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Abstract

The design of autonomous characters capable of plan-
ning their own motions continues to be a challenge for
computer animation. We present a novel kinematic mo-
tion planning algorithm for character animation which
addresses some of the outstanding problems. The prob-
lem domain for our algorithm is as follows: given a
constrained environment with designated handholds and
footholds, plan a motion through this space towards some
desired goal. Our algorithm is based on a stochastic
search procedure which is guided by a combination of
geometric constraints, posture heuristics, and distance-to-
goal metrics. The method provides a single framework
for the use of multiple modes of locomotion in planning
motions through these constrained, unstructured environ-
ments. We illustrate our results with demonstrations of
a human character using walking, swinging, climbing,
and crawling in order to navigate through various obstacle
courses.

1 Introduction

The animation of human figures has been a challenge that
has seen the evolution of many tools, operating at a vari-
ety of levels of abstraction. Many of the available meth-
ods target the creation of specific motions in structured
environments, such as walking on flat terrain. However,
there are remarkably few methods which tackle the prob-
lems involved in making human figures navigate in com-
plex, unstructured environments. Examples of this type
of problem include a climber on a mountain face, a child
playing on a jungle-gym, or a game character crawling
through a tunnel.
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The automated synthesis of motion for characters in
unstructured environments is difficult because it requires
solving a planning problem subject to multiple con-
straints. Obstacles in the environment constrain the mo-
tion in an obvious fashion, as typified by a narrow pas-
sageway in a cave. Other types of constraints include a
character’s joint limits, the requirements for balance and
support throughout the motion, as well as the character’s
natural disposition for particular postures and motions.
This set of complex, heterogeneous constraints motivates
our use of stochastic optimization techniques in address-
ing this problem.

Navigation in unstructured environments entails some
particular challenges. Global and local solutions can be
strongly linked; the choice of a particular route towards
a goal is predicated on the route being viable every step
along the way. Planning algorithms for such problems
thus require the ability to plan motions across both small
and large time scales. A second challenge is that creat-
ing motions involves both discrete and continuous deci-
sions. An example of a discrete decision is that of decid-
ing whether to step on or over an obstacle, or simply de-
ciding which of a finite set of possible hand-holds to use.
Once the contact points of a character with the environ-
ment have been chosen, the remaining decisions shaping
the motion can be regarded as being continuous in nature.

An example of the type of problem that can be solved
by our motion planner is presented in Figure 1. The dia-
gram illustrates one particular solution obtained for a sim-
ple 10-link, 9-joint character, which is further depicted in
Figure 2. The small boxes on the obstacle surfaces repre-
sentgrasp pointswhich are points at which the character
is allowed to grasp, pull, or step on. These represent part
of the problem specification in our algorithm, as will be
discussed later. This particular environment requires the
alternating use of four modes of locomotion in order to
navigate towards the goal: walking, crawling, climbing,



Figure 1: An exemplary solution to an unstructured environ-
ment traversal.

and swinging. The solution also necessitates variations of
these basic modes, such as walking up hills, stepping over
obstacles, and ducking the head when necessary.

Our planner uses the randomized path planning (RPP)
methods of Latombe et al.[3, 18] as a point of departure.
This previous work deals with a class of robot motion
planning problems, typified by the example shown in Fig-
ure 3. The problem statement for this example is to move
the three-link articulated figure from the initial configu-
ration, A, to the goal configuration, B, without colliding
with the constraining environment. The piano mover’s
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Figure 2: The 10-link, 9-joint character model used by our plan-
ner. The numbers in the diagram enumerate the joints.

A B

Figure 3: Moving a simple articulated robot in a constrained
environment.

problem is a strongly related problem: determine how to
move and orient a piano through a set of rooms and hall-
ways to a given goal location without getting stuck. As
shown in [3, 18], these types of problems can be effec-
tively solved using RPP techniques.

