ones which incorporate both, the kinematic and dynamic aspects of the motion problem. Since
dynamics are often important in computer animation, we will pay particular attention to these planners.
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Figure 3: Taxonomy of path planning methods.

In the following subsections we outline some of the key techniques and results of motion planning.

2.2 Kinematic planners

This section briefly describes the three major types of kinematic planners. For an excellent and thorough
review of these methods the reader is directed to [Lat91]. Much of what is covered in this subsection is based
on material from that book.

roadmaps

The first planners, such as [Nil69], used a notion of a roadmap. The purpose of a roadmap is to capture
the connectivity of the “roomy”, open parts1 of Cfree, establishing a canonical set of paths between them.
Since these roadmaps span all the reaches of the freespace, every point in Cfree is within sight of some part
of this network; the path planning problem thus simplifies to finding the two Cfree paths that connect qinit

and qgoal to their corresponding closest points in the roadmap, as well as the connecting path through the
graph. If we carry the suggested roadway analogy, given a (very dense) network of highways, the task of
“getting from here to there” reduces to finding the on- and off- ramps, and figuring out which highways to
take between the ramps.

A number of methods exist for generating roadmaps. The most popular, the visibility graph method, uses
a visibility graph of C as a roadmap. This graph is constructed by considering all the vertices of CB, the set
of C-obstacles, and adding an edge between two such vertices if they can “see” each other; that is, they lie
adjacent on a C-obstacle boundary, or a straight line connecting them lies completely in Cfree. The planning
problem is solved by first treating qinit and qgoal as CB vertices, creating the visibility graph, and then using
basic graph theory to find a connecting path. The left diagram of figure 4 shows a solved problem using this
method.

cell decomposition

Cell decomposition is closely related to the previous method, as it also, in effect, generates a roadmap. With
this method Cfree is decomposed into a set of “simple” fragments, termed cells. The connectivity of the cells
is then captured using a connectivity graph very similar to a roadmap. To plan a motion one simply finds
a sequence of cells, termed a channel, which connects the cell containing qinit to the one containing qgoal.

1a useful way to visualize this is to consider Cfree as an interconnected system of underground caverns, where the roadmap
encodes their connectivity.
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The solution path is then obtained by stringing together the midpoints of all the cell boundaries within the
channel, and connecting them to qinit and qgoal. The middle diagram in figure 4 demonstrates the approach.

Various shapes and structures can be used for the cells. They must, however, make it easy to:

• check for adjacency between two cells
• find the portion of the cell boundary which two neighboring cells share
• find a connecting path between any two points in a cell

These conditions respectively ensure the ease of: constructing a connectivity graph of the cells, finding the
midpoints, and constructing a continuous solution from the sequence of midpoints.

There are two types of cell decomposition: “exact” and “approximate”. The difference is that the sum of
cells in an exact decomposition equals the free space Cfree exactly, while in the latter approach it is only
approximated. The approximation is generally done with regularly shaped, and often (hyper-)rectangular
cells which leads to simpler and faster calculations. This approach however can miss potential solutions
if the resolution of the cells is not high enough to detect an essential narrow passage. Although one can
always increase the resolution, this is mired by an increase in calculation time and memory storage space,
which grow exponentially. This though can be mitigated by using hierarchical methods, such as a quad- or
oct-trees, to refine the resolution only where needed. The diagram on the right in figure 4 shows approximate
decomposition using a quadtree.

Figure 4: left: a visibility roadmap; middle: trapezoidal (exact) cell decomposition; right: approximate
cell decomposition using a quadtree; the channel is outlined with a heavier line (source:[Lat91]; middle diagram

modified to show channel)

potential field

Instead of focusing on the connectivity of the freespace, the last main approach constructs a potential field
over Cfree. This field acts as a guiding force, providing local hints as to which way the goal lies, driving the
planner towards qgoal. The overall potential is often a composite of an overall attractive potential, one that
provides the driving force, and a repulsive potential that repels the planner from the set of C-obstacles in
CB. Figure 5 shows an example potential field and solution for a simple problem.

The motion planning problem is solved by performing gradient descent on this potential field. As with all such
methods, local minima are a major problem. One solution is to modify the field construction method in a way
that minimizes or even eliminates local minima; see navigation functions in [Lat91]. The latter proposes a
simple way to calculate such a potential field numerically: 1) the freespace is first discretized with a regular
grid, 2) the qgoal grid point is assigned a 0 potential, and 3) this potential is then propagated outward,
incrementing it by one at each iteration step. [Lat91] dubs this the “wavefront expansion” algorithm.
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Figure 5: potential field method; left: configuration space C with C-obstacles; middle: potential field over
C; right: isolines and a solution (source:[Lat91]; right diagram modified to correct qinit label)

randomized methods

The above motion planning approaches are only feasible for low-dimensional configuration spaces since
they suffer from the curse of dimensionality, having time complexity that is exponential in the number of
dimensions. Starting with [BL91], research has started to look to random methods, such as Monte Carlo
sampling and Brownian motion, to address motion planning in the more complex cases. By stochastically
looking only at a small portion of these exponentially increasing hyper-volumes, large time gains can be
made, as compared to the exhaustive brute force search of the previous algorithms. The bulk of motion
planning research now focuses on these randomized methods.

[BL91] proposes the Randomized Path Planner (RPP) algorithm, a straight-forward extension of potential
field planners. The main difference is the use of stochastic sampling to approximate the direction of the
downward slope during gradient descent, as searching for it exhaustively is extremely costly. A further
stochastic addition, random walks are used for escaping local minima.

Roadmap approaches have also benefited from randomization. For example, [KŠLO96] introduces the Prob-
abilistic Roadmap (PRM) method. In this method the nodes of the roadmap, here called milestones, are
sampled stochastically from Cfree, and connected with an edge only if a simple, collision-free path can be
found connecting them. Straight line segments are usually used, much like in the visibility graphs above.

[SL01] has noted that PRM planners spend more than 90% of their time performing collision checking. This
work goes on to suggest a new variant of the planner, named SBL (Single-query, Bi-directional, Lazy), which
uses lazy collision checking. All milestones are initially assumed to be connected. When a possible solution
has been found, the edges are checked for collisions using a recursive divide-and-conquer algorithm; if a
collision is encountered, the offending edge is deleted, the partial collision calculations for the other edges
are cached, and the roadmap creation process continues until another candidate solution presents itself.

One of the key problems with PRMs is that they have a hard time discovering narrow passages, often leading
to disconnected roadmaps which do not accurately reflect the connectivity of the freespace. This problem
has received a lot of attention. [HLM99] explores this topic analytically and defines expansive configuration
spaces, ones that are likely to result in good probabilistic roadmaps. It further proposes a new planner, one
that attempts to only construct the part of the roadmap which is directly relevant to the query. It proceeds
by growing two roadmap trees, one from qinit and one from qgoal. The trees are grown by picking an existent
milestone from the less populated part of the tree, stochastically choosing a nearby point within in Cfree,
and attempting to connect the two without any collision. If successful, the new point is added as a milestone
to the roadmap tree. When the two trees overlap each other at a node, the solution can be found using basic
graph shortest path algorithms.
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[HKL+98], on the other hand, proposes a solution to the narrow passage problem which retains the original
PRM algorithm. Here, Cfree is initially inflated to widen all the passages. After the roadmap is created
using this “dilated” version, Cfree is deflated back to its original size and shape, and milestones are adjusted
by resampling around the problem areas to ensure that they all, as well as any edges, lie within the original
freespace.

It is interesting to note that, of the three original planning approaches, a randomized approach has not yet
been put forth for the cell decomposition method, possibly because it is not obvious how to do this. This is
perhaps an interesting potential future research direction, seeing how hugely successful the other adaptations
were.

2.3 Kinodynamic planners

[DXCR93] was the first work in motion planning to additionally consider the dynamics of the character’s
motion, in addition to the usual kinematic constraints. The proposed planner attempts to find time-optimal
solutions by iteratively exploring the state-space using short fixed interval forward simulations.2 Starting
with xinit, all possible control vectors are applied and simulated for a short, fixed duration τ , where each
components of the control vector takes on values from {−a, 0, a}, a being some maximal control value.3 Each
such short simulated trajectory is called an (a, τ)-bang motion. This expansion process is repeated on each
(a, τ)-bang motion end point from the previous iteration. Any motion segment that runs into an obstacle,
or is otherwise undesirable, is discarded. In effect, this method samples the state-space in a regular grid-like
pattern, forming a graph. The time-optimal trajectory can be then obtained by finding the shortest path
connecting xinit and xgoal. Since the method does an exhaustive exploration of the state-space, it is only
applicable to low-dimensional configuration spaces.

