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Abstract The automated synthesis of motion for characters in
unstructured environments is difficult because it requires
The design of autonomous characters capable of planlving a planning problem subject to multiple con-
ning their own motions continues to be a challenge fetraints. Obstacles in the environment constrain the mo-
computer animation. We present a novel kinematic miien in an obvious fashion, as typified by a narrow pas-
tion planning algorithm for character animation whickageway in a cave. Other types of constraints include a
addresses some of the outstanding problems. The prciaracter’s joint limits, the requirements for balance and
lem domain for our algorithm is as follows: given @upport throughout the motion, as well as the character’'s
constrained environment with designated handholds amatural disposition for particular postures and motions.
footholds, plan a motion through this space towards soffileis set of complex, heterogeneous constraints motivates
desired goal. Our algorithm is based on a stochasbier use of stochastic optimization techniques in address-
search procedure which is guided by a combination iof this problem.
geometric constraints, posture heuristics, and distance-toNavigation in unstructured environments entails some
goal metrics. The method provides a single framewoplarticular challenges. Global and local solutions can be
for the use of multiple modes of locomotion in planningtrongly linked; the choice of a particular route towards
motions through these constrained, unstructured envirangoal is predicated on the route being viable every step
ments. We illustrate our results with demonstrations afong the way. Planning algorithms for such problems
a human character using walking, swinging, climbinghus require the ability to plan motions across both small
and crawling in order to navigate through various obstaced large time scales. A second challenge is that creat-
courses. ing motions involves both discrete and continuous deci-
sions. An example of a discrete decision is that of decid-
ing whether to step on or over an obstacle, or simply de-
1 Introduction ciding which of a finite set of possible hand-holds to use.
Once the contact points of a character with the environ-

The animation of human figures has been a challenge tfgnt have been chosen, the remaining decisions shaping
has seen the evolution of many tools, operating at a vdhe motion can be regarded as being continuous in nature.
ety of levels of abstraction. Many of the available meth- An example of the type of problem that can be solved
ods target the creation of specific motions in structur&y our motion planner is presented in Figure 1. The dia-
environments, such as walking on flat terrain. Howevéfam illustrates one particular solution obtained for a sim-
there are remarkably few methods which tackle the prale 10-link, 9-joint character, which is further depicted in
lems involved in making human figures navigate in confrigure 2. The small boxes on the obstacle surfaces repre-
plex, unstructured environments. Examples of this ty§éntgrasp pointswhich are points at which the character
of problem include a climber on a mountain face, a chil@ allowed to grasp, pull, or step on. These represent part

p|ay|ng on a jung|e_gym’ or a game character Craw“ﬁé the pI’Oblem SpeCification in our algorithm, as will be
through a tunnel. discussed later. This particular environment requires the

alternating use of four modes of locomotion in order to
L{mac|van } @dgp.utoronto.ca navigate towards the goal: walking, crawling, climbing,
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Figure 3: Moving a simple articulated robot in a constrained
environment.

problem is a strongly related problem: determine how to
move and orient a piano through a set of rooms and hall-
ways to a given goal location without getting stuck. As

shown in [3, 18], these types of problems can be effec-
tively solved using RPP techniques.

When applied to character animation, the basic RPP al-
gorithm is capable of generating free motions through an
environment between given start and end configurations,
as shown schematically in Figure 4. In order to produce
more realistic motions, we shall augment the basic RPP
algorithm in several ways. Grasp points are introduced
as a means of representing possible points of contact with
the environment, such as footholds and handholds. A fi-
nite state machine structure is used to represent particular
modes of locomotion, possible transitions among them,
Figure 1: An exemplary solution to an unstructured enviroras well as their relative preference. A posture correction
ment traversal. step is introduced at key points in the solution as a means

of modeling preferences for particular posture character-

and swinging. The solution also necessitates variation§Qfcs | astly, trajectory filters are added to ensure the flu-

these basic modes, such as walking up hills, stepping oGty of the final synthesized motion. In section 3, we shall
obstacles, and ducking the head when necessary. expand upon each of these additions in turn.

