SOHO: Orthogonal and Symmetric Haar Wavelets
on the Sphere

CHRISTIAN LESSIG and EUGENE FIUME
University of Toronto

We propose the SOHO wavelet basis — the first spherical Haar wavelet basis that is both orthogonal
and symmetric, making it particularly well suited for the approximation and processing of all-
frequency signals on the sphere. We obtain the basis with a novel spherical subdivision scheme
that defines a partition acting as the domain of the basis functions. Our construction refutes earlier
claims doubting the existence of a basis that is both orthogonal and symmetric. Experimental
results for the representation of spherical signals verify that the superior theoretical properties of
the SOHO wavelet basis are also relevant in practice.
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ics—General; G.1.0 [Numerical Analysis|: General—Numerical Algorithms; G.1.2 [Numerical
Analysis]: Approximation—Nonlinear Approzimation
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1. INTRODUCTION

Many signals are naturally parametrized over the sphere S?. Examples from com-
puter graphics include bidirectional reflectance distribution functions (BRDF's), ra-
diance, and visibility. Spherically parametrized signals can also be found in many
other fields, including astronomy, physics, climate modeling, and medical imaging.
An efficient and distortion free representation of spherical signals is therefore of
importance. Of particular interest are the ability to approximate a wide range of
signals accurately with a small number of basis function coefficients, and the pos-
sibility of obtaining computationally efficient algorithms to process a signal in its
basis representation.

A variety of representations for spherical signals has been proposed in the literature.
Spherical Harmonics (SH) have been popular for the representation of low-frequency
signals. The global support of the basis functions makes the SH basis however
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inefficient for representing high-frequency data, and for processing signals directly
in the basis representation. Spherical Radial Basis Functions (SRBF) are localized
in both space and frequency and thus efficiently represent all-frequency signals.
Projecting a signal into an SRBF basis is however prohibitively expensive, and
efficiently processing a signal is difficult due to the unstructured nature of the basis.
Wavelets, in contrast, are both localized in space and frequency and hierarchically
structured leading to fast algorithms for basis projection and processing a signal in
its basis representation. Additionally, wavelet bases represent dissimilarities in a
signal, making them well suited for the compact representation and approximation
of real-world signals.

In the past, planar wavelets have often been used to represent spherical signals.
These representations suffer however from parametrization artifacts which are un-
avoidable when the sphere is mapped onto a planar domain. Spherical wavelets are
free of distortion but the representations proposed in the literature are limited in
their efficiency for approximating and processing all-frequency signals. We argue
that the following three properties are important for an efficient representation.

Orthogonality. An orthogonal basis has a variety of theoretical and practical ad-
vantages. Most notably, the optimal approximation in the 5 norm can be found
efficiently. In many cases orthogonality also leads to more efficient algorithms, for
example for computing product integrals, and establishing properties of a represen-
tation is often easier for orthogonal bases.

(Very) Compact Support. The costs of basis projection and processing a signal in
its basis representation depend heavily on the support size of the basis functions.
Haar-like bases have minimal support and computations in the representation are
thus very efficient. In the literature it has often been argued that Haar-like bases
are well suited only for the representation of piecewise constant functions. How-
ever, both theoretical and practical results have shown that they also efficiently
represent functions of bounded variation, that is all-frequency signals as found in
many applications [Donoho 1993; Ng et al. 2003].

Symmetry. Local symmetry of the basis functions guarantees an orientation-free
representation of features in the basis, preventing distortion when a signal is approx-
imated in the basis. The high sensitivity of the human visual system to asymmetric
artifacts makes this particularly important for the visual quality of approximated
signals.

We conclude that an orthogonal and symmetric spherical Haar wavelet basis is par-
ticularly well suited for the efficient approximation and processing of all-frequency
signals defined on the sphere. However, none of the bases proposed in the litera-
ture satisfies all of the above properties. We therefore developed the SOHO wavelet
basis. To our knowledge this is the first spherical Haar wavelet basis that is both
orthogonal and symmetric. The key to the derivation of the basis is a novel sub-
division scheme of the sphere that defines the partition acting as the domain of
the basis functions. The derivation of the SOHO wavelets refutes earlier claims
doubting the existence of such a basis (e.g., [Bonneau 1999]).
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The practical relevance of the superior theoretical properties of the SOHO wavelet
basis has been validated experimentally. Results for the representation of different
spherical signals show that the SOHO wavelet basis provides competitive or lower
error rates than other spherical Haar wavelet bases when signals are approximated
in the basis representation. The visual quality of reconstructed signals affirms these
results.