Figure 6: Donald et al. (a, τ)-bang exploration approach results in a reachability graph with vertices arrayed
in a regular grid over the state-space; a one-dimensional case is shown above; edges have been drawn for
clarity, and do not reflect actual trajectories in state-space (source: [DX95])

[LK99] introduces Rapidly-expanding Random Trees (RRTs). This approach is similar to that of the expan-
sive space planner of [HLM99], in that it is bidirectional, growing a tree from the initial and goal states.
The key difference is that, instead of kinematically connecting the milestones using straight lines, short,
physically-simulated curves are used. The other salient point, the reason for the “rapidly-expanding” qual-
ifier, is that the stochastic choice of states for expansion is biased to give a uniform distribution over the

2This method bears much resemblance to the animation method of State-space Controllers [vdPFV90], discussed later.
3Since bang-bang control gives time-optimal motions, no other values need to be considered.
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state-space, thus leading to rapid discovery of Cfree. This is achieved at each iteration using the following
procedure for expanding a tree:

• choose a random state xrand with a uniform distribution the state-space
• find the nearest tree milestone, xnear

• forward simulate using all possible control values from xnear for some fixed duration ∆t
• pick the control value u that brings the character the closest towards xrand

• insert the resulting state, xnew, into the tree as a new milestone

xrand

xnew

xnear

xinit

Figure 7: Rapidly-expanding random trees: left: the tree expansion step illustrated; middle: the two trees
for a simple problem involving a non-holonomic robot; right: the solution found (source: middle and right

images are from [LK99])

[KL00] goes on to apply the RRT concept to purely kinematic problems and further proposes the “RRT-
Connect” algorithm to improve the planner’s efficiency. The limitation to kinematic problems again allows for
the use of straight line segments in connecting the milestones, which drastically simplifies the finding of xnew.
Further speedup is obtained by allowing the planner to take multiple time steps towards xrand, stopping
only when the random state is reached or an interposing obstacle is encountered. The authors speculate that
adapting this approach back to the kinodynamic domain should still produce an improvement, although it
is not yet quite clear how to do this.

A more difficult problem is that of kinodynamic motion planning within a dynamic environment. [KHLR00]
and [HKLR00] use an approach similar to probabilistic-roadmaps over the state×time space. This space is
just the regular state-space augmented with the dimension of time (i.e., state×time ⊆ R2n+1, where n is the
number of DOFs of the model). The C-obstacles from the state-space get extruded along the time dimension
into hyper-tubular shapes; if stationary, the C-obstacles extrude along a straight line, else along a curve
representing their motion. This space is explored using a tree of short simulations, much like in RRTs in
[LK99], using randomly chosen control inputs. [HKLR00] also applies the planner to non-holonomic vehicles.

For a wider overview of kinodynamic motion planning methods the interested reader is directed to [Kuf98].
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3 Animation methods

Animation methods have the potential to play a number of roles in the context of virtual actors. For
example, path-tracking algorithms can be used to implement the global motion path found by the planning
stage. More local aspects of the motion, on the other hand, such as reaching or waving, will require other
suitably-specialized methods. Furthermore, recent approaches do away with the two-stage framework by
combining planning and animation into a single simultaneous activity. In this section we thus review a wide
spectrum of animation methods. Figures 8 and 9 summarize known methods using two different classification
systems.

SCs

handmade

from footprints

auto-generated

animation

kinematic

dynamic

keyframing

motion capture

procedural

controllers

trajectory-based

Figure 8: Traditional taxonomy of animation methods.

A key distinction between animation methods, much like in motion planning, is whether they incorporate
the character’s physics. Dynamic animation methods work directly with the forces and torques at the
character’s muscles to effect changes in the character’s state, while kinematic methods simply treat the
motion as a geometrical transformation in time. Historically, the first animation methods were all kinematic
as these tend to be significantly simpler. On the other hand, they usually require a lot of effort to produce
natural looking motion for non-trivial articulated models. Dynamic approaches were developed in the hope
that this elusive “naturalness” would be derived automatically by restricting solutions to physically correct
motions. Unfortunately, this turns out to be insufficient; although much better solutions are produced, only
a very small subset appears natural. It is interesting though to note that, unlike robotics and related areas
which deal with real-world physics-abiding objects, computer animation does not need to strictly follow

virtual windup toys
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motion texturing
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motion graphs controllers
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motion shaping/editing
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Figure 9: An alternate classification of animation methods; here we classify animation methods based on
where the final motion comes from. The three extremities are: “from user input”, “from external repository
of motion data”, and “from algorithm”. The location of a few key methods are marked in this scheme.
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those laws; physics is merely a heuristic which roughly points in the direction of natural motions. Dynamic
methods therefore garner a fair amount current research effort.

3.1 Kinematic methods

keyframing

Keyframing has been the predominant animation method since the inception of computer graphics, and is
still the principal method for animating non-humanoid characters and objects. In keyframing the animator
provides keyframes, the defining character configurations at various moments in the motion, which are
then interpolated with a smooth curve, such as a B-spline. The allure of this method is that it poses a
relatively gentle learning curve for traditional media animators and cartoonists, allowing them to transfer
their long acquired skills and talent, and be able to start producing computer animations with remarkably
little additional learning effort.

One of the key advantages much appreciated by animators is that keyframing allows for arbitrary level of
control of the final motion, through the addition of further keyframes that refine the motion. This same
feature though is also a large disadvantage, in that complex motions require significant animator effort (i.e.,
large number of keyframes) to implement. Successful use of keyframing also requires a certain level of skill
and talent, which severely limits its potential user base.

Being the most ubiquitous, keyframing is the benchmark to which all other animation methods are compared.
Research generally focuses on new methods which require either less time or skill to use.

motion capture

One of the most popular methods for the animation of virtual humans and human-like characters is motion
capture (often abbreviated to mocap). Here, a human actor in a motion capture studio acts out the desired
motions which are captured using special recording instrumentation, and then mapped onto a virtual char-
acter. The motion can be recorded using a number of methods, such as magnetic sensors on the actor, or
by affixing reflective markers on the subject and then reconstructing the actor’s pose from a video of the
motion.

One of the key benefits of motion capture is that motions of all levels of complexity can be captured with equal
ease, and the results are completely life-like and natural. A comparable level of detail can be achieved with
keyframing only with inordinate amount of effort and animator talent. The approach does have a number
of disadvantages though. One downside is the financial expense of setting up such a studio and requisite
hardware. Also, the procedure requires a significant amount of pre- and post-processing, from the calibration
of recording equipment, to cleaning up of the results, which tend to have a significant noise component, a
side effect of the various recording technologies. Furthermore, the method is inherently limited to recordable
motions; clips of unacceptably dangerous stunts or physically impossible motions must be obtained by other
means, as must motions for characters for which no equivalent real-world actor can be found, such as fictitious
triple-legged creatures.

A shortcoming of motion capture data which has received much attention is its limited possibility of reuse.
Once a motion is captured it is generally only useful for mapping onto a virtual character with the same
dimensions as the actor. Also, should the animator desire a slight variation of a motion, the variant must
generally be recaptured from scratch.
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Starting in 1995, a flurry of papers appeared addressing this problem of motion editing. The most generic
approach was put forward by Bruderlin and Williams [BW95], which applies signal processing techniques
to motion curves. In particular they discuss multiresolution motion filtering, multitarget motion interpola-
tion with dynamic time warping, waveshaping, and motion displacement mapping. Of these, displacement
mapping has become very popular. It constructs the desired motion by calculating an error curve from the
user constraints and then adding it onto the original. This popularity is due to the wide applicability of the
method, as well as its beneficial property that, unlike the more obvious way of directly editing the original
curve’s parameters, the error curve can be arbitrarily (and thus differently) parametrized, in a way that is
more useful to the particular task at hand.

Others have at the same time proposed similar methods, but with more focus on particular applications.
Witkin and Popović [WP95] introduce “motion warping”, essentially a mix of displacement mapping and time
warping, and use motion blending to effect transitions between motion segments. Unuma et al.[UAT95], on
the other hand, further explore multiresolution motion filtering and manipulation by performing Fourier ex-
pansion on cyclical motion captured data. Motion interpolation, extrapolation, and transitions are achieved
by blending the Fourier coefficients. Furthermore, this paper shows how distinct styles or traits of motion,
such as “briskness”, can be characterized by taking the difference between the coefficients of a motion which
displays the desired quality and those of an average, unstylized, equivalent motion. Other motions can then
be imbued with the characteristic by adding on this difference.

Rose et al.[RGBC96] looks at generating transitions between motions for humanoids in particular. The
approach uses kinematic methods to compute the root position, special inverse kinematics for the support
limbs, and spacetime constraints (SCs), a dynamic method we discuss later, for the free limbs. Gleicher[Gle97,
GL98] uses SCs instead for motion editing through interactive user constraints. Here SC’s constrained
optimization methodology is used for finding the optimal parameters of a displacement map, one that will
result in the final motion best meeting the user constraints. Interactive rates are obtained by simplifying the
traditional SC approach: constraints capturing physical laws of motion are discarded, and a much simpler,
purely geometric objective function is used. This approach is further used in [Gle98] to addresses the problem
of retargeting a motion to a different character, although it is limited to differences only in link lengths, not
link skeleton structure. Most of the retargeting constraints can be obtained using various automatic methods,
such as a footplant finder, but in the end some have to be provided by the user. Nonetheless, these need to
be provided only once for a given source motion, and amount to little effort when compared to generating a
new motion from scratch.

Finally, Lee and Shin [LS99] propose a few improvements to interactive motion editing in [Gle97, GL98].
First, instead of using a single B-spline curve, the displacement map is represented by a hierarchy of B-splines.
Each one cumulatively improves the resultant motion, and allows for matching the requested constraints with
arbitrary, user-specified precision. Second, a much quicker way of calculating the displacement map is in-
troduced, thanks to the new representation. Instead of the constrained optimization of spline parameters,
a customized inverse kinematics solver is used to translate the user constraints (footplants, other end effec-
tor positions) directly to character configurations, which are then interpolated with the hierarchical spline
through the application of multilevel B-spline fitting techniques.