When applied to character animation, the basic RPP al-
gorithm is capable of generating free motions through an
environment between given start and end configurations,
as shown schematically in Figure 4. In order to produce
more realistic motions, we shall augment the basic RPP
algorithm in several ways. Grasp points are introduced
as a means of representing possible points of contact with
the environment, such as footholds and handholds. A fi-
nite state machine structure is used to represent particular
modes of locomotion, possible transitions among them,
as well as their relative preference. A posture correction
step is introduced at key points in the solution as a means
of modeling preferences for particular posture character-
istics. Lastly, trajectory filters are added to ensure the flu-
idity of the final synthesized motion. In section 3, we shall
expand upon each of these additions in turn.

The remainder of this paper is structured as follows. In
section 2, we describe related previous work. Section 3
describes the various elements of the motion planning al-
gorithm. Our results are presented in section 4, followed
by a brief discussion in section 5. The paper concludes
with some proposed future work in section 6.

2 Previous work

Many methods have been brought to bear on the problem
of character animation. This variety stems in part from
the unique requirements of various applications such as
games, film production, and ergonomic analysis. The fol-
lowing review of previous work briefly touches on gen-
eral character animation methods and then focusses more
closely on character animation methods which emphasize
motion planning.

While keyframing continues to be the mainstay of char-
acter animation, a variety of alternative kinematic and
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Figure 4: Contact-free motion planning

dynamic methods exist. Several kinematic methods are
dedicated specifically to producing human walking[4] or
running[6] gaits. Other walking and running methods em-
ploy a hybrid mixture of kinematics and dynamics[5, 9].
Lastly, dynamic simulations have had some success in re-
producing human walking[17] and running[22, 11] gaits.
In general, all of these methods are thus far restricted to
well-structured environments.

Spacetime constraint methods[28] and their subsequent
variations offer promise in that they can readily incorpo-
rate a mix of hard and soft constraints on a motion. By
using appropriate simplifications for the physics, it has
been shown that the principles of trajectory optimization
can be applied to animating bipedal[27] and quadrupedal
characters[24].

A different set of techniques offer the capability to
make flexible use of motion capture data by allow-
ing various transformations to be applied. In relatively
simple, unconstrained situations, smooth deformations
of trajectories can be used to meet particular keyframe
constraints[29]. More sophisticated methods can further
take contact constraints and character proportions into
account[10, 13, 23], and more recently, also the phys-
ical correctness of the motion transformation[21]. Yet
other methods apply signal processing methods to mo-
tion data in order to capture and modify particular motion
characteristics[1, 7, 26].

The Jacksystem[2, 20, 19] is a system which aims to
solve motion planning problems closer in nature to the
ones we address. The Jack system is a complex, multi-
faceted system designed in part to perform ergonomic

studies. It allows the user to perform field-of-vision anal-
ysis, comfort assessment, as well as testing reachability.
It has been further outfitted with strength modeling and
collision avoidance, and is capable of grasping objects.
Developed at University of Pennsylvania, it is now a com-
mercial product[25].

The Jack system is particularly adept at solving the lo-
cal motion planning problems found in ergonomic stud-
ies. However, to the best of our knowledge, it does not
solve the particular problem being addressed in this work,
namely the automatic planning of global motions through
complex unstructured environments, exploiting multiple
modes of locomotion as necessary.

Similar work has been done in [16], where a framework
is outlined for animating autonomous agents. It allows
virtual humans to navigate and carry out high-level tasks
in a realtime environment. Motion is generated by using a
simple 2D planner to construct a collision-free trajectory
through the overhead-view of the environment, which is
subsequently fed to a path-following controller. This con-
troller assembles the final motion by modifying and com-
bining motion capture data. The main difference between
the Jack system and this framework is the latter’s use of
visual feedback, the character’s field of view, in the plan-
ning process.

