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Abstract

Orthogonal and Symmetric Haar Wavelets on the Sphere

Christian Lessig

Master of Science

Graduate Department of Computer Science

University of Toronto

2007

The efficient representation of signals defined over spherical domains has many applica-

tions. We derive a new spherical Haar wavelet basis (SOHO) that is both orthogonal

and symmetric, rebutting previous work that presumed the nonexistence of such a basis.

The key to obtaining the basis is a novel spherical subdivision scheme that defines a

partition acting as the domain of the basis functions. We also derive basis transforma-

tion matrices that permit the rotation of a signal represented in our new basis. The

elements of these matrices can be computed analytically, in contrast to previous work

that required numerical computations. Experimental results for the approximation and

rotation of spherical signals verify that the superior theoretical properties of the SOHO

wavelet basis also have practical benefits over previous representations.
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Chapter 1

Introduction

Many signals are naturally parametrized over the unit sphere S2. Examples can be

found in astronomy, computer graphics, medical imaging, and many other fields. An

efficient and distortion free representation of spherical signals is therefore of importance.

Of particular interest are the ability to approximate a wide range of signals accurately

with minimal storage costs, and the possibility of obtaining computationally efficient

algorithms to process a signal.

In the following, we will introduce the ideas which yield such an efficient representation

of spherical signals. We will also provide some intuitions of why these techniques work

and why some representations are better suited for our purposes than others. The reader

is referred to the following chapters for a more mathematical treatment of the subjects.

We will also delay any proofs of our claims to later chapters.

1.1 How to represent signals?

A signal, or, to use terminology from mathematics, a function, can be represented in a

variety of ways. For our purposes, we represent functions using bases that have shown

1
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to be efficient for the representation of a wide range of signals in many different fields.

Formed by a sequence of functions, a basis can represent any function from the space

spanned by the basis functions. The basis representation will be seen to be optimal in

that it employs the minimal number of functions which is necessary to span the space.

The basis representation of a signal is formed by a unique sequence of basis function

coefficients. These are obtained by projecting the signal into the basis. How the projec-

tion is accomplished in detail depends on the particular representation. In most cases it

requires the computation of inner products of dual basis functions and the signal:

〉〈
〈 〉

,
= c1

...

,
= c2

Every basis function coefficient provides a measure of the correlation, or similarity, of

the associated basis function with the signal. Recombining the coefficients and the basis

functions therefore yields a function which locally resembles the signal:

=

...

c1×

=c2×

The original signal can be recovered, or reconstructed, by combining all scaled basis

functions. Many bases have an infinite number of basis functions and combining all of

them is therefore infeasible. In practice, a finite number of basis functions is used yielding

an approximation of the original signal:
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S ≈
∑

i

cifi ⇒

We already hinted that there is not only one basis for a given space. In fact, every

space has an infinite number of bases. These differ in their properties and therefore

in their practicality for different applications, making some bases better suited for our

purposes than others. This however leaves the question: What bases are efficient for the

approximation and processing of all-frequency signals on the sphere?

1.2 But what are wavelets?

Wavelets are very versatile and flexible representations for signals. Discrete wavelets, for

example, are well suited for compact representation and for approximation. Continuous

wavelets, in contrast, are more suitable for analysis. Wavelet representations are not

limited to be (minimal) bases. In particular continuous wavelets are often overcomplete,

that is the sequence of “basis” functions provides a redundant representation of a signal.

For our applications discrete wavelets that are bases are the representations of choice. In

the following, we will therefore concentrate on these, and for the sake of simplicity just

denote them as wavelets.

Nonetheless, the question what wavelets are has yet to be answered. Interestingly, even

after 25 years of intensive research in the field — or probably just because of this — there

is still no unique definition of wavelets. Wim Sweldens, one of the pioneers of wavelet

theory, characterized them as [89]:

“Building blocks which can quickly decorrelate data.” .

In the following, we will use this “definition” to give some insights about the characteris-

tics of wavelets, and to explain why these bases provide very compact representations for

all-frequency signals. We here consider a representation as compact if most of the basis
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function coefficients are very small or zero; approximations can then be obtained easily

with small error by ignoring the contributions of the smallest basis function coefficients

during reconstruction.

“Building Blocks” The basis functions of a wavelet basis all have a very similar

structure. In fact, for first generation wavelets all basis functions of a basis are scales and

translates of one mother basis function. This similarity leads to the notion of “blocks”.