A particularly interesting, recent development is the use of motion capture data for texturing or enhancing
and enriching simplistic sketches of the desired motion [PB02], instead of being used for the final motion
wholesale. The sketched motion usually only describes a handful of the most important DOFs. It is broken up
into segments, which are then compared to similar chunks in the mocap database, and their most appropriate
counterparts are identified. Each sketch segment is then replaced by said counterpart. This has the effect
of “filling out” the missing DOFs’ data, as well as enriching the excessively smooth splines of the remaining
DOFs.
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procedural

Another approach to animation is through the use of relatively simple algorithms or procedures to directly
drive the character’s degrees of freedom. A trivial example of such a procedural approach is using a sinusoidal
function to drive the angular displacement of a pendulum. The procedures are often parametrized to allow
for variation in a certain aspect of the motion, such as direction or speed.

These procedural methods were the first animation methods due to the ease with which they are imple-
mented. Although still in use today for animating simple objects, or parts of more complex characters, their
deployment is very limited due to the difficulty and effort required to procedurally create more complex
motions. Nonetheless there have been attempts to employ this technique for human character animation,
such as [Per95]. Here, each actuated joint angle is driven by a combination of sinusoidal sources, with some
stochastic noise added in to give a less “computer-generated” look. The process of constructing and tun-
ing the expressions for the various DOFs is done by hand. Furthermore, motion transitions must be well
timed and constrained to occur only when the two motions are in compatible alignment to prevent utterly
unrealistic results.

3.2 Dynamic methods

Dynamic methods enlist the aid of physics in producing realistic motions. The character is modeled as a
dynamical system

ẋ = f(x,u, t)

where x is the state vector (see section 1.2) and u is the control vector, the set of inputs to all the actuators
of the character.

These methods can be roughly split into two types: trajectory methods and simulation-based approaches.
The trajectory-based methods work with the whole motion in the form of a curve through the character’s
state-space, usually employing optimization to iteratively improve the motion’s physical correctness and
naturalness. Simulation-based methods, on the other hand, employ either hand- or auto-generated controllers
that directly drive the torques at the joints, and employ forward physical simulation to generate the actual
motion.

trajectory methods

The most influential trajectory-based method was proposed in 1988 by Witkin and Kass[WK88]. They pro-
posed formulating character animation as a constrained optimization problem. The constraints are obtained
from a number of sources: the character’s structural limitations, such as allowable joint motion ranges or
acceleration bounds; its initial, goal, and possibly intermediate configurations; and most importantly, the
laws of physics. These constraints serve to circumscribe the set of acceptable trajectories through the state-
space, thus narrowing the choice of potential solution motions. As this still leaves a rather large selection,
optimization is used to pick out a solution that is optimal in some sense, as defined by the objective function.
It is common for these objective functions to measure motion smoothness or energy-optimality, and hence
they often contain terms such as

J =
∫ t1

t0

|ẋ(t)|2dt or J =
∫ t1

t0

|u(t)|2dt

These Spacetime Constraints (SC) can be used to produce a wide variety of interesting motions. Since this
method works with the whole trajectory at once, it inherently produces appropriate anticipation as well
as follow-through for jumps and bounding motions. Even if the problem is over-constrained by the user
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(e.g., physically impossible sequence of configurations to interpolate, or impossible time intervals between
them) SC can return the solution that is the closest to being physically correct, while satisfy the remaining
constraints.

The original paper [WK88] animates Luxo, a simple energetic lamp, through a number of relatively simple
motions. Unfortunately the SC method doesn’t scale very well to more complex characters, or more elaborate
motions. Cohen [Coh92] attempts to speed up the optimization by allowing the user to guide the process.
This is done by interactively varying the importance of the various constraints. Furthermore, an interactive
framework is proposed which also allows for the addition and modification of SCs. The user need not work
on the whole motion at once, but can focus and frame parts of it as individual SC problems through the use
of Spacetime Windows. These windows can comprise any or all DOFs of the character, and can extend over
any time-contiguous subset of the motion. Further speedup is achieved by representing the time trajectories
for the various DOFs as B-splines instead of a sequence of discrete values. This significantly reduces the
number of parameters to optimize: in the original approach each DOF contributes a parameter for every
frame of motion, while the latter often exposes only a handful of spline control points for each DOF’s curve.

The number of B-spline control points to use is a difficult choice. Picking too few may cause the curve
to be incapable of representing the desired motion, while picking too many causes unnecessary, expensive
computation. This has led to [LGC94], which proposes the use of wavelets to model the DOF motion; this
allows the use of the simplest possible curve for the basic motion and adaptively adding detail only where
necessary.

The SC approach requires an initial guess of the motion before optimization can begin, since these tend to be
implemented as local searches, and thus require some starting point. A bad guess for this motion can lead to
slow convergence. Furthermore, if the specified constraints allow for multiple visibly distinct motions (e.g.,
an underhand vs. overhead throw), the initial guess indirectly determines which solution is found. Ngo and
Marks thus propose a method [NM93] for generating these initial motions using a sensor-actuator controller
(this work is discussed later, in the physical controller section). A more recent and advanced approach is that
by Liu and Popović [LP02]. Here the user provides a rough and simplistic keyframed motion of the desired
result. The keyframes are usually incomplete, giving values only for DOFs which are particularly significant
to the motion. For example, keyframing just the character’s location (x, y, z) is enough for obtaining realistic
jumps. The system analyzes this simple motion, extracts various spacetime constraints, and then feeds them
to a SC optimizer. This adds the missing details to the motion in a physically correct way.

An altogether different trajectory-based approach was proposed by van de Panne in [vdP97], where the
animation is driven by the placement, timing, and duration of footprints. These can be either user-specified
or obtained from external sources, and, along with rudimentary dynamics and optimization on a simplified
model, are used to first establish a reasonable and physically plausible path for the character’s center of mass
(COM). The objective function in the optimization contains a term to encourage a comfortable distance
between the COM and the footprints. The final step in the process uses inverse kinematics to place the
character’s limbs at the footprints. [TvdP98] extends the work to the more difficult case of a quadruped by
modeling the character as a pair of mass points, one over the front and another over the back set of legs,
which are connected by a spring.

simulation-based approaches

A more direct approach to physics-based animation is to manipulate the character by explicitly controlling
the actuating forces and torques at the character’s muscles, and using physical simulation to obtain the
character’s motion. The manipulation is performed by a controller which embodies a set of rules, the control
laws, that aim to bring about a certain behavior, or set of behaviors, such as walking or balancing.

The use of a controller holds many advantages over trajectory based methods. Firstly, given a pre-fabricated
controller, the generation of motion is relatively fast: instead of iterative optimization, all that is needed is a
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single simulation using the control inputs calculated by the controller at each step of the way. Secondly, unlike
motion capture and trajectory-based methods which return an unparametrized and generally unmodifiable,
single instance of motion, a controller is applicable to a significant subset of the character’s state-space (i.e.,
capable of handling a large variety of initial states of the character) and is thus able to generate a whole
family of motions. The controller’s robustness is a qualitative measure of the region of state-space over which
it is applicable.

Although easy and fast to use, creating a controller, especially a robust one, is difficult and requires a fair
amount of physical knowledge and “feel”. With time it is possible to accumulate a large palette of controllers,
but unavoidably, at some point the animation desired by the user will fall outside its scope. In this case the
animator either has to forgo the motion, or design a new capable controller from scratch, something that
requires a large time investment, especially if the animator has to first develop the necessary skills. Methods
for controller design that do not require specialized skills or knowledge are still largely an open problem
which has attracted a fair amount of research; we will discuss these methods after looking at hand designed
controllers.

hand designed controllers

Initial work focused on hand design of controllers. This is a difficult and time-intensive task since making a
controller stable and capable of a desired motion requires much tweaking and careful fine tuning. A common
strategy for mitigating the difficulty of their design is to “divide-and-conquer” using functional and temporal
decomposition: designing a set of specialized controllers, each crafted for a singular task or motion type. Such
specialization not only makes the design process easier, but also tends to results in more robust controllers.
Character animation is then performed by employing the most appropriate controller for the given situation.

Early controller design efforts concentrated on statically stable models, such as insects. [MZ90] dynamically
animates a virtual cockroach using a two level approach. A gait controller synchronizes the timing of the legs
and the overall motion by executing low-level motor programs, routines which do the actual limb manipulation
by varying the rest positions of exponential springs. Inspired by biomechanical data, each leg is equipped
with an oscillator that triggers the leg’s transition between two alternating stages: step and stance. In the
step phase the motor program brings the leg up and over to a new foothold, while in the stance stage the
leg serves to keep the body supported. A further refinement is the use of reflexes to trigger a step early if
the foot is overextended or to delay the step if the leg still bears too much of the body’s weight. The results
correlate well with actual cockroach motion, and contain important features such as the emergence of wave
and tripod gaits as the oscillator frequency, and thus implicitly travel speed, is changed.