The robot motion planning work of Latombe et al.[3,
18] proposes the use of the randomized path planning
(RPP) method and is the starting point for our character
motion planning algorithm. The RPP method has many
benefits: it is among the fastest known methods for solv-
ing constrained motion planning problems, and it scales
well with the complexity of both the object and its envi-
ronment.

The RPP algorithm has been extended to deal with 3D
manipulation tasks in [14], which focusses on the cooper-
ative multiarm manipulation of objects and is suited espe-
cially well to tasks which require regrasping of the object
being manipulated. However, problems of locomotion are
not addressed in this or previous RPP work.

The Motivate 3D game system[8, 15] is a commer-
cial 3D game development system which aims to address
some of the same motion planning issues as we do. How-
ever, as a result of the stringent requirements of games,
both the goals and the methods employed differ from the
work we shall present. The Motivate system, much like
many game engines, places the emphasis on real-time
character animation at the expense of motion continuity
and planning sophistication, as the real-time requirement
is a must for game playing environments. It also addresses
object manipulation, which we do not address. Motions
are synthesized in the Motivate system by making liberal
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Figure 5: Overview of our motion planner.

use of a form of motion warping to adapt motion instances
retrieved from a ‘skills’ database to the specifics of the
current situation.

3 The motion planner

Our motion planner can be described in terms of five in-
teracting components, as shown in the block diagram of
Figure 5. In this section, each of the components of the
planner is described in turn, although we shall on occa-
sion refer the reader to [12] for particular details and pa-
rameter values that will be of use in precisely reproducing
our results.

Grasp points are a fundamental concept throughout our
motion planner. These are an enumerated set of points
of the environment which may be used as footholds or
handholds by the character. Given an environment, grasp
points can be designated manually, or through an auto-
matic process. Three types of grasp points exist: load-
bearing, pendent, and hybrid. Generally, the first repre-
sents a potential foothold, the second a potential hand-
hold, and the last can be used as either. The job of the
motion planning algorithm is to find a natural sequence of
grasp-point-to-limb pairings which the character can use
to move towards the goal configuration.

3.1 The planner core

As its name would imply, the planner core is central to the
motion planning process. It acts as an arbitrator and scribe
for three possible sources of motion sequences: (1) the lo-
comotion mode finite state machine, (2) a gradient descent
single step, and (3) the random walk generator. The finite
state machine is always consulted first. If it cannot pro-
vide a motion segment, then the gradient descent module
is queried. If this also fails, as in the case of a local mini-
mum, then the planner core falls back on the random walk
generator. The core iterates through this process until the
goal is reached.

In addition to invoking a motion source and concate-
nating the results to the developing solution trajectory, the
planner core can also decide to backtrack. Backtracking
is employed in situations where the current motion plan
is perceived to have reached a dead end. In this case the
planner rolls back the current motion plan to a stochasti-
cally chosen backtracking point and then restarts the plan-
ning process from there. The conditions under which
the backtracking procedure is invoked will be described
shortly.

3.2 Gradient descent

The gradient descent process provides the means to drive
the character towards the goal configuration. Our imple-
mentation of this particular process generally follows that
presented in the original work on randomized path plan-
ning (RPP)[3, 18]. A single gradient descent step makes
a small change to theconfigurationof the character such
that the character moves closer to its goal configuration.
The configuration,q, of a character is a complete specifi-
cation of all the degrees of freedom, typically consisting
of the 2D or 3D location of the root of the character in
space, the Euler angles specifying the subject’s general
orientation, as well as all the internal joint angles of the
character.

Computing a motion towards the goal first requires
defining a distance-to-goal metric, which we shall refer to
more formally asP (q), the configuration-space potential
function[18]. P (q) thus computes a scalar value repre-
senting the remaining distance to the target or goal config-
uration,qtarget. There are many possible ways of defining
a distance-to-goal function. One simple possibility is to
track the positions of a collection ofcontrol pointsplaced
on the character. The sum of the geometric distances be-
tween each control point in the current configuration,q,
and the target configuration,qtarget then defines our dis-
tance metric. This metric is more meaningful than simply
computing a norm on|q− qtarget|, as such a difference of
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configurations contains both linear and angular measures
which cannot readily be combined in an even-handed way.
However, this metric does not take the environment into
account in any way. A better solution then is to use the
shortestfree-spacepath between each control point in its
current and final configurations as a substitute for the ge-
ometric distance. In our implementation, we use only one
control point that is located at the character’s center of
mass.