“Building” attributes to the aggregation of wavelets to represent all functions in a space.

“Quickly” The word “quickly” refers to the existence of fast, linear-time transform

algorithms for both the projection of a signal into a wavelet basis and for the reconstruc-

tion of a (possibly approximate) signal from its basis representation.

Computing inner products between dual basis functions and a signal does not lead to

such fast algorithms. Therefore, filter coefficients, which are naturally associated with

the basis functions, and the hierarchical structure of wavelet bases are used to efficiently

compute the transforms. In practice, the filter coefficients are in fact the most useful

representation of the basis functions and can also be employed to establish different

properties of a basis.

“Decorrelate Data” The signals we want to represent in applications are not ran-

dom noise — they have structure and similarities in the data. These correlations can be

observed in different regions and at different scales. Natural signals are therefore local-

ized in both space and frequency. As discussed earlier, a basis function together with

the corresponding basis function coefficient locally resembles a signal. For an efficient

representation a basis should therefore exhibit the same structure as the signals they rep-

resent. Wavelet bases are designed so that the basis functions are localized in both space
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and frequency. Localization is however not sufficient for the compact representation of

natural signals. It only employs the spatial dimension of correlations and guarantees

therefore that the bases and the signals have the same structure; it does not, however,

automatically lead to small basis function coefficients. To obtain compact representa-

tions, the similarity in the data has to be exploited. The wavelet basis functions are

designed to assess differences in a signal and the basis function coefficients are therefore

measures for local dissimilarity: for regions which “look” very similar the basis function

coefficients are very small or zero, whereas inhomogeneous regions provide larger basis

function coefficients. Representing a natural signal (that has correlations) in a wavelet

basis therefore yields a representation in which most of the basis function coefficients

are very small or zero. To paraphrase these observations, the compactness of wavelet

representations stems from both the localization of the bases in space and frequency and

the design of the wavelet basis functions to assess differences.

As a side note, the idea of representing differences rather than homogeneities has inter-

esting connections to information theory, in particular to the definition of information as

measure of the predictability in a message (cf. [78]).

With the explanations detailed in this section it becomes clear that wavelets are efficient

for the compact representation and approximation of all-frequency signals.

1.3 What about spherical signals?

The simplest approach to representing signals on S2 is to map the spherical domain onto a

plane. Then, for example wavelets in two dimensions can be employed to efficiently repre-

sent spherical signals. However, the mapping unavoidably leads to nonuniform distortion

between the planar parametrization and the sphere, and thus such representations are

only of limited value. In the past, different alternative representations parametrized over

the sphere have been proposed. These are free of distortion but each of the techniques
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suffers from severe limitations for the applications at which we are aiming at.

These limitations led to the development of spherical wavelets. In addition to the advan-

tages of wavelets which have been discussed previously, the bases are parametrized over

the sphere and therefore free of distortion. We believe however that all spherical wavelet

bases proposed in the literature are limited in their ability to efficiently approximate and

process all-frequency signals on the sphere. As will be discussed in the following, three

properties are essential for such an efficient representation.

Orthonormality Orthonormal bases provide a variety of theoretical and practical ad-

vantages: most notably the optimal approximation in a specific but highly relevant error

measure, the so called `2 norm, can be computed efficiently. For fixed storage costs, the

optimal approximation is given by the k-largest basis function coefficients. The represen-

tation of the salient features of a signal in a few basis function coefficients makes wavelets

thereby better suited for approximation than other orthogonal bases. Furthermore, ob-

taining the dual basis functions, which are necessary to obtain the basis representation

of a signal, and establishing properties of a representation is in many cases only for

orthonormal bases efficiently possible.

Haar-like Nature The basis functions of Haar-like wavelets have minimal support for

face-based wavelets. The costs for performing wavelet transforms are therefore minimal,

and, more importantly, processing a signal in its basis representation is for Haar-like bases

significantly more efficient than for wavelets with basis functions having wider support.

In the literature, it has often been assumed that Haar-like bases are only efficient for the

representation of piecewise constant signals. Both theoretical and practical results show

however that Haar-like wavelet bases are efficient for the representation of functions of

bounded variation: natural, all-frequency signals as found in many applications.
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Symmetry Symmetry guarantees an orientation-free representation of features in a

basis. This avoids distortion when a signal is approximated. The high sensitivity of the

human visual system to non-symmetric artifacts makes this particularly important for

the visual quality of reconstructed signals.

