
Design Document
PBRT Extensions

Ian Vollick and Christian Lessig

1 Motivation

The most costly part of precomputation for PRT is creating per-vertex visibilty maps. Hard-
ware accelerated rendering can be employed for generating these maps. We chose to add
the necessary capabilities to pbrt, a physically-based ray tracer. The initial rationale for
this choice was two-fold. pbrt provides a great deal of useful functionality such as a scene
loader and a file writer. It also provides a convenient framework within which to compare
hemispherical sampling and sampling over the hemicube. After abandoning the compari-
son of hemicube and hemispherical rendering, the rational for continuing with pbrt was
that this work could be used in other research. It was thought that research in this area
would be likely, given that graphics hardware is developing rapidly, and combinations of
hardware and software techniques are commonplace in industry.

The goal is that the extented pbrt will be a testbed for using the latest hardware in the
rendering pipeline and to allow fair comparisons of hardware and software rendering. It
should be noted, however, that the extensions described in this report constitute a significant
redefinition of pbrt. The hardware accelerated plugins cannot be considered physically-
based.

2 Design Goals

• Reusability. The extensions should be as flexible as possible and applicable to a
wide variety of problems. It should also be simple to understand what the exten-
sions are for and how to use them.

• Performance. The extentions must permit faster precomputation than could be
acheived using ray tracing.

3 Design Issues

3.1 Integrating New Functionality

It is crucial that new plugins to pbrt work seamlessly with the old. Otherwise, the use of
the new plugins will necessarily be very specific, contradicting the stated goal of reusability.

- new plugins must work seamlessly with the old plugins.

- compatability detection?

3.2 Sampling

It is difficult to meet the performance design goal without making large-scale changes to
the way that pbrt handle sampling. This is because the ray tracer sequentially processes
pixels, whereas hardware processes them in parallel.

The naive approach is to use hardware to render a scene, cache the results, and lookup
colors from the cache instead performing scene queries. This seamlessly integrates with
pbrt. It can be slow however, since che cache is sampled sequetially.

A second approach is to generalize the notion of a sample. Currently pbrt uses point
sampling along a single direction. The samples could be generalized to hold information
obtained over a range of directions, as in beam tracing [Heckbert 1984]. That is, samples
could be made to hold all the information obtained from a hardware render. This approach
has not yet been implemented since it would require significant changes to pbrt. Instead,
visibility information obtained from hardware rendering is directly writted to disk. This
avoids the difficulty of passing generalized samples through the pipeline.

3.3 Rendering Sequences

For PRT and many other applications it is necessary to render large sequences of images.
The overhead of loading the renderer and scene information for each image is unacceptable
if the system is to meet the performance design goal. Therefore it is important to be able
to load the scene data only once along with a sequence of camera positions. Adding this
functionality to pbrt necessitated the creation of a new type of plugin, the renderer. Two
renderer plugins have been written, the still renderer which implements the old
functionality, and the sequence rendererwhich permits the user to specify a sequence
of camera frames from which to render.

4 Limitations and Future Work

The current version of the pbrt extensions have the following limitations, each of which
could be addressed in the future.

• A Spectrum subclass for beam samples is missing.

• Hemicube visibility calculations are done using the depth buffer, and this requires
reading back visibility information from hardware six times per hemicube. It
would be faster, however, to use the stencil buffer since the visibility information
for all six faces of a hemicube can be stored simultaneously and read back at once,
as is done in Kontkanen et. al. [Kontkanen 2005].

• No integrator has been written which actually renders the scene using hardware.

• The extensions described in this report only allow the generation of visibility maps
for triangle meshes. Other geometry types supported by pbrt such as NURBS
could be render in hardware using ray casting

5 Conclusion

The pbrt extensions represent significant progress towards meeting the stated design
goals. However, more work needs to be done to improve interoperability with the rest
of pbrt, particularly the default plugins, and to ensure that the software is platform in-
dependent. The extensions only provide the functionality required for PRT, but much of
this functionality, such as the sequence renderer, is highly reusable. This code will be a

good reference for extending pbrt to employ graphics hardware for other portions of the
rendering pipeline. It remains to be seen if this work will be of use to future researchers,
but we believe it will be.