Our planner uses the randomized path planning (RPP)'he remainder of this paper is structured as follows. In
methods of Latombe et al.[3, 18] as a point of departusection 2, we describe related previous work. Section 3
This previous work deals with a class of robot motiodescribes the various elements of the motion planning al-
planning problems, typified by the example shown in Figorithm. Our results are presented in section 4, followed
ure 3. The problem statement for this example is to molg a brief discussion in section 5. The paper concludes
the three-link articulated figure from the initial configuwith some proposed future work in section 6.
ration, A, to the goal configuration, B, without colliding
with the constraining environment. The piano mover; .

2 Previous work

Many methods have been brought to bear on the problem
- of character animation. This variety stems in part from
the unique requirements of various applications such as
games, film production, and ergonomic analysis. The fol-
lowing review of previous work briefly touches on gen-
eral character animation methods and then focusses more
closely on character animation methods which emphasize
Figure 2: The 10-link, 9-joint character model used by our plarmotion planning.
ner. The numbers in the diagram enumerate the joints. While keyframing continues to be the mainstay of char-
acter animation, a variety of alternative kinematic and




studies. It allows the user to perform field-of-vision anal-
ysis, comfort assessment, as well as testing reachability.
It has been further outfitted with strength modeling and
collision avoidance, and is capable of grasping objects.
Developed at University of Pennsylvania, it is now a com-
mercial product[25].

The Jack system is particularly adept at solving the lo-
cal motion planning problems found in ergonomic stud-
ies. However, to the best of our knowledge, it does not
solve the particular problem being addressed in this work,
namely the automatic planning of global motions through
complex unstructured environments, exploiting multiple
modes of locomotion as necessary.

Similar work has been done in [16], where a framework
is outlined for animating autonomous agents. It allows
virtual humans to navigate and carry out high-level tasks
in a realtime environment. Motion is generated by using a
simple 2D planner to construct a collision-free trajectory

Figure 4: Contact-free motion planning through the overhead-view of the environment, which is
subsequently fed to a path-following controller. This con-
dynamic methods exist. Several kinematic methods &¥eller assembles the final motion by modifying and com-
dedicated specifically to producing human walking[4] dyining motion capture data. The main difference between
running[6] gaits. Other walking and running methods erthe Jack system and this framework is the latter’s use of
ploy a hybrid mixture of kinematics and dynamics[5, 9)isual feedback, the character’s field of view, in the plan-
Lastly, dynamic simulations have had some success inég process.
producing human walking[17] and running[22, 11] gaits. The robot motion planning work of Latombe et al.[3,
In general, all of these methods are thus far restrictedii8] proposes the use of the randomized path planning
well-structured environments. (RPP) method and is the starting point for our character

Spacetime constraint methods[28] and their subsequeattion planning algorithm. The RPP method has many
variations offer promise in that they can readily incorpdenefits: it is among the fastest known methods for solv-
rate a mix of hard and soft constraints on a motion. Byg constrained motion planning problems, and it scales
using appropriate simplifications for the physics, it hagell with the complexity of both the object and its envi-
been shown that the principles of trajectory optimizaticwnment.
can be applied to animating bipedal[27] and quadrupedalThe RPP algorithm has been extended to deal with 3D
characters[24]. manipulation tasks in [14], which focusses on the cooper-

A different set of techniques offer the capability tative multiarm manipulation of objects and is suited espe-
make flexible use of motion capture data by allowsially well to tasks which require regrasping of the object
ing various transformations to be applied. In relativelyeing manipulated. However, problems of locomotion are
simple, unconstrained situations, smooth deformatiomat addressed in this or previous RPP work.
of trajectories can be used to meet particular keyframeThe Motivate 3D game system[8, 15] is a commer-
constraints[29]. More sophisticated methods can furthgal 3D game development system which aims to address
take contact constraints and character proportions ig®me of the same motion planning issues as we do. How-
account[10, 13, 23], and more recently, also the physer, as a result of the stringent requirements of games,
ical correctness of the motion transformation[21]. Yefoth the goals and the methods employed differ from the
other methods apply signal processing methods to mgork we shall present. The Motivate system, much like
tion data in order to capture and modify particular motiofiany game engines, places the emphasis on real-time
characteristics[1, 7, 26]. character animation at the expense of motion continuity

The Jacksystem[2, 20, 19] is a system which aims tand planning sophistication, as the real-time requirement
solve motion planning problems closer in nature to th&a must for game playing environments. It also addresses
ones we address. The Jack system is a complex, muitiject manipulation, which we do not address. Motions
faceted system designed in part to perform ergononaie synthesized in the Motivate system by making liberal
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As its name would imply, the planner core is central to the

motion planning process. It acts as an arbitrator and scribe
for three possible sources of motion sequences: (1) the lo-
comotion mode finite state machine, (2) a gradient descent