The discussion above makes clear that an orthonormal and symmetric spherical Haar

wavelet basis is particularly suited for an efficient approximation and processing of all-

frequency signals on the sphere.

1.4 SOHO wavelets?

The analysis provided in the last sections led us to the development of the SOHO wavelet

basis. To our knowledge this is the first spherical Haar wavelet basis that is both or-

thonormal and symmetric. A novel subdivision scheme of the sphere, which provides

the partition acting as the domain of the wavelet basis functions, enabled us to obtain

the basis. The derivation thereby refutes previous work in which it was claimed that an

orthonormal and symmetric spherical Haar wavelet basis does not exist.

The practical relevance of the superior theoretical properties of the SOHO wavelet basis

has been verified with experiments. These show that the SOHO wavelet basis provides

competitive or lower error rates for the approximation of signals than previously proposed

spherical Haar wavelet bases. The visual quality of reconstructed signals confirms these

results.

1.5 But we have to rotate our signals?

An important operation for many applications is the rotation of a signal in its basis rep-

resentation. For example in computer graphics, rotation is necessary to efficiently solve
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the rendering equation, and in medical imaging it is used to align spherical data sets

for analysis. The objective of the rotation is thereby not primarily to obtain a rotated

signal, but to provide a representation of such a signal which permits efficient process-

ing. A change of basis yields such a representation, making it necessary to employ basis

transformation matrices for the rotation. In previous work, numerical computation of

the coupling coefficients forming these matrices was necessary. We show that for spher-

ical Haar wavelet bases it is possible to analytically compute the matrix elements. The

rotation of signals in a representations that is parametrized over the sphere additionally

avoids magnification of distortion artifacts that can be observed for planar parametrized

representations. An analysis of the structure of the rotation matrices shows that these

are quasi block symmetric and very sparse. This follows from the definition of the parti-

tions and the local support of the wavelet basis functions, and is important for efficient

computation and minimizing storage costs. Experimental results show that rotation in

the SOHO wavelet basis provides competitive or lower error rates than a rotation in

other representations for spherical signals. The computations are efficient due to the

sparsity of the rotation matrices. We also show that an approximation of the matrices

reduces the computational costs and storage requirements by orders of magnitude with

only moderately increased error rates in the rotated signals.

1.6 What’s next?

After a discussion of related work in Chapter 2, we will present in Chapter 3 the math-

ematical concepts which underly our work. There, we will also provide the notation for

the remainder of the thesis. A constructive proof for the SOHO wavelet basis will be

presented in the first part of Chapter 4. In the second part of the chapter, we will es-

tablish that the SOHO wavelets are an unconditional basis of the space L2(S2, dω). The

mathematically less inclined reader can safely omit this section on a first reading. The
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derivation of the rotation matrices and the analysis of their properties will be provided

in Chapter 5. Chapter 6 is devoted to a presentation of experimental results and an

interpretation of the observations. A discussion of avenues for future work is provided in

Chapter 7. We conclude the thesis with some summarizing remarks in Chapter 8.



Chapter 2

Related Work

2.1 Representation of Spherical Signals

In the past, different techniques such as bases, frames, and hierarchical subdivision

schemes have been used to represent, approximate, analyse, or process signals defined

on the sphere S2. In the following, we will discuss the different representations in more

detail and reveal why none of them is well suited for the efficient approximation and

processing of all-frequency signals on the sphere.

Spherical Harmonics [48] are the analogue to the Fourier basis on the sphere. The basis

functions are defined over Legendre polynomials and therefore arranged into frequency

bands yielding a localization of the SH basis in frequency. A localization in space is

prevented by the global support of the SH basis functions. Spherical Harmonics are

therefore suitable only for the representations of low-frequency signals. High-frequency

data cannot be represented efficiently. In fact, the harmonic nature of the basis often

yields ringing artifacts for these signals (cf. Figure 2 in [56]). We refer to the book by

Edmonds [23] and the excellent tutorial by Green [35] for a more detailed discussion of

the properties of the SH basis.

10
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Since their development in the 1940s, Spherical Harmonics have been used widely in par-

ticular in physics and chemistry, leading to a variety of algorithms to perform operations

in the SH basis. The availability of these techniques helped to establish Spherical Har-

monics in many other fields such as geoscience and medical imaging [16, 41]. Since the

mid 1980s, the SH basis has also been used widely in computer graphics, for example for

the representation of bidirectional reflectance distribution functions (BRDFs) [97], for

representing radiance in off-line radiosity computations [80], and for the efficient compu-

tation of light transport effects in environment map rendering and precomputed radiance

transfer (PRT) [12, 69, 42, 82].