References

[Fabio et. al. 1995] Fabio Pellacini, Aaron Lefohn, Mark Leone, Kiril Vidimče, Alex
Mohr, John Warren. Pixar animation studios. Lpics: a Hybrid Hardware-Accelerated
Relighting Engine for Computer Cinematography, SIGGRAPH 1995

[Heckbert 1984] Paul S. Heckbert, Pat Hanrahan Beam Tracing Polygonal Objects, SIG-
GRAPH 1984

[Kontkanen 2005] Janne Kontkanen and Samuli Laine, Ambient Occlusion Fields, Pro-
ceedings of ACM SIGGRAPH 2005 Symposium on Interactive 3D Graphics and
Games, pp 41–48, 2005

A Precomputation: Combining Hemispherical Sampling and
Hemicube

Preprocessing consists of rendering a hemicube visibility map for each vertex in the scene.
Hemispherical sampling has also been implemented, but using a hemicube readily allows
for the use of OpenGL and therefore hardware acceleration. The position and orientation
of each hemicube can be aligned with a local coordinate system of each vertex. However,
because there is no efficient rotation for wavelets, it is not sensible to use a local coordinate
frame per vertex. Instead, when using wavelets as basis functions all hemicubes should be
aligned in a global coordinate frame. Plugins with the postfix global can be used for
these computations.

Below a pseudo-code description of the sequence renderer.

for i = 1 to NUM_VERTS {
orientCamera(positions[i], ups[i], views[i]);

// May open a new file for writing (and close the old)
integrator.preProcess()

while !sampler.done() {
sample = sample.getNextSample()
ray = camera.getRay(sample)

// Render face. May write hemicube face data to file
integrator.render(ray, sample)

film.addSample(sample)
}

// If the integrator has been doing file writing, this should
// be a noop.
// That is, if one uses opengl_hemicube_visibility_fast, one
// should also use film_noop.
film.writeImage()

}

Clearly, the sampler, camera, integrator, and film are interdependant. Several sample
.pbrt files have been listed below to demonstrate which plugins should be used together.
Better interoperability of the plugins, especially with the default ones, could be achieved
with some additional effort.

B pbrt Extension Documentation

The following section describes the pbrt extensions implemented for this project. Please
refer to the doxygen documentation for additional implementation details. Example .pbrt
files have also been listed in a subsequent section to give an example of these plugins in
context.

B.1 Samplers

• Hemicube Sampler The hemicube sampler works in conjunction with the
hemicube camera described below. It is responsible for generating as many
samples as needed per face of the hemicube. The sampler modifies the time,
imageX, and imageY attributes of each sample to indicate its corresponding
hemicube face, and its x and y coordinates, respectively.
The number of samples needed per face varies depending on the file and integra-
tor plugins employed for generating the final cubemap. Using the default pbrt
rendering pipeline, the film needs at least one sample for every pixel of the cube
map. To speed up the computation, the hemicube sampler permits one to
generate the cubemap using a single sample per face, used in conjunction with
the opengl integrator fast and film noop plugins. Sidestepping the
default pipeline in this manner increases performance by a factor of 100 or more.
Usage:

Sampler "hemicube_sampler"
["integer xresolution" xres]
["integer yresolution" yres]

B.2 Cameras

• Hemicube Camera Given the sample information described above, this camera
generates rays which sample the hemicube above a vertex.
Usage: Camera "hemicube camera"

• Hemisphere Camera The hemicube camera maps image space coordinates to
samples over the hemisphere. Specifically, if x and y are the image-space coor-
dinates of the sample, Nx and Ny are horizontal and vertical resolutions, and
M is the camera to world space transformation, then the ray’s direction d is
M [sin θ cosφ, cos θ, sin θ sin φ]T , where

θ =
(π

2

) (
y

Ny

)
, and φ = 2π

(
x

Nx

)
.

The hemisphere camera is a slightly modified version of the environment cam-
era from default pbrt plugins.
Usage: Camera "hemisphere camera"

B.3 Surface Integrators

Surface integrators compute the radiance for each ray. In our case, however, we are not
concerned with radiance, but visibility.