Computing the shortest free-space path between two
points in a complex environment remains a non-trivial
subproblem. For this, our algorithm relies on a discrete
approximation, similar to that in [18], which can be ef-
ficiently computed as follows. First, a binary-valuedoc-
cupancy mapis created by using an axis-aligned grid to
uniformly divide the environment into a set of rectangular
cells. A cell in the occupancy map is marked asunoccu-
pied if more than half of the cell is free space. Otherwise,
it is marked asoccupied. The occupancy map is then used
to compute a correspondingdistance map, which for each
cell stores the Manhattan distance through freespace to
the cell containing the target control point (i.e., the cell
containing the character’s center of mass when the char-
acter is in configurationqtarget). The distance is mea-
sured as the number of free-space cells that need to be
traversed, using 4-connectivity, in order to reach the tar-
get cell. The distances can be efficiently computed using
a simple form of dynamic programming, which manifests
itself as a wavefront expansion algorithm in this case.

Given the potential fieldP (q) as computed above, we
need a means to take a step in the direction of the gradient
of this field,∇P , in order to move our character towards
its goal. Because of the high dimensionality of the con-
figuration space and the numerous possible ways in which
collisions can occur with the environment, using an ana-
lytic computation for∇P is infeasible. Instead, the RPP
method evaluatesP (q + ∆q) for a number of stochastic
choices for∆q. The choice associated with the largest
collision-free decrease in value of the potential field,P , is
accepted and the next gradient descent step can proceed.
As will be described shortly, additional mechanisms pro-
vide means to escape local minima.

The gradient descent step as described thus far cannot
be directly applied to character animation, given that any
kind of locomotion requires maintaining contact foothold
and handhold constraints with the environment. To ad-
dress this for single contact configurations, we reroot
the skeletal description of the character at the grasping
point, allowing the contact constraint to be trivially en-
forced. Additional contact constraints can be maintained
by invoking inverse kinematics to reinstate the given con-

straints after each stochastic choice of∆q.

3.3 Random walk generator

The gradient descent process is prone to becoming
trapped in local minima, given the potential complexi-
ties of a human figure moving in its environment. As
in [3, 18], we employ random walks to escape these lo-
cal minima by applying Brownian motion to the charac-
ter’s configuration for a prespecified duration. Given that
the first such attempt may not lead to success, the ran-
dom walk may be performed a number of times. For a
thorough discussion of Brownian motion in the context of
RPP we refer the reader to [18, 3]. Our implementation
of the random walk is as follows: at each step of the walk
the current character configurationq = (q1, ..., qj , ..., qn)
is modified such that each coordinatej has a uniform
chance (13 ) of being either increased, decreased, or left
unaltered. If the resulting configuration results in a colli-
sion with the environment then we discard this choice ofq
and try again. The amount of increase or decrease in each
coordinatej is uniformly distributed over[0,∆qj), where
∆qj are precomputed maximal values that ensure that the
the character does not penetrate obstacles in the transition
between the two configurations.