Many applications such as environment map rendering in computer graphics, molec-
ular electronics structure calculations in physics, and data set alignment in medical
imaging require the rotation of signals. Efficient and accurate algorithms to ro-
tate a signals in its basis representation are therefore of high practical importance.
For the SOHO wavelet basis, we developed basis transformation matrices to rotate
signals represented in our new basis. The elements of these matrices can be com-
puted analytically and, in contrast to planar representation of the sphere such as
cubemaps or the octahedral map used by Wang et al. [2006], the rotation is mathe-
matically well-defined. An analysis of the structure of the rotation matrices shows
that they are very sparse and quasi-block symmetric. This is important for the
efficient computation of rotations and reduces otherwise significant matrix storage
costs [Wang et al. 2006]. We verified experimentally that the rotation in a spher-
ically parametrized representation is significantly more efficient than in a planar
representation of the sphere. A more detailed discussion of rotation in spherical
Haar wavelet bases is beyond the scope of this paper. For further details see the
work by Lessig [2007].

2. RELATED WORK

Various representations for spherical signals have been proposed in the literature.
Spherical Harmonics [MacRobert 1948] have been popular in physics and chemistry.
The SH basis has also been employed in other fields such as geoscience and medical
imaging [Clarke et al. 2004; Katsuyuki et al. 2001]. In computer graphics, Spherical
Harmonics have been used for example by Westin et al. [1992] to represent BRDF's,
and Sillion et al. [1991] employed the basis for the representation of exitant radiance
in offline radiosity computations. Cabral et al. [1987], and later Ramamoorthi and
Hanrahan [2002], Kautz et al. [2002] and Sloan et al. [2002] used the SH basis for
environment map rendering and Precomputed Radiance Transfer (PRT). In the past
decade, Spherical Harmonics have been complemented by different spherical and
hemispherical harmonic bases [Makhotkin 1996; Koenderink et al. 1996; Alfeld et al.
1996a; 1996b; Gautron et al. 2004; Sloan et al. 2005]. However, the global support
of the basis functions prevents harmonic bases from efficiently representing high-
frequency signals. Wavelets, in contrast, are localized in both space and frequency
and therefore efficient for the representation of all-frequency signals.

Spherical Radial Basis Functions have been used widely for example in astronomy
and geoscience [Fisher et al. 1993; Narcowich and Ward 1996; Freeden et al. 1998;

LAn extended version of this work can be found in Lessig’s thesis, available online at http:
//www.dgp.toronto.edu/people/lessig/soho
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Freeden 1999]. Recently, these bases have also been employed in computer graph-
ics [Green et al. 2006; Tsai and Shih 2006]. SRBF's are localized in both space and
frequency and can thus efficiently represent all-frequency signals. In contrast to
wavelets, however, obtaining the basis representation of a signal is prohibitively ex-
pensive [Green et al. 2006; Tsai and Shih 2006]. The unstructured nature of SRBF
bases makes it furthermore difficult to develop efficient algorithms to process a sig-
nal in its basis representation. Such optimizations have shown to be efficient for
wavelets [Ng et al. 2004; Sun and Mukherjee 2006].

Different wavelet representations for spherical signals have been proposed in the
literature. Lounsbery et al. [1997] defined wavelet bases over subdivision surfaces
that can represent sphere-like shapes. Their construction can employ a wide range
of subdivision schemes but none of the resulting bases is orthogonal. To make the
bases practical it was additionally necessary to truncate the globally supported
basis functions. Truncated basis functions, however, no longer form true wavelet
bases.

Girardi and Sweldens [1997] developed orthogonal Haar wavelet bases over general
measure spaces L,. The scaling functions employed in their work are identical to
those of the SOHO wavelet basis but their wavelet construction does not yield a
symmetric basis on the sphere.

In their seminal work, Schroder and Sweldens [1995] proposed different vertex- and
face-based spherical wavelets. Based on the work by Girardi and Sweldens [1997],
the authors developed the Bio-Haar wavelets, a semi-orthogonal and symmetric
spherical Haar wavelet basis. Lifting was used to obtain smooth, spherical wavelet
bases. Schréder and Sweldens verified experimentally that the bases developed in
their work are well suited for the representation of common spherical signals from
computer graphics. An interesting side result of their experiments is that Haar-
like wavelets are as efficient as smoother bases for the representation of image-like
signals. This confirmed earlier theoretical results by Donoho [1993] that showed
that Haar-like bases are close to optimal for the representation of functions of
bounded variation. Ng et al. [2003] later provided similar results demonstrating
that Haar-like wavelets efficiently represent natural, all-frequency signals, and that
these bases clearly outperform Spherical Harmonics.

Based on [Schroder and Sweldens 1995], Nielson et al. [1997] and later Bonneau [1999]
developed semi-orthogonal, symmetric spherical Haar wavelet bases that are nearly
orthogonal, in the sense that they become orthogonal in the limit as the subdivision
level of the wavelet domain goes to infinity and the area of the domains goes to zero.
Recently, Rogca [2005] likewise developed a family of nearly orthogonal spherical
Haar wavelet bases. However, none of these works provided detailed experimental
results comparing their newly developed bases to incumbent spherical Haar wavelet
bases.