[RH91] tackles dynamic gaits of creatures. In particular, the paper describes controllers for a biped,
quadruped, and a single-legged kangaroo-like creature. The biped and quadruped controllers are a com-
puter graphics simulation of real hopping robots at the MIT Leg Laboratory. The use of hopping as the
basis for locomotion was motivated by the observed behavior of real hopping animals, ones that have efficient
gaits due to elastic ligaments that effectively capture some of the ground impact energy and release it on
the subsequent hop. This is modeled by using telescoping legs. Posture control is effected through applying
torques during leg contact with the ground, while speed control is achieved by selecting a touchdown point
behind or ahead of the neutral point4 (to speed up or slow down, respectively). The overall motion is driven
by a finite state machine (FSM). Biped motion is treated as if it was single-legged, with the idle leg kept short
and out of the way. All gaits of the quadruped, other than the gallop, pair up the legs, with each pair moving
in unison, and thus reducing the control problem to that of the biped. The method of pairing determines the
gait: diagonal pairing gives trotting while pairing front and back legs separately gives bounding. Galloping
is treated with an extended FSM, with extra states for the various leg-ground contact combinations.

4neutral point: contact point that results in symmetric body motion, or alternatively where the leg angle with respect to
ground is symmetrical between touchdown and liftoff
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Hand designed physical controllers for human-like characters first appeared in [HSL92]. Crude and planar
human models are made to pump a swing, ride a seesaw, juggle, and pedal a unicycle. Again finite state
machines are used for the overall motion, while spring-and-damper actuators provide the low-level control.
The swinging and seesaw scenarios associate a desired target pose of the character with each state of the
FSM, which the underlying spring-and-damper actuators attempt to match. State transitions are triggered
based on the character’s state. The FSMs for juggling and unicycle use less generic, hand-tweaked control
laws.

By 1995 human controllers have advanced significantly. [HWBO95] demonstrates controllers capable of
running, bicycling and vaulting for fully 3D characters. As in previous work, a cyclical state machine
representing the various stages of the motion selects which control laws to apply at a given point in time,
while inverse kinematics are used to select active limb placement, and spring-and-damper control is used to
achieve the resultant limb configurations. Limbs not directly involved in the motion are used for absorbing
disturbances and balance.

One serious drawback of hand designed controllers is that they are often very sensitive to the character model
being used. Varying body dimensions or mass distribution will frequently result in controller malfunction.
[HP97] introduces a method for automatically adapting controllers to such model variations. In a two stage
approach, a number of the controller’s parameters are first scaled and then optimized (only a small subset)
using simulated annealing. The technique is applied to running and bicycling controllers by adapting them
from an adult male model to one of a female and a child.

The problem of combining multiple specialized controllers into a “mega-controller” is addressed by [FvdPT01].
Faloutsos et al. describe a framework where a supervising controller delegates character control to a collection
of individual controllers based on the current state of the character as well as the controllers’ “pre-conditions”,
the regions of state-space which form acceptable entry points of each particular controller. The framework
is applied to a virtual stuntman, demonstrating recovery from shoves and other external stimuli, as well as
getting up after knockdowns, from various prone and supine configurations.

automatically generated controllers

One way to make creation of controllers more accessible to the general user is to offload most of the work
onto the computer. Progress in research in this area so far is mostly limited to simple characters.

An early approach introduced the concept of state-space controllers [vdPFV90]. Each such controller is
associated with a particular goal state for the character, and encodes the set of all time-optimal trajectories
leading to it from every conceivable starting state. This formulation leads to some interesting properties: a
controller with a goal state with nil velocities will bring the character to a stable stop at the corresponding
goal configuration, while one with non-zero goal velocities will result in a cyclical motion, as the character
time after time keeps overshooting the goal configuration. Interesting and useful motion can be produced by
creating a number of such controllers and allowing character control to switch between them progressively.
The controllers are generated with the help of dynamic programming and local optimization methods. Three
applications are presented: a pendulum, a car being parked with nearby obstacles, and Luxo, the lamp, doing
flips.

[vdPF93] presents Sensor-Actuator Networks (SANs), a structure reminiscent of neural networks, for discov-
ering a particular character’s modes of locomotion. The user provides the character’s structure, as well as
the type and placement of actuators and various sensors. The system then finds feasible locomotion modes
for the character using a generate-and-test method: at each iteration a random assignment is made to all
of SAN’s parameters, and the controller’s usefulness gauged. The metric used is the distance traveled in
a fixed amount of time. Only 1–5% of the tests result in useful controllers. These are then fine tuned in
a modify-and-test fashion, by repetitively applying a single step of gradient ascent or simulated annealing
on the SAN’s parameters, and immediately checking the controller’s new score. The approach allows for 4
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types of sensors: tactile, angular, length, and eye sensors. The last is particularly interesting as it allows the
creatures to “see” and track a follow point, which effectively allows the user to direct the character around.

The low incidence of useful controllers above, as well as the general observation that most interesting motions
(and useful controllers above) are cyclic, leads van de Panne et al. to use an inherently cyclical structure
in their “virtual wind-up toys” [vdPKF94]. The cyclic pose control graph is a finite state machine where
each state carries associated target pose for the character, to be matched using spring-and-damper PD
actuators, while each arc specifies the time delay before the corresponding state transition is executed. This
structure is similar to that used in [HSL92], although here state changes are triggered purely by elapsed
time rather than the character’s state. Particular controllers are created using the generate-and-test and
modify-and-test techniques from [vdPF93]. Interestingly, although this open-loop system lacks feedback, it
can create interesting behavior such as period doubling, or even chaotic motion. The method is applied
to a planar Luxo and a virtual cheetah. [vdP96] extends the approach to 3D, allows the optimization of
state durations, linearly interpolates between a number of specific controllers to obtain parametrized ones
(e.g., interpolating between “running” and “walking” controller parameters), and achieves aperiodic motion
through the unwinding of cycles of the FSM.

A key problem with local optimization of controller parameters is that the search space is rife with sharp
local minima (or maxima, as the case may be), which makes it very difficult to reward partial progress, and
thus to find the extrema. Inspired by the real-life example of a baby learning to walk with a parent’s helping
hand, [vdPL95] attempts to aid the optimization process by providing motion guidance through the use of a
“Hand of God” (HOG), a balancing external torque, which in effect reshapes the extrema to be more mild
and easier to climb. This technique is applied to the synthesis of a walking controller in a three stage process:
after a stable controller is found for the HOG-aided character, it is optimized to minimize the reliance on
this external support, followed by complete withdrawal of the “hand”. The last step is not always possible,
which is ascribed to some models simply not being capable of the desired gait.

Another nature-inspired approach to controller synthesis is the use of genetic algorithms. Ngo and Marks
[NM93] encode the character’s behavior as a set of stimulus-response pairs, where the stimulus is the subset
of sense space which triggers the corresponding response, a target configuration for the character. At each
time step of the simulation a single stimulus-response pair is active, dictating the character pose to be
matched by a kinematic method imitating a PD controller. New behavior variants are obtained through
gene crossover and mutation, which are then ranked by the fitness function, a measure of their suitability
(in this case, distance covered in a given amount of time). This global search approach has resulted in
some very interesting motions for some five link characters of various topologies: a 5-link chain, a 5-link
star, and a 5-link spine-on-legs humanoid-like creature. Sims’ virtual creatures [Sim94b, Sim94a] go one
step further by also allowing mutation of the character’s structure. The character is represented by an
arbitrary tree of rectangular solids. It is controlled by a neural-net-like structure, where the nodes of the
middle, “hidden” layer perform an operation chosen from a rather large repertoire, ranging from simple
summing and multiplication to integration and various types of oscillators. Some of the evolved motions
include swimming, walking, jumping, and light source following. Although the method produces some bizarre
and fascinating motions — and creatures! — the applicability of this approach is very limited since most
animation tasks already have a specific, non-negotiable character in mind.

4 Motion graphs

A promising animation method that is gaining attention recently is the motion graph, an entity that encodes
all available motions of the character, as well as the possible transitions between them, as a directed graph.
The power and usefulness of the construct comes from its ability to synthesize new motions of arbitrary length
and variety, simply by performing graph walks. Furthermore, many motion queries can be implemented using
graph path search methods. This paper devotes a separate section to this topic since the subject in general
has not been explored very much, and promises plenty of research opportunities.
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At its heart, the motion graph approach is kinematic, but various parts of it might be enhanced with
dynamics in actual implementations. There are two key areas to motion graphs: their creation, and their
application. The graph creation process finds transitions between motion clips, usually by only considering
the character’s kinematics. The original motion clips themselves can potentially come from a dynamic
process, such as simulation. The application is likewise mostly kinematic since selecting an appropriate
graph path and then pasting together the constituent motion clips does not require considering dynamics.
One of these two stages has to actually instantiate the transitions as motions between original motion clips.
Here one might see some dynamics, depending on the motion blending method employed (e.g., Spacetime
Constraint based techniques).

The general idea of the motion graph has already been in use in video games, under the guise of move-
trees [MBC01]. These are constructed by working out all the motion segments that will be necessary (e.g.,
steps of varying stride, turns of various curvature, different range jumps, etc.), recording them, and then
manually assembling a tree that captures possible motion successors for each segment. This is an extremely
time consuming task due to the exact timing and positioning constraints required to ensure that there is no
motion discontinuities (“popping”) at the transitions. Recent work in motion graphs focuses on automating
this tree/graph construction process.