In the case of deep local minima this tactic can some-
times still prove ineffective. We therefore resort to back-
tracking, as outlined in the RPP algorithm [3, 18] to deal
with this situation. Backtracking consists of restarting the
planner at an earlier point along the solution trajectory
computed so far. The restart point is chosen randomly
with a uniform distribution over the domain of all ran-
domly generated configurations in the current solution,
i.e., ones derived from a previous random walk. One rea-
son for choosing from these is that the complement of this
set consists of configurations generated by a gradient de-
scent; these configurations are more likely to lie near lo-
cal minima since each gradient descent unfailingly ends
in one. By choosing from the randomly generated set we
therefore increase the probability of a successful escape.
If no random walks have yet been undertaken, we use the
whole solution as the domain for randomly choosing the
restart point. Once the character is placed in the restart
configuration, a new random walk is performed so that
hopefully the character is placed on an alternative slope of
P , one which will ultimately lead to a different path taken
towards the goal. In general, the probability of difficult-
to-escape local minima is a function of the frequency of
sub-character-sized inter-obstacle gaps, as well as the de-
gree of environment confinement.

Figure 6 illustrates backtracking, using a free-space
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Figure 6: Backtracking example (dotted line represents the backtracking operation)

motion for illustrative purposes. The character starts
at configuration #1. It floats towards the cave, passing
through some configuration (#2), and ends up stuck in
a deep local minimum at configuration #3. A number
of random walks followed by gradient descents do not
yield any progress. The solver then backtracks, randomly
choosing configuration #2. A random walk is performed
which happens to succeed in escaping the local minimum
of the cave (resulting in configuration #4). The charac-
ter continues using gradient descent until it arrives at the
goal, in configuration #5.

3.4 The locomotion mode FSM and heuris-
tics

All modes of locomotion, including walking, must con-
tinually acquire and release grasp points. Coming up with
an appropriate model for this process is critical to the suc-
cess of the motion planning algorithm. A simple model
for acquiring new grasp points would be to do so when-
ever the opportunity arises, i.e., when a hand or foot is
sufficiently close to a new grasp point. In order to re-
lease grasp points, an appropriate rule could likewise be
defined, such as “release when a grasp point is no longer
needed to support the character’s motion”. Figure 7 illus-
trates how this process works for a representative walking
step.

The simple regrasping procedure described above is
problematic in several respects, however. First, the motion
produced is largely unnatural, resembling that of a shaky-
yet-nimble contortionist leaning forward against the wind.
The forward lean is a result of the configuration potential
field P , which rewards any motion of the center of mass
towards its goal position. Thus, the motion displays little

climb

swing

walk

crawl

Figure 8: The locomotion mode finite state machine; thicker
edges indicated higher preference for transition

regard for gravity and balance. Second, the character will
typically move towards its goal in a haphazard fashion as
a result of the randomized nature of the path planner. For
example, the character may readily use an alternating mix
of hands and feet to ‘walk’ across flat terrain. As unnatu-
ral as this is for locomotion across flat terrain, it is worth-
while noting that this kind of unstructured motion may
be precisely what is needed in the case of some complex,
unstructured environments.

The problems of unnatural and unorthodox motions are
addressed through the use of heuristics and a locomotion
mode finite-state machine (FSM), respectively. We first
discuss the locomotion FSM.
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Figure 7: The walking cycle; a) starting posture; b) after a few gradient descent steps; c) IK used to reach the next grasp point; d)
grasp switched to other leg and gradient descent continued

Locomotion mode FSM: Figure 8 shows the FSM, which
enumerates the currently available modes of locomotion
and defines transitions and preferences among the various
modes of locomotion. The edges of the FSM, which rep-
resent transitions between modes of locomotion, have as-
sociated with them a number of preconditions which must
be met in order for the traversal to take place. The pre-
conditions typically consist of a number of geometric con-
straints that must be satisfied. The edges further specify
a set of actions that are to be performed in the event of a
transition. These can be as simple as a single change of
grasp (acquisition or release), or in more complex cases
can consist of a sequence of regrasps and posture correc-
tions. In a limited number of situations, a form of back-
tracking may also be invoked. In all cases, the actions and
their resulting motion consist of the required changes to
the character’s posture needed to bring it into compliance
with the dominant characteristics of the new mode of lo-
comotion.

Of particular note are the self-loops in the graph. Even
though these transitions return to the same locomotion
mode, they provide the necessary regrasping operations
which allow the character to keep advancing using that
particular mode. The full details of the locomotion FSM
are available in [12].