Ma et al. [2006] used a Haar-like pseudo wavelet basis over the sphere for PRT. The
basis is identical to that proposed by Bonneau [1999], but the authors assumed the
subdivision of a partition yields child domains of equal area. This is in general not
true; indeed the pseudo Haar wavelets are not a basis of La(S?, dw) [Lessig 2007].
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Wavelets parametrized over planar domains have also been used to represent spher-
ical signals [Ng et al. 2003; 2004; Zhou et al. 2005; Wang et al. 2006; Sun and
Mukherjee 2006]. These techniques are limited in that a planar parametrization of
the sphere unavoidably leads to distortion.

The SOHO wavelets are inspired by the seminal bases developed by Schroder and
Sweldens [1995] and by Bonneau [1999]. In contrast to these representations, our
basis is both orthogonal and symmetric. Unlike Bonneau, we are also able to show
that our new basis is an unconditional basis of the space Ly(S?, dw) [Lessig 2007].

3. SECOND GENERATION WAVELETS

We shall present an overview of second generation wavelets, which provides the
necessary background for the derivation of the SOHO wavelet basis in Section 4.
A more comprehensive introduction may be found for example in the works by
Sweldens [1996] or by Lessig [2007].

Let L2(X) be the space of functions with finite energy defined over a domain X C
R™, and let (-,-) be an inner product on X. A multiresolution analysis of X is
a sequence of nested spaces V; C V;;1 on different levels j whose union is dense
in Ly(X). Bases of the spaces V; are formed by sets of scaling basis functions
{@jr | k€ K(j)}, where K(j) is an index set defined over all scaling basis functions
on level j. The strictly nested structure of the V; implies the existence of difference
spaces W such that V; ® W; = V1. The W; are spanned by sets of wavelet basis
functions {¢; ., | m € M(j)} with M(j) being an index set defined over all ¥, ,,
on level j. For all levels j € J, V; and W; are subspaces of V., implying the
existence of refinement relationships

Pik= > hikieig and Y= > gimi @i 1)
1eL(j,k) leL(j,m)

with scaling filter coefficients h; ., and wavelet filter coefficients g; ;. The index
sets L(j,k) CK(j+1) and L(j,m) C K(j+ 1) are defined exclusively over the non-
zero filter coefficients h;y; and g;m,1, respectively. If not mentioned otherwise, in
the following [ is assumed to run over L(j, k) or L(j,m).

A wavelet basis VU is formed by the scaling basis function at the top-most level and
the wavelet basis functions on all levels j € J

\I/E{w’t |Z€I}E{¢0,O,wj,m |]€j7m€M(j)},

with Z being an index set defined over all basis functions of . A wavelet basis is
orthogonal iff

(@jks @ik ) = Okt (Wjms Vit me) = 04, gt O (PjgrYjrm) =0, (2)

where §;; is the Kronecker delta. For a semi-orthogonal wavelet basis the or-
thogonality of the wavelet basis functions in Eq. 2 is no longer satisfied, and for
biorthogonal wavelets also the scaling basis functions are not orthogonal. If not
mentioned otherwise, in the following we will mean “orthogonal wavelet” when we
use “wavelet”.
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Instead of working with the basis functions it is often more convenient to employ
the filter coefficients. The conditions in Eq. 2 can for example be written as

E Pk Tt = O,k E Gjm,l 957 sm L = 05,5/ O m E hj ke gjma = 0.
l l l

With an orthogonal wavelet basis, a function f € La(X) can be represented as

F=YFd i =D v
icT i€l

where the ; are the basis function coefficients. Computing inner products to obtain
the v; would be expensive and limit the practicality of wavelets. The fast wavelet
transform projects a function into its wavelet basis representation and reconstructs
it in linear time. This is accomplished by using the scaling and wavelet filter
coefficients instead of the basis functions. An analysis step of the fast wavelet
transform takes the form

Ajk = Z hjkiAjr1a and  yjm = Zgj,m,z Aj+1,0, (3)
1 1

computing the basis function coefficients at level j as a linear combination of the
scaling function coefficients at level j + 1. A synthesis step takes the form

N = D ki Nk + Y Gimd Vims (4)
k m

reconstructing the scaling function coefficients at level j + 1 from the basis function
coefficients at level j. Here, k and m run only over the non-zero filter coefficients
hj,k,l and gj,m,l-

A partition {S;, |j€ T, neN(j)} formed by measurable subsets S;, of X is
used to construct the basis functions. For every level j, the S;, form a simple
cover of X. Domains on different levels are strictly nested and partitions satisfying
Sjt+1,n C Sjp are called the children S;ZHJ of S . In the limit when j — oo every
S;n converges to a single point. The index set IC(j) defined over the scaling basis
functions satisfies X(j) € N (j). Subdivision schemes for embeddings X C R? are
well-known examples for partitions.