Perhaps the most lucid implementation of motion graphs is given by Kovar et al.[KGP02]. In the graphs
proposed here, edges are associated with motion segments while graph nodes correspond to motion frames,
and thus character states, at which the character can choose from a number of subsequent motion paths. Any
walk of this graph produces a valid and continuous motion for the character. Queries for motions specified
with an initial and final character state can be easily solved by applying any “shortest path” algorithm. The
graph is constructed from externally generated motion data; in this case a single 78.5s motion capture of an
actor walking in various styles as well as performing karate moves. The key step to this process is identifying
pairs of points in the motion data at which the character is in a nearly identical state, and creating transitions
between them. Where the original motion data can be envisioned as a long string of frames, or a disjoint set
of such strings, these transitions are effectively shortcuts and detours that transport the character backward
or forward to a different part of the original motion string(s). This is illustrated in figure 10. The motion
frames forming the endpoints of the transitions thus become the nodes of the graph, while the node-delimited
segments of the original motion data, along with the transition motions, form the edges. [KGP02] goes on
to show one method of using motion graphs for animation: the graph is used to create a character motion
that best accommodates a user-specified path sketched on the ground. One distinguishing feature of this
work from the other motion graph approaches is that here the original motion data can be labeled with a
“style” (e.g., “walking”, “sneaking”, “karate moves”). This is used to give the user more control in getting a
desired motion by allowing the user to constraint various segments of the solution to a particular style or set
of styles. Unfortunately most third-party or older motion capture data is not labeled, and for large motion
data sets this could very well be quite time consuming to do manually. Automatic labeling of motion styles
is currently an open problem.

A far more extensive work on motion graphs appears in [LCR+02]. This paper applies motion graphs to
four environments: a maze, a “discretized” rough terrain, a jungle-gym playground, and a step stool on
the floor. Three different user-interfaces are provided for controlling motion generation: user-sketched path
on the ground plane, a vision-based performance method where the user acts out the motion desired, and
a “choice” interface in which the user is continuously presented with a preview of a handful of available
motions at that point in time. It should be noted that the method by Kovar et al.[KGP02] from above
is a subset of this work; it is equivalent to the “sketch” interface used in the “maze” environment. The
underlying structure used here to model the motion is a first-order Markov Process: a matrix Pij stores the
probability of transitioning from frame i to frame j, where each entry is computed based on character state
similarity. As this matrix is rather dense and requires O(n2) storage space, a number of filtering operations
are applied to make it sparse, such as pruning of entries below a user-specified probability threshold or
pruning when frames i and j have different ground contacts. This formulation has been inspired by work on
video textures[SSSE00], where it made a lot of sense; unfortunately it is somewhat awkward and cumbersome
as applied to character motion, and the approach would gain much in clarity if formulated as an equivalent
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Figure 10: In [KGP02], transitions can transport the character to other motion clips, as well as forwards
and backwards in the same clip. left: original motion clips; right: similar frames have been found and
transitions between them inserted, thus forming a motion graph

directed graph. A rough isomorphism is not hard to see: non-zero entries in Pij correspond to the transition-
type edges of the graph, the frames i and j for such entries constitute the nodes, and the remaining motion
data thus segmented makes up the remaining edges. A key difference with the Markov Process approach is
that the transition motions are not computed at graph/matrix creation time, but rather on the fly during
motion synthesis. Furthermore, the transition trajectories are not fixed: as transition points are encountered
in the synthesis stage, a trajectory that smoothly eases into the target motion is computed and buffered as
a sequence of frames. These are then used for the subsequent time steps, instead of immediately switching
to the target motion. If another transition point is encountered before the buffer is exhausted, the second
transition motion is computed from the current buffered frame. This inter-transition interaction can easily
result in a large number of transition motions, many more than the number of non-zero entries in Pij , which
would be difficult and expensive to precompute.

[LCR+02] also employs a second, higher layer for summarizing available motions, using statistical models.
All the frames are clustered into groups based on character state similarity, and each frame of motion is
then annotated with a cluster tree, the hierarchy of clusters accessible from the frame within some fixed
number of time steps. The purpose of these is to roughly capture the set of available distinct behaviors that
can be executed at a given frame. The main benefit of clustering is the limiting of the number of motion
choices presented to the user in the “choice” interface, as well as the improvement in efficiency in finding the
best matching motion in the vision-based interface; the sketch-based interface stands to gain little from this
extension, hence clustering is not used there.

Arikan and Forsyth [AF02] form the motion graph in yet another way: here the nodes represent whole input
motion clips, while the edges denote potential transitions between them. Loops (i.e., transitions between
frames in the same motion clip) are allowed and frequent. Each edge is annotated with the frame numbers of
the endpoints of the transition, as well as an associated cost computed by a similarity metric, reflecting how
much discontinuity would be introduced by the transition. Transitions with costs higher than a user-specified
threshold are discarded. Furthermore, a hierarchy of summarizing graphs is created to provide various
granularity levels. The original graph represents the finest granularity, while the coarsest level is obtained
by clustering of similar edges, which often appear in clumps due to strong similarity between consecutive
motion frames, and replacing each cluster with a single edge. The in-between graphs are obtained from the
coarsest by recursively splitting the clusters into two. The main reason for the hierarchy is to speed up
motion query evaluation which can first find a coarse solution using a smaller graph. Queries are specified in
the form of hard and soft constraints by the user. Hard constraints, such as frames to pass through, are met
exactly, while soft constraints are met as closely as possible by optimizing an objective function containing
said constraints. Solutions are found by applying a random search algorithm, whereby a handful of initial,
very coarse solutions are repeatedly mutated until the objective function reaches a local minimum. Multiple
motions may be found as the various candidate solutions mutate to different minima.
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method [KGP02]: transition clips connect similar frames in original data; frames at arc endpoints become
graph nodes

= motion graph node

method [AF02]: clips becomes nodes; edges describe possible transitions
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method [LCR+02]: a non-zero Pi,j entry signifies an available transition from frame i to frame j (the clips
have been serialized first)
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Figure 11: Comparison of the three implementations of motion graphs (equivalent graphs shown).
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4.1 Related approaches

The earliest predecessor of motion graphs was the “motion database” approach of [LvdP96], which demon-
strates Luxo, the lamp, traversing uneven terrain by drawing on a large collection of example motions,
picking the ones most useful for a particular terrain segment, and splicing them all together. The high
level planning is done using the decision-tree algorithm[HvdP96], by searching the tree of possible motion
sequences, to some arbitrary maximum depth, for the most appropriate line of action. The tree is built
recursively by appending as children all clips from the database whose initial frame approximately matches
the last frame of the parent motion. The key difference between motion graphs and this database method
is that the latter models elapsed time explicitly, which forms the depth axis of the tree; if that was to be
eliminated one would have a motion graph equivalent.

Another closely related approach is the use of statistical methods to model motion. The similarity is so
strong that it is often hard to judge which camp a given work belongs to. These statistical approaches
often use a graph-like structure to capture the connectivity of human configurations, but synthesize motion
based on the statistical properties of the input data rather than using the original motions themselves.
This sometimes results in motions which do not look very natural, are excessively smooth, and lack any
characteristic nuances from the original motion.

For example, [Bow00] describes a method whereby Principal Component Analysis (PCA) is applied to reduce
the dimensionality of the motion data, while clustering, and a secondary PCA on each cluster model the
data as a set of linear patches, similar in spirit to approximating arbitrary curves with a sequence of straight
line segments. The principal components of each cluster can thus be used to efficiently span the space of
possible character configurations within the locality of the cluster. Temporal behavior is modeled using
Markovian analysis; a probability matrix, similar to the Pij of the [LCR+02] approach, is computed based
on the inter-cluster transition frequencies. Motion synthesis is achieved by working out the most probable
cluster sequence using the probability matrix, and then interpolating between the exemplars, the mean
configurations of the corresponding clusters. This work has limited use since motion synthesis cannot be
controlled; one can only synthesize “the most likely motion” for the character, and even that is of limited
use as it is heavily biased by the contents of the training data.

[TH00] describes a very similar approach, with the key difference that the final motion is spliced together
from original motion clip segments. Once again PCA is used to reduce data dimensionality, a K-means
classifier subdivides it into K regions, and a Markov chain is used to capture inter-region temporal behavior.
The innovation comes in the second layer, a discrete output Hidden Markov Model, where the hidden states
are the various training motion clips, while the observed symbols are the region labels. Motion queries are
accepted in the form of an initial and goal keyframe. These are vector-quantized into their corresponding
regions, and a most probable region-path between them is computed. The Viterbi algorithm is used to find
out the most likely sequence of training motion “segments”5 which are then joined together using linear
interpolation over a small window at the segment junctions.

A related recent approach, that of motion textures [LWS02], chooses an interesting alternative: instead
of manipulating segments of training data, it works with motion primitives called motion textons, basic
building blocks of motion, which are implemented as linear dynamic systems (LDS). Each LDS attempts to
reproduce a fragment of the character’s motion; they are robust enough to be able to handle mild variation
in initial conditions. The LDSs also contain a Gaussian noise term to give slightly different behavior on
multiple invocations. A second layer again attempts to capture the global behavior of the character using a
texton transition probability matrix. Motion queries are specified as a two-boundary problem, with texton
endpoints. The authors claim that their LDS approach is superior to that of [TH00] as it allows for motion
primitive editing, yet further on they note that this editing is not very robust: the primitives can be edited
a limited amount before the texton becomes “contaminated”.