' single step, and (3) the random walk generator. The finite
state machine is always consulted first. If it cannot pro-
- - _ _ _ _ ___ vide a motion segment, then the gradient descent module
, is queried. If this also fails, as in the case of a local mini-
gradient descent
step mum, then the planner core falls back on the random walk
generator. The core iterates through this process until the
random walk .
generator goal is reached.
Y In addition to invoking a motion source and concate-
backiracker nating the results to the developing solution trajectory, the
planner core planner core can also decide to backtrack. Backtracking
is employed in situations where the current motion plan
—==% ==\ is perceived to have reached a dead end. In this case the
||  wholebody I planner rolls back the current motion plan to a stochasti-
trajectory filter . .
I i | cally chosen backtracking point and then restarts the plan-
| ‘ limb trajectory filter \I ning process from there. The conditions under which
N g ——— the backtracking procedure is invoked will be described
shortly.
Figure 5: Overview of our motion planner. 3.2 Gradient descent

use of a form of motion warping to adapt motion instancddie gradient descent process provides the means to drive
retrieved from a ‘skills’ database to the specifics of tHbe character towards the goal configuration. Our imple-
current situation. mentation of this particular process generally follows that
presented in the original work on randomized path plan-
ning (RPP)[3, 18]. A single gradient descent step makes
3 The motion planner a small change to theonfigurationof the character such
that the character moves closer to its goal configuration.
Our motion planner can be described in terms of five ifthe configurationg, of a character is a complete specifi-
teracting components, as shown in the block diagramazition of all the degrees of freedom, typically consisting
Figure 5. In this section, each of the components of tbéthe 2D or 3D location of the root of the character in
planner is described in turn, although we shall on occgpace, the Euler angles specifying the subject’s general
sion refer the reader to [12] for particular details and parientation, as well as all the internal joint angles of the
rameter values that will be of use in precisely reproducicharacter.
our results. Computing a motion towards the goal first requires
Grasp points are a fundamental concept throughout @lgfining a distance-to-goal metric, which we shall refer to
motion planner. These are an enumerated set of poimtsre formally asP(q), the configuration-space potential
of the environment which may be used as footholds famction[18]. P(q) thus computes a scalar value repre-
handholds by the character. Given an environment, gragmting the remaining distance to the target or goal config-
points can be designated manually, or through an autmation,gq-4c:. There are many possible ways of defining
matic process. Three types of grasp points exist: loaldistance-to-goal function. One simple possibility is to
bearing, pendent, and hybrid. Generally, the first repiteack the positions of a collection abntrol pointsplaced
sents a potential foothold, the second a potential harmhthe character. The sum of the geometric distances be-
hold, and the last can be used as either. The job of tineen each control point in the current configuratign,
motion planning algorithm is to find a natural sequence ahd the target configuration;,.q.: then defines our dis-
grasp-point-to-limb pairings which the character can usance metric. This metric is more meaningful than simply
to move towards the goal configuration. computing a norm ofy — ¢:qr¢¢¢|, @s such a difference of



configurations contains both linear and angular measusé®ints after each stochastic choice’af.

which cannot readily be combined in an even-handed way.

However, this metric does not take the environment into

account in any way. A better solution then is to use tt3 Random walk generator
shortestree-spaceath between each control point in its ) ) )
current and final configurations as a substitute for the gat€ 9gradient descent process is prone to becoming
ometric distance. In our implementation, we use only of@PPed in local minima, given the potential complexi-

control point that is located at the character’s center ##S Of @ human figure moving in its environment. As
mass. in [3, 18], we employ random walks to escape these lo-

. he sh ¢ hb cal minima by applying Brownian motion to the charac-
Qomputmg the s orte;t ree-space p'at etween WP configuration for a prespecified duration. Given that
points in a complex environment remains a non-trivigl . first such attempt may not lead to success, the ran-
subproblem. For this, our algorithm relies on a discre m walk may be performed a number of times. For a
ellp.proxmauon, similar to that n [18], W,h'Ch can be eft'horough discussion of Brownian motion in the context of
ficiently computed as follows. First, a binary-valuet ppp \ye refer the reader to [18, 3]. Our implementation
cupancy maps created 'by using an axis-aligned grid 8¢y yandom walk is as follows: at each step of the walk
uniformly divide the environment into a set of rectangulaf, . \rrent character CoNfiguration= (gu, .., q;, -, qn)