Some of the most popular wavelet bases are Haar-like wavelets. For these bases the
scaling basis functions are defined as ¢, = 1; £ Xk, With K(j) = N(j), where x; x
is the characteristic (or inclusion) function of the partition S;, and n;, € Ris a
scaling factor that is usually chosen such that the basis functions are normalized. It
follows from the definition of the scaling basis functions that the Haar wavelet basis
functions associated with a domain S, are defined exclusively over the children

k
S5

In this paper we develop a Haar-like wavelet basis that is symmetric in the sense
that the basis function coefficients are locally invariant with respect to the labelling
of all but one child partition of a partition S;,, [Nielson et al. 1997]. More formally,
let Sgnﬂ,l be the child partitions of S; ,,, and let P(j,n) be an index set defined over
all but one (fixed) child partition. For a Haar-like wavelet basis, P(j,n) can also be
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(@ (b)

Fig. 1. Subdivision of a spherical triangle. The labeling of the entities of a spherical triangle T} j,
is shown in (a), the 4-fold subdivision yielding the child triangles in (b).

used to index the basis function coefficients I' = (vj1,- - ,Vj,m), with m = |P(j,n)|,
of the wavelet basis functions associated with S;,. A basis is then symmetric iff an
arbitrary permutation o (P(j,n)) implies o ('), that is altering the labelling of the
partitions changes the order of the basis function coefficients accordingly, but does
not affect the value of the coefficients ;. As example consider a four-fold subdivision
of a triangular domain 7} , where the children 77, ; are obtained by subdividing
the sides of the parent triangle (cf. Fig. 1). If we choose the central child, T}, o,
as the fixed domain then a basis is symmetric if we can change the labeling of the
three outer child triangle without altering the basis function coefficients associated
with Tj,n'

4. SOHO WAVELETS

We now derive the SOHO wavelet basis. The basis spans the space Lo(S?) of
functions with finite energy on the sphere S?. We employ the standard inner product

)= [ fado.

on S2. The measure dw is defined as dw = dw(0, ¢) = sin 0 df d¢.

4.1 The Partition Scheme

The partition 7, over which the basis functions of the SOHO wavelet basis are
defined, is formed by a set of spherical triangles T = {1} | j € J,k € K(j)}. The
domains at the coarsest level Tj ;, are obtained by projecting a platonic solid with
triangular faces such as the octahedron or the icosahedron onto the sphere. The
domains at finer levels are formed by recursively subdividing every spherical triangle
T} . into four child triangles T3k+1,l~ As shown in Fig. 1(b), these are obtained by
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inserting one new vertex v] . on each of the arcs forming the sides of the T} ;. The
partition 7 is thus a forest of partition trees and the domains T j at the coarsest
level are the root nodes of these trees.

Although 7 is defined similarly to the partition used by Schréder and Sweldens [1995]
we do not employ the geodesic bisector to obtain the positions of the new vertices

; - For the SOHO wavelet basis, the vertex positions are chosen so that the areas
of the three outer child triangles Tﬁ_1 15 Tyk+1,27 and TF r1,3 are equal. This is the
key to the derivation of a basis that is both orthogonal and symmetric. We will
detail the novel subdivision scheme employed in our work in Section 4.4.

The area of a spherical triangle T} , will be denoted ¢ 1, and we define 7; ; = 7; 1 (w)
to be the characteristic function of 7} j.

4.2 Scaling Basis Functions

For a Haar-like basis, the scaling basis functions are defined as @; i = 0 7j k-
With n; . = 1/,/@; %, it follows immediately from the disjoint nature of the T ; for
fixed j that the ¢;; on the same level are orthonormal, as required in Eq. 2. The
scaling functions for the SOHO wavelet basis are thus

Tjk
Pik = ——.
QK
Given the @ 1, the filter coefficients h; 1 ; must be chosen to satisfy Eq. 1. It follows
from the partition that |£(j, k)| = 4 and that the union of the child domains Tjﬂ_u
is again 7; ;. The filter coefficients are therefore

k
VA AR N
Vagk
For the partition 7 and the filter coefficients h; j; in Eq. 4.2, the cascade algorithm

converges to the scaling functions in Eq. 4.2 [Lessig 2007]. This is a necessary
condition for the existence of a wavelet basis [Sweldens 1996].

hj kg =

4.3 Wavelet Basis Functions

We use a custom two-step approach to derive the wavelet basis functions: In the
first step a semi-orthogonal basis is developed, and in the second step orthogonality
and symmetry are enforced.