Heuristics: In order to achieve more natural motions, we
employ a system of heuristics to guide the character to-
wards desired postures at key points in the solution. We
define these key points to be the time instances at which
any change of grasp occurs, this being mandated by the
finite state machine. Each heuristic analyzes the char-
acter’s posture and provides feedback on one particular
property or characteristic, returning a value ranging from
1 to +∞, 1 being optimal and+∞ being unacceptable.
Multiple heuristics are combined into a singlediscomfort
function in a multiplicative fashion. To correct a char-
acter’s posture we employ a stochastic gradient descent
procedure, much like that employed for the configuration
potential. Table 1 describes which heuristics are used for

which modes of locomotion. The details of these heuris-
tics can be found in [12].

walk climb swing crawl

balance • •
upright spine •
limb counter •
comfy limbs • •

headup • • • •
handdown • •
kneesdown •

Table 1: Heuristic usage by locomotion modes.

3.5 Motion filters

The system described thus far produces results which still
have a serious flaw. The character’s motion remains ir-
regular as a result of the stochastic processes used to opti-
mize the character’s configuration with respect to both the
distance to the goal and the set of posture heuristics. In
short, the motion embodies the history of the search pro-
cess used to produce it, and as a result, does not exhibit the
degree of anticipation and fluidity required to achieve nat-
ural motions. A separate process is therefore introduced in
order to cull any unwanted motion segments as well as op-
timize the subsequent trajectory, thereby making it more
fluid. We refer to this process as “smoothing” or as “the
motion filters”, and it is carried out on the intermediate
solution produced by the planner. The smoothing algo-
rithm we present is borrowed from the work on RPP[3],
with modifications necessitated by the addition of grasps,
as we shall now explain.

The smoothing process works by attempting to replace
portions of the trajectory with a linear interpolation be-
tween the starting and ending configurations of that tra-
jectory segment. This strategy works well in smoothing
the motion of a free object through a constrained environ-
ment, but linear interpolation of joint angles leads to direct
violation of grasp constraints in the case of character an-
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Figure 9: The limb trajectory smoothing process; the limb
”key” points are ones where the limb’s grasping state is changed.

Figure 10: A solution prior to smoothing (every 5th frame
shown).

imation. Our smoothing process copes with this in three
ways. First, smoothing is only applied to portions of the
motion trajectory which have no change in grasp config-
uration. Second, inverse kinematics are used in order to
maintain the grasp constraints throughout the interpolated
motion. Third, a second smoothing pass is applied inde-
pendently to each limb, one that only modifies the config-
uration coordinates which relate to the joint angles of that
particular limb. This ensures that the motion of a limb ex-
hibits the desired anticipation in leaving one grasp point
and approaching another. Because the second pass treats
limb motions independently, changes in grasp configura-
tions for the other limbs are irrelevant, which is not the
case for the first pass. The second smoothing pass is il-
lustrated in Figure 9. Figures 10 and 11 show an example
solution before and after smoothing.

Figure 11: A solution after smoothing (every 5th frame shown).

4 Results

Our implemented system is capable of planning motions
in complex constrained environments such as that shown
in Figure 1. The problem specification for that particular
example consists of the starting configuration, located in
the bottom left; the target configuration, located in the top
right; the character model, as shown in Figure 2; and the
polygon-based description of the environment, populated
with a large number of grasp points. The planned motion
requires 10–15 minutes2 to compute on a 266MHz Pen-
tium II machine, resulting in about 1400 frames.

Figure 12 shows snapshots from additional motion
plans computed by our algorithm and then rendered with
a more complex 3D character model. These were ren-
dered with the Poser 4 package, after importing the mo-
tion from our planner in BVH format, and applying it to
the default character. It should be noted that due to some
obvious fundamental differences between the geometries
of the two models involved, as well as some difficulties
presented by importing environment geometry into Poser,
the resulting animations exhibit some obstacle penetration
and minute skating problems which are not present in the
original motion exported from our planner.