5“segment”: in the context of this paper, it is a portion of an input motion clip circumscribed by frames belonging to a
different cluster
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4.2 Key issues

A few factors and issues play a critical role in the creation of effective and useful motion graphs, and thus
deserve special attention.

relativity

A key design decision for a motion graph is whether a fixed coordinate system will be used, or whether all
motions will be defined relative to the character, at least in some DOFs. Figure 12 illustrates the difference
between the two graph types. In [LCR+02], for example, the jungle-gym and stepping stool scenarios use a
fixed coordinate system, while the maze and the rough terrain use a relative one6. As the authors point out,
this was done because handling obstacles in relative coordinates is difficult. This is a very important open
problem for motion graphs.

Figure 12: left: relative coordinate system motion graph; right: absolute coordinate system motion graph

The disadvantage of using fixed coordinate graphs is that, although flexible and simple, they contain a
large amount of redundancy: they frequently contain a number of motion clips which, for most intents and
purposes, are identical, other than the motion’s location and orientation. Conversely, a particular type
of motion recorded at one point of the workspace does not automatically allow the virtual character to
perform it in other parts of the environment; this can only be achieved by having the actor perform the
motion numerous times at different locations. A relative motion graph eliminates this redundancy, by always
storing motions in the character’s frame of reference.

! ?

?

??

?

?

? ?

Figure 13: left: obstacle (‘!’) avoided trivially in absolute coordinate system by removing colliding motions;
right: in relative system, there’s no way to know a priori which motions are going to collide

6only the character’s x and z coordinates are relative here (y is “up”)
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The difficulty of handling obstacles is illustrated with the simple example in figure 13. When working in a
fixed coordinate system, avoiding an“obstacle square” is trivial: all motions which would cause a collision
can be discarded at the outset, and thus any paths obtained from the reduced graph will automatically
be collision-free. In the relative coordinate system, on the other hand, depending on the knight’s position,
the obstacle square can appear at any of the available bearings. Because of this, there is no simple way
of discarding such colliding paths a priori ; the collision check must be made at each step of the planning
process.

state distance metrics

The key activity of motion graph construction is the identification and implementation of transitions. This
usually consists of three steps: using a similarity/distance metric to find pairs of “similar” states that are
to become transition end points, computing the transition, and finally correcting any constraints that were
broken, such as footholds or hand grasps. We begin by looking at the various metrics used.

Historically, the most common configuration similarity metric is the Euclidean, L2 distance. When comparing
states, temporal behavior (i.e., velocities) must also be considered. This has traditionally been achieved by
computing the metric as the sum of L2 distances over a time window: that of the two “similar” states, as
well as a handful of subsequent corresponding state pairs following them. Unfortunately, this metric rapidly
loses effectiveness as the dissimilarity of the two states grows. The main problem is that the L2 metric treats
all the state coordinates equally, which is rarely the case in reality: a variation of angle at a joint near the
character’s root almost always produces a dramatically larger displacement than the same variation made
to a joint near the extremities. A further complication is that the parametrization of the character’s state
is not unique; by varying the locale of the character’s root alone, one can produce an infinite number of
them. The L2 metric behaves differently under each parametrization, favoring certain state pairs under one
parametrization, different ones under another.

[KGP02] attempts to solve the latter problem by making the state parametrization irrelevant. The metric
is computed by summing L2 distances between corresponding pairs of points on the character’s body in
the two states. Each such “point cloud” would ideally be some downsampling of the mesh representing the
character’s body surface. Temporal behavior is captured using the same time window approach described
above.

[LvdP96] takes a similar route with its mass-distance metric. Again L2 distances between sets of body
points are used, but here they serve as a discretization of the character’s mass. Furthermore, each distance
is multiplied by the corresponding point’s mass before summing. This tends to give a more physically-biased
result, in general tending to give better (lower) scores for state pairs that would result in lower energy
consumption to physically perform the displacement.

The distance metric in [LCR+02] draws inspiration from [SSSE00]. Here, Pij , and thus the similarity of
frames i and j, is computed as

Pij ∝ e−Di,j−1/σ,

where
Dij = d(pi, pj) + wd(vi, vj).

σ is a parameter that controls the mapping from distance measure to probability, w is a weight factor for
the velocity distance term, d(vi, vj), which itself is just the L2 norm of the velocity vector difference, while
d(pi, pj) is the corresponding configuration difference norm that has special handling for the joint angle
components.
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motion blending techniques

Once a pair of nearby points have been identified on two trajectories, a transition is implemented, whether
through the creation of an additional trajectory or the modification of an existent one. Overall, most
of the motion graph work so far uses rather rudimentary methods for effecting transitions. [TH00] uses
plain linear interpolation of joint angles. [KGP02] employs an ease-in/ease-out curve to blend root position
and spherical linear interpolation (“slerp”) on the quaternion joint angles. [AF02] and [LCR+02] both use
forms of displacement mapping, which appears to be the most reasonable approach. Other motion editing
approaches mentioned in section 3.1 (“motion capture” subsection) would probably do as well. These give
satisfactory results for walking type motions, but there seems to be much room for improvement, especially
when other motion types are considered, such as jumps and other airborne maneuvers.

constraint fixup techniques

An issue closely related to motion blending is that of constraint fixup. Most blending techniques concentrate
only on the character’s internal joint angles, which makes it easy to break various constraints, causing sliding
footplants, ground penetration, broken hand grasps, etc. Although sometimes it is possible to ignore these
artifacts if they are small enough [AF02], most of the time some correcting strategy must be implemented.
[LCR+02] use constraint-based motion editing techniques [Gle97, GL98, LS99]. [KGP02], on the other hand,
employs a novel humanoid-specific inverse-kinematics method [KGS02] to correct sliding ground contacts.
The method is interesting in that it meets the constraints exactly through the lengthening or shortening of
the limbs as the final step of the process. Apparently human perception is not very sensitive to such limb
variations.

5 Open problems & potential avenues of research

In this section we explore open problems and potential research directions. The ultimate open problem
that has been mentioned throughout this paper is that of the virtual actor. Alas, this is a rather complex
topic that probably won’t be solved for quite some time, as it requires pieces which themselves are still open
problems. We describe them below, along with more generic problems that are particular to the various
research domains that have been discussed above.

5.1 Motion planning

Much like computer animation, motion planning can be considered to be still in its infancy. Although both
fields have yielded many results, these almost always solve a specific class of simplified problems. For motion
planning the major stumbling block has been the sheer computational complexity of applying common sense
algorithms to non-trivial characters. Randomized methods have to a certain degree mitigated the problem,
and we now have a firm, although not yet complete grasp of motion planning for a single character in static
environments.

A related problem which has received limited attention and yet is the natural next question is that of motion
planning of a number of cooperating characters or agents. Applications for such planners are numerous:
interacting or collision-avoiding robotic arms at assembly lines, maneuvering of parties of virtual characters
in video games or virtual environments, plane management on decks of aircraft carriers, etc.

These multi-body path planning problems can be solved on many levels, depending on the demands of the
particular application. For example, in the context of moving a cohesive group of objects, such as a party of
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virtual characters, the simplest approach would be to move one object at a time. If a relatively time-optimal
solution is desired, a very likely requirement for most real world applications, this approach is unsatisfactory;
even though each object on its own might move in a time-optimal method, the collective group move is far
from optimal. The desired solution should move all characters simultaneously, and somehow sequence their
passage through narrow passages or evenly distribute the characters over a number of the bottlenecks. This
leads to the consideration of character velocities, accelerations, and bounds thereupon. These key factors
shape and constrain the character’s motion, and thus their consequences must be taken into account in the
planning process. In the simplest case, if objects are all traveling at equal speeds, one can just stagger
character departures time-wise by sending each subsequent agent a small time interval after the previous one
has departed, thus giving a near-optimal solution. The problem starts becoming interesting and non-trivial
once the velocity bounds are allowed to vary between characters. The presence of velocity and acceleration
as key factors in the problem naturally suggests a kinodynamic motion planning strategy. A likely solution
to this, and the multi-body problem in general, is to use the spacetime roadmap method of [KHLR00], with
each agent carving out its own extruded path through the space. This still leaves a difficult constrained
optimization problem: the extruded paths must be geometrically fitted into Cfree, must not impinge on each
other, and their length along the time axis should be minimized.

Another sensible and straight-forward approach would be to reformulate the problem into a group of related
single-character planning problems, with each agent guided by its own path planner, while treating the other
agents simply as dynamic obstacles. This requires methods for dealing with unpredictable dynamic obstacles,
which itself is an unsolved problem. Some research, such as [KHLR00] deals with dynamic environments
but is often not general enough. The above, for example, is limited to linear motion obstacles whose future
position and orientation can be easily predicted. A promising first stab at a viable approach might draw
inspiration from real life and simply have the character wait a short interval when the planned path becomes
blocked, coming to a temporary stop if necessary. If the path obstruction is cleared within some time window,
the character can proceed with the old plan, else a new path should be planned based on the new freespace
topology.