. ) s @y s Qn
celis. A cell in the occupancy map is markeduccu- is modified such that each coordingiehas a uniform

pi_edif more than hal.f of the cell is free space. OtherWiS%hance §) of being either increased, decreased, or left
itis marked asccupied The occupancy map is then useE{naltered. If the resulting configuration results in a colli-

to compute & correspondlmt‘[;s.tance mapwhich for each sion with the environment then we discard this choice of
cell stores the Manhattan distance through freespac try again. The amount of increase or decrease in each

the cgll_ containing the target control point (i.e., the ce& ordinatej is uniformly distributed ovefo, Aq; ), where
contal_nmg the (_:hara(_:ters center of mass When the Chﬁrdj are precomputed maximal values that ensure that the
acter is in configuration.,4.¢). The distance is mea-

the character does not penetrate obstacles in the transition
sured as the number of free-space cells that need tob%‘?vveen the two configurations

traversed, using 4-connectivity, in order to reach the tar-In the case of deep local minima this tactic can some-

get_ cell. The distances can be eff|C|_entIy Cqmputed_ USies still prove ineffective. We therefore resort to back-
a simple form of dynamic programming, which manifests

itself as a wavefront expansion algorithm in this case racking, as outlined in the RPP algorithm [3, 18] to deal
P g " with this situation. Backtracking consists of restarting the

Given the potential field”(¢) as computed above, Weplanner at an earlier point along the solution trajectory
need a means to take a step in the direction of the gradiggnputed so far. The restart point is chosen randomly
of this fleld,VP, in order to move our character towardﬁ"th a uniform distribution over the domain of all ran-
its goal. Because of the high dimensionality of the cogomly generated configurations in the current solution,
figuration space and the numerous possible ways in Whi@ ones derived from a previous random walk. One rea-
collisions can occur with the environment, using an angon for choosing from these is that the complement of this
lytic computation forV P is infeasible. Instead, the RPRset consists of configurations generated by a gradient de-
method evaluate® (¢ + Ag) for a number of stochasticscent; these configurations are more likely to lie near lo-
choices forAq. The choice associated with the largesfal minima since each gradient descent unfailingly ends
collision-free decrease in value of the potential fighlis in one. By choosing from the randomly generated set we
accepted and the next gradient descent step can procgfgefore increase the probability of a successful escape.
As will be described shortly, additional mechanisms pr@gno random walks have yet been undertaken, we use the
vide means to escape local minima. whole solution as the domain for randomly choosing the

The gradient descent step as described thus far cariestart point. Once the character is placed in the restart
be directly applied to character animation, given that aggnfiguration, a new random walk is performed so that
kind of locomotion requires maintaining contact footholtiopefully the character is placed on an alternative slope of
and handhold constraints with the environment. To a#, one which will ultimately lead to a different path taken
dress this for single contact configurations, we rero@wards the goal. In general, the probability of difficult-
the skeletal description of the character at the graspi@gescape local minima is a function of the frequency of
point, allowing the contact constraint to be trivially ensub-character-sized inter-obstacle gaps, as well as the de-
forced. Additional contact constraints can be maintaingdee of environment confinement.
by invoking inverse kinematics to reinstate the given con-Figure 6 illustrates backtracking, using a free-space



Figure 6: Backtracking example (dotted line represents the backtracking operation)

motion for illustrative purposes. The character starts m
at configuration #1. It floats towards the cave, passing

through some configuration (#2), and ends up stuck in
a deep local minimum at configuration #3. A number
of random walks followed by gradient descents do not
yield any progress. The solver then backtracks, randomly
choosing configuration #2. A random walk is performed
which happens to succeed in escaping the local minimum
of the cave (resulting in configuration #4). The charac-C
ter continues using gradient descent until it arrives at the
goal, in configuration #5.