Figure 13 is an illustrative example for the synthesis
of a motion transition. The transition from climbing to
walking is an interesting problem, as the motion is highly
constrained throughout the transition. As the solution
shows, the planner can successfully plan a plausible mo-
tion which satisfies the required constraints.

MPEGs depicting a sample of obtained solu-
tions for various problems may be viewed online at
http://www.dgp.toronto.edu/˜mac/thesis .

As Figure 1 shows, our results to date have been ob-
tained for scenarios which pose 2D motion planning prob-
lems. This is not a general restriction of the planning
algorithm, but rather a restriction of our current imple-
mentation. The randomized path planning algorithm upon

2Note that the compute time can vary significantly due to the non-
deterministic nature of the motion planner.
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Figure 13: Climbing example

which our planner is based has been shown to generalize
well to planning motions in 3D environments[3, 18]. We
expect that our character motion planning algorithm will
scale in a similar fashion. We plan to explore this issue
further in future work. The current 2D implementation
is still applicable to many interesting scenarios, given the
2D nature of climbing a planar mountain face with grasp
points, or moving through an environment such as that il-
lustrated in Figure 1.

5 Discussion

In qualitative terms, the motion planner must solve sev-
eral types of problems. All locomotion modes must make
the necessary accommodations to cope with the available
grasp locations and variations in the environment. The
planner must determine when a change of locomotion
mode is justified. The planner must then also synthesize
the necessary transitions from one mode of locomotion to
another. The planning algorithm described in section 3
serves as a single framework for all of these problems.

What makes the algorithm interesting is that it must
tread the line between discrete and continuous optimiza-
tion problems, given that the choice of grasps is discrete
while the remainder of the motion is continuous. Yet,
because choices in the continuous domain affect the dis-
crete domain and vice versa, the algorithm must optimize
a combined set of discrete and continuous choices. The
algorithm also exploits both deterministic and stochastic
methods; the FSM and heuristics belonging to the former,
and the core parts of the planner, such as gradient descent

and random walk, displaying significant amounts of the
latter.

Limitations: The algorithm as outlined so far has a signif-
icant limitation: if presented with an environment where
two or more paths lead to the goal, the planner will al-
most invariably take the shortest path. This is because the
downward gradient of the potential field at the “fork in
the road” will be always pointing in that direction. Other
paths might be taken only if they are roughly of the same
length as the shortest one, as this will cause the ridge-like
discontinuity in the potential field to be near the bifurca-
tion point, and thus possibly within reach of some random
walks.

This limitation can cause the planner to fail in finding
a solution, even though one may exist. This can happen
if a number of paths to goal are present, but the shortest
one is not traversable, such as in the case when there are
insufficient grasp points, they are of incorrect types, or the
size of the passage is too small or inconveniently shaped.
Nevertheless, this problem could be resolved with modest
effort. One simple solution would be to mark these “dis-
covered dead-ends” as impassable when they are found,
followed by a consequent adjustment to the potential field.

Another minor limitation of our implementation is the
situation illustrated in Figure 14. We currently use a very
simple 2-link inverse kinematic algorithm for attaching
limbs to grasp points. In the course of finding a solution
situations may arise where the gradient descent module
pulls the character away from potential grasp points, and
the simple IK is unable to compensate. Employing a full

9



Figure 12: Snapshots from several animations.

Figure 14: If the overhang is missing (dashed line), the planner
tends to get stuck since the character is pulled towards the upper
left, away from the grasp points it should be using.

IK engine would solve this problem.

Complexity: The above observation results in the catego-
rization of all possible problems into two types:normal
andunworkable. All problems belong to the former ex-
cept those that cannot be solved due to the untraversabil-
ity of the shortest paths, which then belong to the latter
category.