5.2 Character animation

While the animation of passive objects, ones that are controlled only by external forces, is well understood
and considered solved, that for active objects, that employ internal forces and torques to direct their motion,
still remains an open problem. Although we have a multitude of methods for animating such objects or
characters, they are generally highly specialized and disparate. Achieving a large repertoire of motions thus
requires significant breadth in skill and knowledge, as well as much time and effort in adapting the methods
to interact well or combining their separate results. This is not only undesirable, but also puts animation out
of reach of the general computer user. Although the specialized methods would still serve a useful purpose
in particular applications, when working with animation in general one would ideally like a ”Grand Unified
Motion Model”, a single control parametrization and framework capable of producing all potential motions.7

Introspection suggests that we use something of the type in our daily lives: executing (and learning) an
arbitrary motion generally has the same feel and seems to follow the same process, whether it is a dance step
or a martial arts move. Finding such a parametrization is an open problem. DANCE[NF] is a step in the
right direction, as it attempts to collect and combine numerous simulation-based controllers, but is nowhere
near complete enough yet, and there is no single overall parametrization for generating motion.

Scrutinizing nature’s solutions to problems always offers some hints; it’s hard to beat millennia of evolution.
In probing nature for such a convenient unified model, we can make one observation immediately: considering
that all humans learn to walk, run, and perform similar tasks regardless of their mental acuity, it is likely
that such a parametrization would be relatively simple. The success of the hopping robots at MIT labs[mit],
even though for simpler characters, would seem to corroborate this. Another observation is that optimization

7This is intended mostly for whole-body motion; since the face and hands have very high degree of maneuverability, and
since their actions are an important part of certain tasks and motions, it is advisable to separate out their control.
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plays a key role in our control systems, something which a number of animation methods have already made
heavy use of. For example, after a baby is taught the sequencing of limb motions, it then requires prolonged
practice to become adept at walking; this is effectively optimization, at first for stability and robustness,
and later for energy efficiency. Changes in body parameters, such as attempting to walk on stilts, wearing
a heavy backpack, or fast growth during teenage years8, all immediately cause loss of optimality in motion,
which, after practice (i.e. again, re-optimization) is regained. Thus the general motion model might consist
of a control parametrization that has parameters itself (i.e., “meta-parameters”), which need to be optimized
for a specific character. Carrying the analogy a little further, employing teachers and trainers to accelerate
the learning of a task or technique corresponds to the use of supervised learning or guided optimization.

Further observation of human motion suggests one possible model: considering humans spend a large amount
of their waking hours on their feet, perhaps one could model their motion using an inverted pendulum. This
idea has been explored already in robotics, but has yet to make an appearance in animation, which is odd,
since the latter offers more possibilities. Unlike robotics, animation does not have to strictly stick to the laws
of physics; rules can be bent, or broken, if that is what it takes to get robust and convincing motion. For
example, while the torso is modeled with an inverted pendulum, the feet could be positioned kinematically in
the environment to roughly provide the forces and torques requested by the model. By further constructing
the pendulum from two telescoping links, the model could also express jumps and other airborne maneuvers.
An alternate approach might use the current configuration of the inverted pendulum model as a lookup index
into a database of motion capture data, and then using this to supply the motion of the remaining body
parts. This is in effect just motion texturing, although instead of using a user-specified sketched motion as
the base, one uses a pattern motion obtained from simulation on a very simple physical model. It should be
noted thought that the general concept of using simplified models has been already explored to some degree
for walking [RH91, PTDP96]. [vdP97, TvdP98] are particularly close in spirit to this idea, although the
underlying physical model there is much simpler, and a more direct and intuitive method of control would
be needed.

There are also countless open problems in specialized motions and controllers. When considering full-body
motions, we for example lack methods to animate certain motions, such as figure skating and ballet. Here, the
non-holonomic nature of skate motion makes the animation problem more constrained and complex than is
usual. Both skating and ballet also require a certain amount of grace, something a lot of methods, especially
controller-driven simulations, are not yet capable of reproducing. We also lack methods for animating various
object manipulation motions that involve skill or technique, such as soccer (ball manipulation), handwriting
(pen manipulation), sword fighting (sword/weapon manipulation), etc.

Another interesting problem is the animation of dressing and undressing. The difficulty lies in that the motion
is highly dependent on garment and body dimensions, possibly requiring drastically different motions when
either parameter changes. The problem can be formulated in an interesting way: the task of putting on
a shirt, for example, can be seen as motion planning of the hands, head and torso, while the shirt acts
as an obstacle, forming a dynamic environment. What’s particularly novel about this problem is that
here the obstacle (i.e., shirt) is indirectly under the planner’s control, through the interaction with the
character’s body, and its motion must be coordinated with the motion of the character to achieve the end
goal. Alternatively, both the character and the garment can be considered as two distinct agents, each under
the control of a separate planner, that must cooperate.

Motion specification is yet another large open problem. Current methods use either very verbose or very
limited interfaces. Some current methods use simple parameter selection, such as speed and direction. Others
accept an example, possibly incomplete motion which they try to match (e.g., acting out a desired motion in
[LCR+02], or simplistic keyframing of the motion in [LP02]). Neither seems appropriate for virtual actors,
where one would like to direct at task level (e.g., “walk to table”, “dribble the ball there and back”, “read
a book”, “dress yourself”, etc). The problem is twofold: how to translate such requirements to a form the
motion model understands, and how to convey this information in the first place, from human to computer.
It seems one should be able to do better than written or spoken English commands.

8The cliché of teenagers “tripping over their own feet” is telling.
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As motion capture equipment becomes easier and cheaper to obtain, it is natural to expect it to become more
widespread. A potential future application for this technology would be in video games in arcade shops as an
input device. One computation task that is bound to come into demand is “motion recognition”: inferring
what the person is doing from their motion data, whether, for example, they are waving, sitting down, or
playing air-guitar. By extracting the semantics of the player’s motions the computer can interact with him
or her on a much more abstract level. One particular difficulty of recognizing motions is that motion capture
data is rarely accompanied by the specification of the environment in which it was recorded. This makes
identifying some motions difficult. Consider a character sitting down: without any knowledge of whether a
chair is present or not, it is hard to tell whether the character is trying to sit down or just squatting. Other
uses for motion recognition might include auto-labeling of motion graphs. A motion graph so labeled, for
example with annotations such as “sitting down”, “waving”, etc, might go a long way in facilitating intuitive
direction of virtual actors, by allowing motion selection using such labels. Consider how much easier it would
be to execute the command: “go to location marked X, wave, and then sit down”.

Another interesting application of the above motion recognition would be in performing “behavior capture”.
By observing a subject’s motion and translating it into a sequence of tasks being performed, one can start
collecting statistical data on the overall activity. Again, this allows animation using primitives of a higher
semantic level. For example, one could characterize the behavior of an office worker using primitives “shuffle
papers”, “write memo”, “drink coffee”, “go for chat at water cooler”, etc. Behavior capture would also
extract the relative frequencies of these actions, as well as the observed transitions. One could then construct
a behavior graph, in the spirit of a motion graph, and thus animate such a virtual office worker on a much
more general level. The key difference between the two graphs is that the former deals with more abstract
primitives, whole actions (e.g., making a bed), whereas the motion graph will usually break up most such
actions into short motion segments.

Finally, an interesting open problem that is seeing significant attention is vision-based human motion track-
ing. Here the character’s 3D motion is extracted from 2D data. Since the popularity of motion capture has
given birth to a large variety of motion editing methods, and in view of the cost and burden of recording new
motion, the potential rewards of reusing the as yet untapped wealth of motion data in stock video footage
is irresistible.

5.3 Motion graphs

Since motion graphs are a relatively new field of study, there is a large number of unsolved problems. One
of the biggest problems is how to make the graphs more scalable. Current research uses relatively small
datasets, and little work has been done on coping with the curse of dimensionality when motion graphs are
applied to complex models, or when rich variety in available motions is required (i.e. many variations of
each motion). First, a method is needed for removing redundancy in the original motion data that is fed
to the graph creation process. More generally, one could develop a method to limit the density of motion
data in arbitrary parts of state-space; this would be useful for motion graphs created from unscripted,
arbitrary mocap data, where one is likely to encounter excessively frequent actions, such as walking. Further
redundancy can be eliminated by decomposing complex motion graphs into a number of smaller ones, each
dedicated to a particular, relatively independent body part. A likely decomposition would, for example,
have motion graphs for the upper body, lower body, face, and hands. For sections, such as upper and lower
body, which are not completely independent, the limited motion correlation could be later reintroduced using
heuristic methods.

One could also improve upon the time complexity of the graph creation process; in current methods it suffers
from being O(n2), since the motion transition points are found using a brute force approach, which will likely
severely curtail creation of very large motion graphs. Some sort of hierarchical spatial segmentation would
likely go a long way in reducing the number of comparisons that need to be made when performing this
search.
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Much work also remains that pertains to the use of motion graphs. General questions such as how to
effectively specify a motion query, or likewise, how to efficiently answer such a query, remain unsolved.
[LCR+02] proposes a few sensible query methods, each suited to a particular task, but further user evaluations
are needed to assess the effectiveness of these methods. The most intuitive interface presented therein is the
performance method, where the user acts out the desired motion. This approach is inherently unsuitable
for realtime applications, such as video games, since a certain amount (3 seconds, in the implementation
described) of the user’s motion must be captured before any reasonable decision can be made about what
motion to select from the graph. Other, more responsive, interactive methods should exist. A promising
starting point in this search might be previous work on character control using reduced DOF input devices
[LvdPF00] or virtual puppetry [OTH02].