3.4 The locomotion mode FSM and heuris-
tics

All modes of locomotion, including walking, must con-

tinually acquire and release grasp points. Coming up with U

an appropriate model for this process is critical to the suc-

cess of the motion planning algorithm. A simple modelgure 8: The locomotion mode finite state machine; thicker

for acquiring new grasp points would be to do so wheseges indicated higher preference for transition

ever the opportunity arises, i.e., when a hand or foot is

sufficiently close to a new grasp point. In order to réegard for gravity and balance. Second, the character will

lease grasp points, an appropriate rule could likewise ty@ically move towards its goal in a haphazard fashion as

defined, such as “release when a grasp point is no longdesult of the randomized nature of the path planner. For

needed to support the character’s motion”. Figure 7 illugxample, the character may readily use an alternating mix

trates how this process works for a representative walkidghands and feet to ‘walk’ across flat terrain. As unnatu-

step. ral as this is for locomotion across flat terrain, it is worth-
The Simp]e regrasping procedure described abovevwgne noting that this kind of unstructured motion may

problematic in several respects, however. First, the motid® Precisely what is needed in the case of some complex,

produced is largely unnatural, resembling that of a shakypstructured environments.

yet-nimble contortionist leaning forward against the wind. The problems of unnatural and unorthodox motions are

The forward lean is a result of the configuration potentiatidressed through the use of heuristics and a locomotion

field P, which rewards any motion of the center of masnode finite-state machine (FSM), respectively. We first

towards its goal position. Thus, the motion displays littldiscuss the locomotion FSM.



Figure 7: The walking cycle; a) starting posture; b) after a few gradient descent steps; ¢) IK used to reach the next grasp point; d)
grasp switched to other leg and gradient descent continued

which modes of locomotion. The details of these heuris-

. . . tics can be found in [12].
Locomotion mode FSMFigure 8 shows the FSM, which

enumerates the currently available modes of locomotion [ walk | climb [ swing [ crawl |
and defines transitions and preferences among the various

. . balance . .
modes of locomotion. The edges of the FSM, whichrep- | nrightspine || o
resent transitions between modes of locomotion, have as- | |imb_counter || e
sociated with them a number of preconditions which must | comfy_limbs .
be met in order for the traversal to take place. The pre- headup .
conditions typically consist of a number of geometric con- handdown
straints that must be satisfied. The edges further specify | kneesdown .

a set of actions that are to be performed in the event of a
transition. These can be as simple as a single change of
grasp (acquisition or release), or in more complex cases
can consist of a sequence of regrasps and posture correc-
tions. In a limited number of situations, a form of back-
tracking may also be invoked. In all cases, the actions 8Bb  Motion filters
their resulting motion consist of the required changes to _ _ )
the character's posture needed to bring it into complianEB€ System described thus far produces results which still
with the dominant characteristics of the new mode of I§ave & serious flaw. The character's motion remains ir-
comotion. regular as a result of the stochastic processes used to opti-
Of particular note are the self-loops in the graph. Evdpize the character’s configuration with respect to both the

though these transitions return to the same Iocomotigir?tance to the goal and the set of posture heuristics. In

mode, they provide the necessary regrasping operatiéngrt' the motion emb_odies the history of the search pro-
which allow the character to keep advancing using tH ss used to produce it, and as a result, does not exhibit the

particular mode. The full details of the locomotion FS egree of anticipation and fluidity required to achieve nat-
are available in [12] ural motions. A separate process is therefore introduced in

order to cull any unwanted motion segments as well as op-
Heuristics In order to achieve more natural motions, wtimize the subsequent trajectory, thereby making it more
employ a system of heuristics to guide the character fiid. We refer to this process as “smoothing” or as “the
wards desired postures at key points in the solution. Wwtion filters”, and it is carried out on the intermediate
define these key points to be the time instances at whagiution produced by the planner. The smoothing algo-
any change of grasp occurs, this being mandated by thiBm we present is borrowed from the work on RPP[3],
finite state machine. Each heuristic analyzes the chaith modifications necessitated by the addition of grasps,
acter’s posture and provides feedback on one particudarwe shall now explain.
property or characteristic, returning a value ranging from The smoothing process works by attempting to replace
1 to +o0, 1 being optimal and-oo being unacceptable.portions of the trajectory with a linear interpolation be-
Multiple heuristics are combined into a singlsscomfort tween the starting and ending configurations of that tra-
functionin a multiplicative fashion. To correct a charjectory segment. This strategy works well in smoothing
acter's posture we employ a stochastic gradient desciv@ motion of a free object through a constrained environ-
procedure, much like that employed for the configurationent, but linear interpolation of joint angles leads to direct
potential. Table 1 describes which heuristics are used fdolation of grasp constraints in the case of character an-