When operating on a normal problem, the planner is
probabilistically complete, much like RPP. That is, if the
problem has a solution, the planner will find it given suf-
ficient amount of time, which could be arbitrarily large.
The ubiquitous randomness in the planner and the ever-
present option of backtracking ensure the possibility of
hitting upon just the right trajectory at some point in time.
In the unworkable case, our current implementation will
never find the solution, and is thus incomplete. If the lim-
itation is remedied as outlined above, the planner would
then most likely be probabilistically complete in this case
also.

Operational intuition: The planner’s progress varies with
the type of motion it is currently working on. We have
found that transitions between locomotion modes, such as
from climbing a wall to walking, tend to be the bottle-
necks. This is understandable as they are the more con-
strained and, in general, difficult part of the problem. In
many cases though, there ismuchpotential for improve-
ment through better formulation of the edge preconditions
and actions for a given transition.
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The random walk operation plays a much smaller role
in our planner than it did in RPP. This is because it is
not allowed to acquire or release grasps. With the charac-
ter anchored to the environment in this manner, the ran-
dom walk’s ability to wander the configuration space is
severely limited. It now mainly serves in escaping local
minima in the discomfort potential field, when the char-
acter’s posture is being corrected.

An abundance of grasp points does not adversely affect
the planner. Mincing steps are avoided by incorporating a
“preferred stride/handspan length” in the appropriate edge
preconditions, or by implementing the edge actions in a
greedy manner. Inconveniently placed grasp points do not
affect the planner very much either, other than lengthening
solving time; if a set of grasp points is traversable, back-
tracking ensures that it will be traversed at some point in
time. By the same token, the planner can never commit it-
self to a dead-end path — the above-mentioned path fork
limitation aside — since everything may be rolled back.

6 Conclusions

The motion planning algorithm described in this paper
provides a novel method for automated character anima-
tion. It is particularly well suited for planning motions in
unstructured, constrained environments and for generat-
ing plausible transitions between various modes of loco-
motion.

Our work integrates configuration-space planning
methods[3, 18] with the requirements of character anima-
tion. At the heart of this problem is the question of how
to efficiently exploit knowledge of a character’s motion
preferences while solving potentially complex global mo-
tion planning problems. The use of grasp points serves to
explicitly model key aspects of the motion, while a col-
lection of heuristics implicitly model motion preferences.
A finite state machine is used to imitate the polarization
of human motion into distinct locomotion modes.

There are numerous possible directions for improving
and extending this work. For one, the animations gener-
ated occasionally exhibit unstable or gravity-defying pos-
tures. We plan to construct some better heuristics for the
imitation of gravitational pull on suspended characters, as
well as a method for prioritizing the various heuristics to
give them varying importance.

Given that our planner has no explicit notion of time
nor speed, we currently perform a one-to-one mapping
between the configurations of the solution path and the
keyframes used in playback. This results in undesirable
discontinuities in the speed of the motion. The results
could be made more fluid by varying the mapping such

that the playback speeds change in a manner appropriate
to the situation.

A minor limitation in our planner is that only the hands
and feet are allowed to grasp. Although this is typically
sufficient, there are motions which require more complex
grasps. Two examples of this are the using the posterior
as a support when sliding on the floor, and the leaning
of the back and shoulders against a wall when wriggling
up a narrow crevice. These types of motions cannot be
employed by the planner at this point in time.

Further improvements in the planner could be obtained
by the judicious use of machine learning algorithms in
various parts of our method. Some obvious applications
would be the optimization of calibration values in the vari-
ous heuristics, as well as the memorization and prediction
of postures in commonly occurring situations.

References

[1] Kenji Amaya, Armin Bruderlin, and Tom Calvert. Emotion
from motion. InGraphics Interface ’96, pages 222–229,
May 1996.

[2] Norman I. Badler, Cary B. Phillips, and Bonnie L. Webber.
Simulating Humans: Computer Graphics Animation and
Control. Oxford University Press, 1993.
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