A more challenging open problem is the handling of relative coordinate systems in motion graphs. The
main benefit of such graphs is that they encode the motions the character is capable of in a very compact
form, whereas the fixed coordinate system graphs contain much redundancy, in the form of repeated motions
at different locations of the workspace. The problem is particularly interesting in environments containing
obstacles. As has been observed in [LCR+02], the relativity makes a number of tasks more difficult, such as
avoidance or interaction with objects in the environment. Extending the motion graph to handle variable
slope terrain becomes even more complicated. Clustering of similar motions and other motion summary
methods likewise become harder to achieve, since the character’s relative context must now be taken into
account. This problem of relativity is really an instance of a more general one: how does one incorporate
and handle parametrized motions in a motion graph? Relative motions are merely ones with a variable
parameter for the initial values of the relative DOFs. A simpler parametrized motion that one might want
to include in the graphs is, for example, a jumping motion where the character’s altitude at the apex is
variable. Incorporating such motions is an important topic since the method could serve to further reduce
the size of motion graphs.

Another interesting open problem that is bound to attract attention in the near future is how to use motion
graphs in realtime, dynamic, and unpredictable environments, such as found in video games. Research so far
has only looked at offline planning of motions, where a motion is planned and then executed to its natural
end. Many games and simulations, on the other hand, have environments which change rapidly, causing
any longer-term plans to quickly become invalid. Furthermore, such dynamic environment applications will
frequently place the character in parts of state-space where there is no data. Handling this eventuality is
yet another open problem. Some obvious strategies for dealing with this include resorting briefly to physical
simulation until motion graph data is rejoined, or using on-the-fly motion editing to adjust existent motion
trajectories to the new circumstances.

As has been noted by Kovar et al. in [KGP02], some sort of auto-labeling of motion graph edges would be
useful. In their context, they were interested in stylistic labeling, with labels such as “walking”, “tiptoeing”,
“prancing”, etc. In fact, a more general auto-labeling scheme would be desirable. Allowing arbitrary labeling
of edges would likely go a long way in improving user interfaces for query specification, by allowing users to
constrain solutions to motions with particular labels. Some potential labelings that one might be interested
in are: speed, effort, smoothness, environmental parameters, etc. Some of these qualities constitute open
problems themselves; it is not obvious, for example, how to computationally measure effort or grace.

Most of the current motion blending and warping methods have been only applied in the context of human
earth-bound motions. These algorithms do not work very well when the character is airborne.9 Unless the
two motions are very similar, the blended motion often does not describe a physically correct motion. They
furthermore result in perceived actuation at joints that are not really actuated. How to compensate for these
blending shortfalls is not quite clear. Some inspiration might be drawn from work on human perception,
such as [OD01]. For instance, it sounds plausible that the blended motion could be sufficiently improved
by simply adjusting the character’s center of mass’ trajectory, such that it follows the familiar parabola. In
fact, an interesting future research direction is the design and execution of a series of experiments that help
determine what visual artifacts humans are sensitive in motion blends, thus paving a way to better blending
algorithms and related tasks.

9The only methods that should work relatively well are the SC ones as they directly incorporate physical laws of motion.
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A number of interesting applications of motion graphs bear investigation. Motion graphs, for example, might
be particularly suited to avalanche simulation. By encoding the dynamics of rock-like objects in a graph,
and relying on graph searches being faster than direct simulation, one could obtain avalanche like motion
and interaction at a fraction of the computation time. More generally, the topic of the interaction of multiple
motion-graph-driven characters is also worth further study.

One application that would be particularly interesting is the use of motion graphs for kinodynamic motion
planning. Some of the approaches in that domain, such as the seminal kinodynamic paper by Donald
et al.[DXCR93], in fact resemble motion graphs that use an absolute coordinate systems. But posing the
problem as the equivalent motion graph offers no advantages, since the graph likewise suffers from exponential
growth as the state-space area that it must span increases. The potential benefit lies in applying relative
coordinate system graphs to this problem, as the graph’s size is then independent of the dimensions of the
workspace. Unfortunately, trying to find graph walks that displace and rotate the character by particular
values can be shown to reduce to the Traveling Salesman Problem10. Nonetheless, perhaps one could employ
the various heuristic approximate methods that have been proposed for solving TSP. In fact, the recent
paper by Arikan&Forsyth[AF02] appears to be doing just that: a randomized graph search method is used
to find paths that interpolate the desired states or sets of states at the required time points. The application
presented therein is rather rudimentary, and it would be interesting to see this method applied to more typical
kinodynamic path planning problems, such as non-holonomic vehicle maneuvering, holonomic motion amid
moving obstacles, etc.

5.4 Dense motion graphs

The scant motion graph literature at this point deals exclusively with what amounts to sparse motion graphs.
That is, the motions composing the graph span a small portion of the character’s usable state-space11. Such
graphs in general will only be capable of producing motions similar in character to the training set. This leads
one to consider dense motion graphs (DMGs), ones which attempt to sample the character’s whole usable
state-space in a roughly uniform way, or at least a large part of it. How to construct effective dense motion
graphs in an efficient manner is an open problem that has received no attention yet. Direct exploratory
character simulation would seem to be the most natural way. It would likely be much faster to do this
through simulation rather than using a live actor since one can always add hardware to speed up physical
simulation while an actor is stuck in realtime.

Since the scalability issue is even more pronounced for dense motion graphs, additional methods of coping
with it will be required. One promising avenue is the use of “pruning functions”. In most DMG applications,
one will usually only be interested in a particular subset of all physically possible motions of the character.
For example, in a visualization package of a traffic simulator, one would generally not be interested in motions
in which the car and driver are airborne or upside-down. It is the role of the pruning functions to identify
and discard from the motion graph such unwanted states and motions leading to them. They ensure that
the graph contains only relevant motion data. In a lot of cases, developing an effective pruning heuristics
and criteria is a non-trivial problem [HvdP96].

A number of potential advantages of DMGs stem directly from the construction method, viz., exploration
using simulation. First and foremost, DMGs are particularly useful for characters or actions which cannot
be recorded using motion capture (e.g., fictitious three legged beasts, dangerous stunts, etc). Second, the
stochastic sampling and exploration automatically discover the character’s usable state-space. Furthermore,
if combined with a pruning criteria that reject falling motions or fallen configurations, the graph automatically
describes the part of state-space in which the character has dynamic balance. This alone could be useful,
and leveraged by other algorithms that currently use static balance checking. In addition, if such an external
algorithm found that its character is balanced dynamically but with the center of mass outside the support

10Private communication with Prof. Molloy, University of Toronto, 2002
11“usable state-space”: the portions of state-space which the character is able to reach during normal operation
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polygon, it could find out from the motion graph how to “rescue” the character, and bring it back to static
balance.

The “dense” aspect also makes DMGs a reasonable physical simulator replacement. Since a given motion
probably has more variations available in the dense graph, any interpolations are likely to be more correct.
Also, since the dense graph models the character’s motion capabilities more accurately in the areas of interest,
one should be able to answer interesting questions by using graph searches, questions like “find the minimal
energy walk cycle”, “how high can the character jump”, etc.

One of the critical areas of the DMG building process will be physical simulation. In order to get efficient
and thorough coverage of the state-space, an effective exploration methodology is needed. [DXCR93, LK99]
offer a few suggestions; generally this consists of alternating between picking random control inputs, and
forward simulating to discover new reaches of state-space from which to explore again. The behavior of
this exploration process highly depends on how the character’s forces and torques are generated. A very
popular method of actuating character joints is the use of proportional derivative (PD) controllers. A PD
controller implements the character’s muscles as spring and damper systems. When a goal angle (“setpoint”)
is set by a higher level control program, the controller exerts a torque that attempts to smoothly minimize,
and eventually eliminate the angular difference between current angle and setpoint. Although very simple
and easy to implement, the PD controller has some undesirable properties. The key problem is that, for
a single setpoint, the controller’s torque always follows an exponential decay curve to the new value. This
limits the behaviors the controller can express. One could obtain arbitrary torque curves by rapidly varying
the setpoint, but figuring out how to vary it such that a rich variety of torque curves is obtained is not at
all clear. Since in the end one is only concerned about getting random torque behavior when exploring the
state-space, a more direct method of generating torques would be appropriate. One promising approach is to
have the controller model the torque function directly with a spline, thus intrinsically allowing an arbitrary,
smooth shape. Random torque curves can be obtained simply by randomly picking the four spline curve
parameter values.

Furthermore, regular PD actuators are unrealistic in that all their motions are actuated. In contrast, in the
real world we often let gravity do as much of the work as possible, often using muscles only to control or stop
a passive motion already in progress. An interesting problem would be to develop a “smart-” or “lazy-PD”
controller that imitates this behavior, discouraging unnecessary energy expenditure. In this case, a higher
level control program would specify a joint setpoint, as well as a time-window in which to achieve it; the
controller would then remain passive until either the setpoint was in close proximity, or if it determined
that attaining the setpoint with passive motion is not possible in the allotted time. Such controllers should
produce more natural motion.
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