Table 1: Heuristic usage by locomotion modes.



input path
‘IIIIIII“IIIIIIII

7 v 7 "key" poses
IIIII‘III{IIII‘IIS\

/ \
/ N . B
/ ¢ AN limb’s
) *,/  configurations

3 linear interpolation . . .
| ii of limb Figure 11: A solution after smoothing (every 5th frame shown).
> 4 Results
Our implemented system is capable of planning motions
i K in complex constrained environments such as that shown
T T T TR in Figure 1. The problem specification for that particular
path with smoothed limb trajectories example consists of the starting configuration, located in

the bottom left; the target configuration, located in the top
Figure 9: The limb trajectory smoothing process; the limbight: the character model, as shown in Figure 2; and the
"key” points are ones where the limb’s grasping state is chang% lygon-based description of the environment, populated
with a large number of grasp points. The planned motion
requires 10-15 minutéso compute on a 266MHz Pen-
tium 1l machine, resulting in about 1400 frames.

Figure 12 shows snapshots from additional motion
plans computed by our algorithm and then rendered with
a more complex 3D character model. These were ren-
dered with the Poser 4 package, after importing the mo-
tion from our planner in BVH format, and applying it to
the default character. It should be noted that due to some
obvious fundamental differences between the geometries
of the two models involved, as well as some difficulties
presented by importing environment geometry into Poser,
the resulting animations exhibit some obstacle penetration

€and minute skating problems which are not present in the
original motion exported from our planner.

imation. Our smoothing process copes with this in threeF9ure 13 is an illustrative example for the synthesis
ways. First, smoothing is only applied to portions of th%f a _mOF'On tr_ansmor_l. The transition from ‘?"m_b'”g to
motion trajectory which have no change in grasp configf@king is an interesting problem, as the motion is highly
uration. Second, inverse kinematics are used in ordefcg@strained throughout the transition. As the solution
maintain the grasp constraints throughout the interpolaf@tPWs: the planner can successfully plan a plausible mo-
motion. Third, a second smoothing pass is applied indi2n Which satisfies the required constraints. -

pendently to each limb, one that only modifies the config-MIPEGS  depicting a sample of obtained solu-
uration coordinates which relate to the joint angles of thi@ns for various problems may be viewed online at
particular limb. This ensures that the motion of a limb eX{tP://www.dgp.toronto.edu/"macthesis '
hibits the desired anticipation in leaving one grasp point”S Figure 1 shows, our results to date have been ob-
and approaching another. Because the second pass t{@41§d for scenarios which pose 2D motion planning prob-
limb motions independently, changes in grasp configu!§Ms: This is not a general restriction of the planning
tions for the other limbs are irrelevant, which is not th@lgorithm, but rather a restriction of our current imple-
case for the first pass. The second smoothing pass igNEntation. The randomized path planning algorithm upon

Iustre}ted in Figure 9. Figures 10 ?—nd 11 show an examplegte that the compute time can vary significantly due to the non-
solution before and after smoothing. deterministic nature of the motion planner.

Figure 10: A solution prior to smoothing (every 5th fram
shown).
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Figure 13: Climbing example

which our planner is based has been shown to generabinel random walk, displaying significant amounts of the
well to planning motions in 3D environments[3, 18]. Wéatter.
expect that our character motion planning algorithm will

scale in a similar fashion. We plan to explore this isswgmitations The algorithm as outlined so far has a signif-
further in future work. The current 2D implementatiofcant limitation: if presented with an environment where
is still applicable to many interesting scenarios, given thgo or more paths lead to the goal, the planner will al-
2D nature of climbing a planar mountain face with graspost invariably take the shortest path. This is because the
points, or moving through an environment such as thatdlownward gradient of the potential field at the “fork in
lustrated in Figure 1. the road” will be always pointing in that direction. Other

paths might be taken only if they are roughly of the same

length as the shortest one, as this will cause the ridge-like
5 Discussion discontinuity in the potential field to be near the bifurca-

tion point, and thus possibly within reach of some random
In qualitative terms, the motion planner must solve sewalks.

eral types of problems. All locomotion modes must make This limitation can cause the planner to fail in finding

the necessary accommodations to cope with the available  ° . . .