For a Haar-like basis, the wavelet basis functions 1/J§7k, with [ = 0,1, 2, associated
with a partition T ;, are exclusively defined over the child partitions Tk 1, Wavelet
basis functions ”(/}é-lkl and wézkz defined on the same level j but over different parti-

tions are thus trivially orthogonal. For <’(/le kl,l/)h ky) = 0 with ji # j2 to be true,
we require that the wavelet basis functions have a vanishing integral. It is easy to
show that for a Haar-like basis this in fact implies that the wavelet basis functions
on different levels are orthogonal [Lessig 2007]. In the following it is therefore suf-
ficient to consider only one spherical triangle T}, with fixed but arbitrary j and

k., together with its child triangles T* RN for the derivation of the wavelet basis
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SOHO: Orthogonal and Symmetric Haar Wavelets on the Sphere . 9

Fig. 2. The scaling basis function and the two possible sets of wavelet basis functions defined over
a partition at level 0. The top row shows the basis functions where the positive sign has been
employed in the computation of parameter a in Eq. 9, the bottom row shows the basis functions
where the negative sign has been used. The basis is defined over a partition derived from an
octahedron. Reddish hues indicate positive filter coefficients, bluish hues negative ones.

functions (cf. [Bonneau 1999]). The areas of interest will be abbreviated oy = a? 11
and ap = ok; analogous notation will be used for the characteristic functions 7; .
In some cases we will also omit the indices 7 and k. It is then understood that
these are the fixed j and k of Tj .

Considering only one partition 7} x, the analysis and synthesis steps in Eq. 3 and
Eq. 4 can be expressed as compact matrix-vector products. Perfect reconstruction
requires that the analysis and synthesis matrices A, ; and S; 1, respectively, satisfy
A = Sj_,,i; for an orthonormal basis this simplifies to A4, = Sjj-:k. A synthesis
step in matrix-vector notation is of the form

Aj+1,0 ho 99 90 95 \ [ N

Ajrra | _ | I 90 g1 93 7 5)
Aj+1,2 he g b 3 || |

Aj+1,3 hs g3 95 93 V3

where g/ denotes the ['" filter coefficient associated with the i wavelet basis func-
tion 1/1} i defined over T} 1., and the h; are the filter coefficients derived in Section 4.2.

In the following we will derive a semi-orthogonal spherical Haar wavelet basis. For
fixed Tj j, the basis functions of such a basis have to satisfy

(W1 eik) = (Wi, ik) = (Y3, ik) = 0. (6)
Eq. 6 can be written in Dirac bra-ket notation:
[(®; | ¥;)] =0, (7)

where [(X | Y)] denotes the matrix of inner products of the two function sets X and
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10 : C. Lessig and E. Fiume

Y, and ®; and ¥; are matrices containing the scaling and wavelet basis functions
defined over Tj i, respectively. The wavelet basis functions in Eq. 7 can be expanded
with the refinement relationship in Eq. 1 [Stollnitz et al. 1996; Finkelstein and
Salesin 1994] yielding

[(®; | ®,41)]G; =0.

The matrix ®; is degenerate, containing only ¢;x; ®;4+1 is formed by the four
scaling functions cp;? +1, defined over the child domains Tf+1,z§ and G contains
the desired wavelet basis function filter coefficients g!. The matrix G; spans the
nullspace of [(®; | ®,41)] and is obtained using existing techniques, giving

V& _Ja _Jas
Vo
0
0
1

o»—\oﬁ
)
(=)

It is easy to show that the wavelet basis functions defined in Eq. 8 have a vanishing
integral [Lessig 2007].

Given the semi-orthogonal basis derived above, we now have to enforce symmetry
and orthogonality of the wavelet basis functions, while taking care to preserve
the properties that have already been established. Let S‘j,k be a synthesis matrix
formed by the h; and gj derived previously. We first tried to augment each of
the wavelet basis function filter coefficients g} in S; ), with a free parameter. The
desired properties of the basis could then be formulated as a linear system, and the
solution to the system would be the wavelet basis functions. However, we were not
able to find such a solution and in fact a solution to the system might not exist.

To obtain a basis having the desired properties we therefore required that the area
of the three outer child partitions TfHJ, Tfﬂg, and Tfﬂ,g be equal (cf. Fig. 1).
In Section 4.4 it will be shown that the partition 7 can be constructed so that this
constraint is satisfied. With the area-isometry of the three outer child triangles,
symmetry can be guaranteed by the following parametrization of the synthesis
matrix: _

VA _ Nar  Nar  Jan

Var  SVae T Vao ~Vao
NG

>
5
ol

gk = )

where a, b, and ¢ are the remaining free parameters. Enforcing orthogonality of
the basis then yields a simple linear system whose solution are the wavelet basis
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functions for the SOHO wavelet basis (cf. Appendix A):

A 1
g’k:r;m +AT( (=2a4+ 1)1 +am +aTs)
Ay 1
Pl = A—OTO +1T1( aty +(—2a+1)m +aT3)
A 1
= A—;To +A71( aty +atmy +(—2a+1)73),
where
Olo:l: Oé(2)+30[00t1
= 9
a SCVO ( )

and A; = ,/ozé? 10 The two solutions for parameter a yield two different sets of

wavelet basis functions. These are shown in Fig. 2. The area measures agy and oy
are always positive and thus a is guaranteed to be real for both solutions.

Given the orthogonal basis derived above, an orthonormal basis can be obtained by
normalizing the wavelet basis functions. Lessig further establishes that the SOHO
wavelets form an unconditional basis of the space L2 (S?, dw) [Lessig 2007].