In the past decade, Spherical Harmonics have been complemented by a variety of alter-

native, spherical and hemispherical harmonic bases. Makhotkin [49] and Koenderink et

al. [43] developed bases for the hemisphere based on Jacobi and Zernicke polynomials,

respectively. Compared to the SH basis, the costs for evaluating the basis functions

are however significantly higher, limiting the practicality of the bases [30]. Alfeld et

al. [3] proposed spherical Bernstein-Bézier polynomials for the representation of spher-

ical signals. As with analogous Bézier curves in Euclidean spaces, the basis has been

used mainly for the approximation of signals, for example for fitting scattered data on

the sphere and for interpolation [4]. Obtaining an approximation of a signal in spher-

ical Bernstein-Bézier polynomials requires to solve a sparse linear system that is often

ill-conditioned [4]. This makes the basis projection expensive, and spherical Bernstein-

Bézier polynomials are therefore ill-suited for many applications. Based on associated

Legendre polynomials, Gautron et al. [30] developed Hemispherical Harmonics (HSH).

The basis is similar to Spherical Harmonics but better suited for the representation of

hemispherical signals. Compared to the harmonic bases proposed by Makhotkin [49] and

Koenderink et al. [43], Hemispherical Harmonics provide approximately the same error

rates for representing hemispherical signals [30]. The costs for evaluating the basis func-

tions are however significantly lower for the HSH basis [30]. Sloan et. al [83] proposed
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Zonal Harmonics which are a restricted subset of the SH basis functions. In contrast to

Spherical Harmonics, this basis permits efficient rotation of signals in the basis represen-

tation.

In addition to specific limitations discussed above, all harmonic bases suffer from global

support of the basis functions and lacking efficiency for representing high-frequency data.

The bases are therefore not practical for the efficient representation and processing of

all-frequency signals.

Similar to harmonic bases, spherical splines are likewise defined over polynomial func-

tions. Many of the properties of splines in Euclidean spaces also hold for the spherical

domain [32, 11]. The basis is therefore suitable for approximating and processing low-

frequency signals, and has been used for example in medical imaging [38, 11, 6]. The

smooth nature of the basis functions limits however the practicality of spherical splines

for the representation of high-frequency data.

In Euclidean spaces, principal components analysis (PCA) [39] and singular value de-

composition (SVD) are two of the most popular algorithms for approximating high-

dimensional data [81, 52]. The techniques are limited in that they are not able to

respect the inherent structure of a manifold such as the embedding S2 ⊂ R3 in the

high-dimensional space [73]. To overcome this limitation, Roweis and Saul [73] devel-

oped locally linear embedding (LLE) [73] as an alternative to obtaining low-dimensional

approximations of high-dimensional data lying on a manifold. This technique is however

designed for general spaces and does not exploit the known structure of S2. Additionally,

obtaining the representation of a signal with LLE is expensive.

Spherical radial basis functions (SRBFs), sometimes also denoted as multivariate approx-

imations, have been used widely in particular for the approximation and interpolation

of spherical data [25]. An SRBF basis is unstructured and formed by kernels which

are the equivalents to the well-known radial basis functions on the sphere. The repre-
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sentation of a signal is obtained by fitting the position (space) and the size (scale) of

the kernel functions to the data. Similar to wavelets, the bases are therefore localized

in both space and frequency. The practicality of SRBF bases is limited by the pro-

hibitive costs for obtaining the basis representation of a signal [34, 93]. Additionally,

the data-dependent arrangement and the non-hierarchical structure of the basis func-

tions makes it difficult to develop efficient algorithms to perform computations in the

basis representation. In particular for wavelet bases such optimizations have shown to be

powerful [57, 88]. Applications for SRBF bases can be found for example in astronomy

and geoscience [25, 55, 27, 26]. Recently, spherical radial basis functions have also been

employed in computer graphics [34, 93].

Continuous spherical wavelets (CSW) have been developed for example in physics and

geoscience. In analogy with the Fourier transform which is used in one dimension to de-

rive wavelet bases, Freeden and Windheuser [28], Freeden [26], and Yeo et al. [100] used

Spherical Harmonics to develop CSW bases. In physics, group theoretic approaches have

been employed to derive continuous wavelets on S2 [5]. Given the structural similarity

between SRBF kernels and the Mexican hat or the Morlet wavelet, it is not surprising

that it is possible to construct spherical wavelets based on SRBF kernels [55, 28, 27, 26].