• Visibility The visibility integrator determines visibility via occlusion test-
ing using ray tracing. It makes use of a specialized scene query function which
only determines visibility; no shading is performed.
Usage: SurfaceIntegrator "visibility"

• OpenGL Hemicube Visibility This integrator is similar to the visibility integra-
tor above except that it calculates visibility using OpenGL and the result is cached.
The per pixel visibility is determined by sampling the cached faces. Using the
hardware accelerated OpenGL pipeline speeds up the computations significantly,
but for simple scenes the cost performing scene queries to deterine visibility is
also quite modest.
It should be noted that the faces of the hemicube are rendered lazily. If the
hemicubes are generated in the local vertex frames, only 5 sides need to be sam-
pled since the bottom face will never be used. However, if the hemicubes are
aligned in world space, all six must be rendered.
Usage: SurfaceIntegrator "opengl hemicube visibility"

• Fast OpenGL Hemicube Visibility This integrator inherits from
opengl hemicube visibility, but sidesteps pbrt’s rendering pipeline
and writes the hemicube data directly after rendering a face. The faces are still
calculated lazily. The faces are sampled in a predetermined order and as they are
rendered, they are written to disk to simplify the usage of this data in subsequent
stages of the pipeline. To do this, set the x and y resolution of the hemicube
sampler to 1. The user of this integrator should also be sure to use a film that does
not cause any file to be written to disk, see film noop below.
Usage:

SurfaceIntegrator "opengl_hemicube_visibility_fast"
"string filename" filename
"integer xresolution" xres
"integer yresolution" yres

B.4 Film

• Vismap Stores run length encoded visibility image.
Usage:

Film "vismap"
"string filename" filename
"integer xresolution" xres
"integer yresolution" yres

• Noop To avoid redundant file writing, this film should be used with
opengl hemicube visibility fast.
Usage: Film "film noop"

• Hemicube Vismap Similar to a vismap, but writes run length encoded visibility
information for each face of the hemicube.
Usage:

Film "hemicube_vismap’
"string filename" filename
"integer xresolution" xres
"integer yresolution" yres

B.5 Renderers

The rendering system in pbrt has been fully revised so that the renderer can be specified
as a plugin. This has been necessary to enable the rendering of sequences without re-

initializing the whole rendering system for each frame.

• Still Renderer This plugin provides the functionality of pbrt’s default renderer.
Usage: Renderer "still renderer"

• Sequence Renderer This plugin renders a sequence of frames. For each frame, a
camera position, an up vectors and a view vector are required. If the filename argu-
ment to the film (or possibly the integrator), was basename.ext, then the ren-
dered images are of the form basename.fnum.ext where fnum is the frame
number.
Usage:

Film "sequence_renderer"
"point positions" [x1 y1 z1 x2 y2 z2 ...]
"vector views" [x1 y1 z1 x2 y2 z2 ...]
"vector ups" [x1 y1 z1 x2 y2 z2 ...]

B.6 Accelerators

• Object list This pluginc stores the scene geometry as a flat list. It should be used
with the OpenGL integrators mentioned above.
Usage: Accelerator "objectlist"

B.7 General

The core functionality has also been extended and modified to match the increased re-
quirements. For example, the RLE encoding has been abstracted into a class and added to
pbrt’s core functionality.

C Example Scene Files

C.1 hemicube.pbrt

Film "hemicube_vismap"
"string filename" ["foo.dat"]
"integer xresolution" 512
"integer yresolution" 512

Sampler "hemicube_sampler"
LookAt 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 1.0 0.0
Camera "hemicube_camera"
SurfaceIntegrator "opengl_hemicube_visibility"
Accelerator "objectlist"
Include "foo_camera.pbrt"
Include "foo_scene.pbrt"

C.2 fastHemicube.pbrt

Film "film_noop"
Sampler "hemicube_sampler"
"integer xresolution" 1
"integer yresolution" 1

LookAt 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 1.0 0.0
Camera "hemicube_camera"
SurfaceIntegrator "opengl_hemicube_visibility_fast"

"string filename" "foo_fast.dat"
"integer xresolution" 512
"integer yresolution" 512

Accelerator "objectlist"
Include "foo_camera.pbrt"
Include "foo_scene.pbrt"