4.4 Construction of the Partition

The previous section demonstrated that the SOHO wavelet basis can be constructed
provided the three outer child triangles T, 1, T}, o, and T}, | 5 of Tj . have equal
area. The geodesic bisector subdivision employed by Schroder and Sweldens [1995],
Nielson et al. [?], and Bonneau [1999] does not have this property. The partition
7, as defined in Section 4.1, only imposes a topology (cf. [Nielson et al. 1997]).
The vertices vik can therefore be positioned so that oy = as = ag. Let vjlvyk still
be the geodesic bisector. The positions of vfk and v;’, . can then be obtained with

a system of equations:

cot (13;) cot (L
cot (g) = cot(C) + t (361) cot (37)

sin(C)
E t (3 t (3
cot <2> = cot(B) + © (251)(;0) (27)
lp 1 1,1
cot (g) = cot(A) + ot (5% 25252; (e Qﬂz)’

where we employed Eq. 36 from Todhunter’s book [1901] to define the system. The
variables on the right hand side of the equations are given in Fig. 1, and E denotes
the spherical excess of the three outer child domains. Solving the system for 5 and
(B2 yields the desired vertex positions. The resulting formulae are lengthy and may
be found in Appendix B. Lessig [2007] establishes that with a consistent labeling
of Tj j, exactly one solution for the area equality exists.

For the partition 7 it is desirable to yield spherical triangles that are uniform.
We have not yet been able to prove bounds on the shape distortion introduced
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Subdivision Scheme Octahedron Icosahedron
Level 5 7 5 7
Our subdivision 43.0864 | 43.0417 | 53.5981 | 53.5808
Geodesic midpoint 45.0345 | 45.0022 | 54.0163 | 54.0010

Table I. Shape distortion for the partition proposed in this work and the geodesic bisector sub-
division employed by Schroder and Sweldens. The minimum internal angle (in degrees) over all
partitions was used as distortion measure.

by our new subdivision. Numerical experiments show however that it is not sig-
nificantly larger than for the geodesic bisector subdivision employed by Schréder
and Sweldens [1995]. We used the minimum internal angle over all partitions to
measure the shape distortion. The results are given in Table I.

5. EXPERIMENTAL EVALUATION

The performance of a basis depends on a wide range of factors and superior the-
oretical properties are no guarantee of better results in practice. We therefore
performed a variety of experiments to assess the practical efficacy of the SOHO
wavelet basis. To provide insights for a wide range of applications we focused on
experiments which are independent of specific settings.?

5.1 Methodology

In the experiments the SOHO wavelet basis was compared to six previously pro-
posed spherical Haar wavelet bases: the Bio-Haar basis developed by Schroder and
Sweldens [1995], the two nearly orthogonal bases proposed by Nielson et al. [1997],
the pseudo Haar wavelets used by Ma et al. [2006], and the two nearly orthogonal
bases developed by Bonneau [1999]. All bases have been employed to represent
three signals: a unimodal function with only low-frequency content, a piecewise
constant function with only high-frequency features, and an image-like signal with
content in the full frequency spectrum. For convenience we will refer to the test
signals as BRDF, wvisibility map, and texzture map, respectively (cf. Fig. 4).

When a signal is represented in a wavelet basis, typically a large proportion of the
basis function coefficients is very small or zero, and a small number of coefficients
is sufficient to obtain reconstructions that closely resemble the original signal. In
the experiments we therefore investigated the connection between the error in re-
constructed signals and the number of basis function coefficients used to obtain
the reconstructions. As error measures we employed the ¢; and the ¢, norm. In
the literature it has been argued that for images the ¢; norm better corresponds
to the perceived image quality than other numerical error measures [DeVore et al.
1992]. Our test signals can been seen as images on the sphere and we therefore
wanted to explore whether or not the ¢; norm is in fact a more appropriate error
measure for the signals than the 5 norm which is the standard norm for the space
Ly(S?, dw). Numerical error measures are valuable in many contexts but they are

2The Matlab code used for the experiments presented in this section can be found online under
http://www.dgp.toronto.edu/people/lessig/soho/matlab.html.
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Fig. 3. Area-corrected error rates in the ¢; and f5 norm for approximations of
the test signals. The total number of basis function coefficients of the signals was
131,072.
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limited in their ability to measure the quality of a signal as it is perceived by hu-
mans [Pratt 1991]. In Fig. 4 we therefore provide plots of reconstructed signals for
visual inspection.