. L . : Solution, even though one may exist. This can happen

grasp locations and variations in the environment. The

. .IT"a number of paths to goal are present, but the shortest

planner must determine when a change of locomotign . .

L one is not traversable, such as in the case when there are
mode is justified. The planner must then also synthesize

" ._InSufficient grasp points, they are of incorrect types, or the
the necessary transitions from one mode of locomotion ?o graspp y yp

. . : . .~ sJze of the passage is too small or inconveniently shaped.
another. The planning algorithm described in section : .
. evertheless, this problem could be resolved with modest
serves as a single framework for all of these problems.

effort. One simple solution would be to mark these “dis-

What makes the algorithm interesting is that it ml_’ﬁ[)vered dead-ends” as impassable when they are found,

t_read the line be_tween discrete a_nd continuous optimizgn ., e by a consequent adjustment to the potential field.
tion problems, given that the choice of grasps is discrete

while the remainder of the motion is continuous. Yet, Another minor limitation of our implementation is the
because choices in the continuous domain affect the didguation illustrated in Figure 14. We currently use a very
crete domain and vice versa, the algorithm must optimigenple 2-link inverse kinematic algorithm for attaching

a combined set of discrete and continuous choices. Timebs to grasp points. In the course of finding a solution
algorithm also exploits both deterministic and stochass@tuations may arise where the gradient descent module
methods; the FSM and heuristics belonging to the formpulls the character away from potential grasp points, and
and the core parts of the planner, such as gradient destleatsimple IK is unable to compensate. Employing a full



Figure 14: If the overhang is missing (dashed line), the planner
tends to get stuck since the character is pulled towards the upper
left, away from the grasp points it should be using.

IK engine would solve this problem.

Complexity The above observation results in the catego-
rization of all possible problems into two typesormal
andunworkable All problems belong to the former ex-
cept those that cannot be solved due to the untraversabil-
ity of the shortest paths, which then belong to the latter
category.

When operating on a normal problem, the planner is
probabilistically complete, much like RPP. That is, if the
problem has a solution, the planner will find it given suf-
ficient amount of time, which could be arbitrarily large.
The ubiquitous randomness in the planner and the ever-
present option of backtracking ensure the possibility of
hitting upon just the right trajectory at some point in time.
In the unworkable case, our current implementation will
never find the solution, and is thus incomplete. If the lim-
itation is remedied as outlined above, the planner would
then most likely be probabilistically complete in this case
also.

Operational intuition The planner’s progress varies with
the type of motion it is currently working on. We have
found that transitions between locomotion modes, such as
from climbing a wall to walking, tend to be the bottle-
necks. This is understandable as they are the more con-
strained and, in general, difficult part of the problem. In
many cases though, therermichpotential for improve-
ment through better formulation of the edge preconditions
and actions for a given transition.

Figure 12: Snapshots from several animations. 10



The random walk operation plays a much smaller ralkat the playback speeds change in a manner appropriate
in our planner than it did in RPP. This is because it te the situation.
not allowed to acquire or release grasps. With the characA minor limitation in our planner is that only the hands
ter anchored to the environment in this manner, the raamd feet are allowed to grasp. Although this is typically
dom walk’s ability to wander the configuration space sufficient, there are motions which require more complex
severely limited. It now mainly serves in escaping locgrasps. Two examples of this are the using the posterior
minima in the discomfort potential field, when the chaas a support when sliding on the floor, and the leaning
acter’s posture is being corrected. of the back and shoulders against a wall when wriggling
An abundance of grasp points does not adversely affapta narrow crevice. These types of motions cannot be
the planner. Mincing steps are avoided by incorporatingeenployed by the planner at this point in time.
“preferred stride/handspan length” in the appropriate edgeFurther improvements in the planner could be obtained
preconditions, or by implementing the edge actions inbg the judicious use of machine learning algorithms in
greedy manner. Inconveniently placed grasp points do ratious parts of our method. Some obvious applications
affect the planner very much either, other than lengtheninguld be the optimization of calibration values in the vari-
solving time; if a set of grasp points is traversable, bactius heuristics, as well as the memorization and prediction
tracking ensures that it will be traversed at some pointdrf postures in commonly occurring situations.
time. By the same token, the planner can never commit it-
self to a dead-end path — the above-mentioned path fork
limitation aside — since everything may be rolled back.References
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