The problem of finding the optimal approximation in a basis representation, that
is the set of basis function coefficients which minimizes the reconstruction error for
a fixed number k of coefficients, is non-trivial (cf. [Gross 1996]). Only with the
{5 norm and for an orthogonal basis is it possible to efficiently obtain the optimal
approximation: in this case in fact the k largest basis function coefficients yield
the minimal reconstruction error. One of the motivations for the development of
nearly orthogonal spherical Haar wavelet bases was to obtain representations which
show in practice the same behavior as orthogonal bases. Following a similar idea,
Ma et al. likewise assumed that the pseudo Haar wavelets provide the same bene-
fits as orthogonal bases. We thus employed the /5 optimal approximation strategy
for orthogonal bases not only for the SOHO wavelet basis but also for the nearly
orthogonal Haar wavelets and the pseudo Haar basis. For the semi-orthogonal
Bio-Haar basis the approximation given by the k largest basis function coefficients
is far from optimal [Lessig 2007]. We therefore employed for the Bio-Haar basis
the basis-specific /5 optimal approximation strategy, requiring to compute inner
products (z/z}%l, 1/);1,> between wavelet basis functions defined over the same domain
T; » [Lessig 2007], thereby disregarding the fact that the computations are signifi-
cantly more expensive than for the other bases.

As shown in Fig. 2, two different SOHO wavelet bases can be obtained by either
using the positive or the negative sign in the computation of parameter a in Eq. 9. In
the experiments the basis in which the negative sign had been employed performed
slightly better and in the remainder of the paper we will therefore refer to this basis
as the SOHO wavelet basis.

5.2 Evaluation of Approximation Performance

The subdivsion scheme proposed in Section 4.4 allows the SOHO wavelet basis
to be defined over a partition derived from a tetrahedron, an octahedron, or an
icosahedron. Although in our experiments none of the resulting bases provided a
clear advantage, we argue that in general the octahedron is the best choice for the
base polyhedron. The basis induced by the octahedron never yielded the highest
error rate in any of our experiments and it can directly represent hemispherical
signals. Additionally, the alignment of a partition derived from an octahedron
with other parametrizations of the sphere is useful in many applications. In the
experiments discussed in the following we always employed the octahedron as base
polyhedron.

For the spherical Haar wavelet bases employed in the experiments, in Fig. 3 the
error rates in the ¢; and the ¢ norm resulting from an approximation of the test
signals with an increasing number of nonzero basis function coefficients are shown.
The basis Bonneau2 performed for all signals very similarly to the SOHO wavelet
basis and in the plots both representations are in most cases indistinguishable. For
the visibility map the basis Bonneaul provided higher error rates than the SOHO
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Fig. 4. Reconstructed signals for the SOHO wavelet basis, the Bio-Haar basis, and the pseudo
Haar basis (from left to right).

wavelet basis; both bases achieved however very similar results for the other two
signals. The two bases developed by Nielson et al. provided for the texture map
almost the same error rates as the SOHO wavelet basis; for the visibility map
however, in particular in the ¢; norm, the error rates were higher. For the BRDF,
the basis Nielson2 performed slightly better than the SOHO wavelet basis whereas
the basis Nielsonl obtained inferior results. With the exception of the BRDF where
the pseudo Haar basis achieved similar results than the SOHO wavelets, the Bio-
Haar basis and the pseudo Haar wavelets provided always higher error rates than
the other bases. Note that independent of the basis for the visibility map about
5% of the basis function coefficients were sufficient to provide reconstructions with
virtually no error. The full information of the signal could therefore be represented
with a small fraction of all coefficients.
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In Fig. 4 reconstructions of the test signals with a subset of all basis function co-
efficients are shown. The plots for the SOHO wavelet basis look in most cases
very similar to those of the nearly orthogonal bases and we therefore provide re-
constructions only for the SOHO wavelet basis, the Bio-Haar basis, and the pseudo
Haar wavelets. For the texture map we employed 8192, or 6.25%, of the original
131 072 basis function coefficients for reconstruction, for the other two signals 1024,
or 0.78%, of the coefficients were retained. Although the perceived quality is an
inherently subjective measure, we argue that the SOHO wavelet basis achieved for
all signals visually more pleasing results than the other two bases shown in the com-
parison. For the texture map the SOHO wavelet basis provides sharper edges and
the reconstructed signal appears less noisy. The basis also preserves more detail.
This can be seen in the center of Africa where the two lakes south of Lake Victoria
are clearly visible only for the SOHO wavelets. For the BRDF, the reconstructed
signal for the SOHO wavelet basis appears significantly smoother than the recon-
structions for the Bio-Haar basis and the pseudo Haar wavelets, and it therefore
better resembles the original Lambertian BDRF. For the visibility map, the SOHO
wavelet basis provides again sharper edges than the other two bases.

5.3 Discussion

We believe that the presented results provide valuable insights about the strengths
and weaknesses of spherical Haar wavelets and in particular of the SOHO wavelet
basis. Some experiments have been omitted as the results have already been pre-
sented elsewhere. Ng et al. [2003], for example, showed that Haar-like bases are
significantly more efficient than Spherical Harmonics for the representation of all-
frequency functions, and Schroder and Sweldens [1995] demonstrated that spherical
Haar wavelet bases are as efficient as smoother, spherical wavelets for the represen-
tation of image-like signals.

The results shown in Fig. 3 demonstrate that the error rates in the ¢; and the
¢5 norm are highly correlated, resembling earlier observations by Schréder and
Sweldens [1995]. A similar correlation can be observed between both numerical
error measures employed in our experiments and the visual quality of reconstructed
signals; this would appear to contradict DeVore et al. [1992] who argued that the ¢4
error norm better corresponds to the visual quality of image-like signals than other
numerical error measures. Our results therefore suggest that it is in applications
justifiable to employ the /5 norm to accurately estimate the error in the ¢; norm
or the visual quality of reconstructed signals. This is important as only for the /5
norm is it possible to efficiently find the optimal approximation; in log-linear time
for orthogonal bases and still at moderate costs for many other practically relevant
bases.

It is well-known that Haar-like bases are well suited for the representation of piece-
wise constant functions such as visibility maps. The experiments presented in this
section demonstrate, however, that these bases are also efficient for the represen-
tation of smooth signals. For the BRDF for example 0.78% of all basis function
coefficients were sufficient to provide visually pleasing reconstructions as shown in
Fig. 4. The texture map has features in the full frequency spectrum and thus more
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basis function coefficients had to be retained. Reconstructions which closely resem-
ble the original signal could however still be obtained with not more than 5% of
the basis function coefficients.

Prior to the experiments, we had anticipated that the nearly orthogonal spherical
Haar wavelet bases would outperform the Bio-Haar and the pseudo Haar wavelets.
That these bases provided results very similar to those of the SOHO wavelet basis
was however surprising to us. We initially thought that this might result from the
high subdivision level on which the signals were defined so that the bases already
approached their limit properties. Additional experiments showed however that
the good performance of the nearly orthogonal spherical Haar wavelet bases is
independent of the resolution of the input signal, hinting that the design of the
basis functions rather than the near orthogonality of the bases causes the results.
It will be interesting to explore how the nearly orthogonal bases perform for other
applications where orthogonality is of importance.

Considering that the pseudo Haar wavelets are not a basis of Lo(S?,dw) we were
surprised that the representation provided for almost all of the experiments results
competitive to those of the true spherical Haar wavelet bases. The assumption
that the geodesic bisector subdivision yields child domains with equal area seems
therefore in practice to be reasonable. For applications the pseudo Haar wavelets
provide the advantage that the filter coefficients are constant and do not depend
on the area of the domains of the partition.

5.4 Costs of Wavelet Transform

For spherical Haar wavelet bases it is expensive to compute the area of the par-
tition domains and the filter coefficients which are necessary to perform wavelet
transforms. For the SOHO wavelet basis additional costs result from our novel
subdivision scheme. Both the partition and the filter coefficients can however be
precomputed so that the costs of performing wavelet transforms are independent
of the basis and similar to those of wavelets in 2D.

6. FUTURE WORK

We believe that many applications might benefit from the use of the SOHO wavelet
basis. In computer graphics, for example the solution of the rendering equation [Ka-
jiya 1986] is likely to be more efficient with a representation of the factors of the
product integral equation in the SOHO wavelet basis. The light transport factors
in this case are usually not aligned and have to be rotated before a solution can be
obtained efficiently. It would be interesting to explore the possibility of comput-
ing basis transformation matrices for these rotations at runtime, thereby avoiding
approximations and reducing the otherwise significant storage requirements [Wang
et al. 2006].

Beyond computer graphics, applications for example in medical imaging, astro-
physics, and geoscience might benefit from the use of the SOHO wavelet basis. In
medical imaging in particular the orthonormality of the basis will be of interest; for
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example the ability to rigorously establish error bounds. For the very large data
sets in astrophysics and geoscience the superior approximation performance of the
SOHO wavelet basis will be beneficial.

Some theoretical questions also remain. In this work we derived an orthogonal and
symmetric spherical Haar wavelet basis by requiring area-isometry of the three outer
child partitions. The question if such a basis exists without the area constraint is
still unanswered. Another open problem is if smooth, orthogonal and symmetric
wavelets on S? exist, and if such a basis provides practical advantages over the
SOHO wavelet basis.

7. CONCLUSION

In this work we developed the SOHO wavelet basis, a novel spherical Haar wavelet
basis that is both orthogonal and symmetric, clarifying previous work that doubted
the existence of such a basis. Experimental results verify that the superior theoret-
ical properties of the SOHO wavelet basis are also of practical relevance.

Combining the findings of this paper, we believe that the SOHO wavelet basis is
an attractive representation for the approximation and processing of all-frequency
signals on the sphere, and we anticipate that the basis will enable more efficient
solutions for many problems in computer graphics and beyond.
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A. APPENDIX

Derivation of the wavelet basis functions for the SOHO wavelet basis (Mathematica
document):
http://www.dgp.toronto.edu/people/lessig/soho/soho-wavelets.nb

B. APPENDIX

Development of a spherical subdivision scheme with area-isometry for the three
outer child triangles (Mathematica document):
http://wuw.dgp.toronto.edu/people/lessig/soho/soho-area-equality.nb
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