Continuous wavelets are in most cases overcomplete in the sense that these provide re-

dundant representations of a signal. This makes them well suited for signal analysis

but inefficient for the compact representation or approximation of signals [5, 99, 100].

Continuous spherical wavelets are therefore not the representation of choice for our appli-

cations. We refer to the books by Freeden [26] and Antoine et al. [5], and the references

in there, for a more detailed discussion of continuous wavelets on the sphere.

In contrast to continuous wavelets, discrete wavelet bases are suitable for approximating

and processing signals, and in the past a variety of representations for spherical signals has

been proposed. Lounsbery et al. [46] developed wavelet bases over subdivision surfaces

that can represent sphere-like shapes. Their construction can employ a wide range of
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subdivision schemes but none of the resulting bases is orthogonal. The global support

of the basis functions made it additionally necessary to truncate the wavelets. Such an

approximation does however no longer yield true wavelet bases. For the definition of the

inner product, Lounsbery et al. also assumed that all partitions at a given level have the

same area. This is in general not true.

The first discrete wavelet basis specifically designed for the sphere was proposed by

Dahlke et al. [18]. The basis is C1 and also formed by basis functions of global support.

Girardi and Sweldens [31] developed orthogonal Haar wavelets for general measure spaces.

Their scaling functions are identical to those employed in our work. The construction

does however not yield a symmetric basis on the sphere.

In their seminal work, Schröder and Sweldens [76] proposed different vertex- and face-

based spherical wavelets. Based on the results by Girardi and Sweldens [31], the au-

thors developed the Bio-Haar wavelets, a semi-orthogonal and symmetric spherical Haar

wavelet basis. The Lifting scheme has been employed by the authors to obtain smooth,

spherical wavelets that are either biorthogonal or semi-orthogonal. The partitions over

which the bases are defined are derived from a subdivision of the sphere. The domains at

the coarsest level are obtained by projecting a platonic solid with triangular faces such

as the octahedron or the icosahedron onto the sphere. The geodesic bisectors of the great

arcs forming the edges of the domains give for all levels the new vertices at the next finer

level. This results in a 4-fold subdivision. In the remainder of the thesis, we shall refer

to this technique as geodesic bisector subdivision. To assess the performance of the new

bases, Schröder and Sweldens performed experiments with common spherical signals from

computer graphics. The results for the approximation of the signals show that spherical

wavelet bases are well suited for the representation of functions which are parametrized

over the sphere. An interesting side result of the work by Schröder and Sweldens is that

Haar-like wavelets are as efficient as smoother bases for the representation of image-like
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signals on the sphere. This resembles earlier theoretical results by Donoho [22] which

showed that Haar-like bases are close to optimal for the representation of functions of

bounded variations. Similar results have also been obtained by Ng et al. [56]. These

show that Haar-like bases are efficient for the representation of all-frequency signals, and

that they clearly outperform Spherical Harmonics for typical signals in applications.

Nielson et al. [58], and later Bonneau [7], developed semi-orthogonal, symmetric spherical

Haar wavelet bases which are nearly orthogonal in that they become orthogonal in the

limit case when the subdivision level goes to infinity. These bases are similar to the

Bio-Haar wavelets proposed by Schröder and Sweldens [76], and in fact differ only in the

definition of the filter coefficients. Roşca [71, 72] likewise developed a family of nearly

orthogonal wavelets. Although the definition of the inner product employed in their

work limits the bases to be nearly orthogonal, a norm equivalence with the standard

norm on S2 permitted Roşca to establish that the wavelets are unconditional bases for

the space L2(S2, dω) of functions with finite energy on the sphere. Nielson et al. [58] and

Bonneau [7] did not show this for the bases developed in their works.

Ma et al. [47] proposed a Haar-like pseudo wavelet basis defined over the sphere. The

basis is identical to that proposed by Bonneau [7], but it is assumed that the subdivision

of a (spherical) partition yields child domains of equal area. This is is only true in the

limit case and the representation is therefore not a basis of the space L2(S2, dω) (cf.

Appendix A). With slight abuse of terminology, in the remainder of the thesis we shall

refer to this representation as pseudo Haar wavelets. In contrast to the Bio-Haar wavelets

or nearly orthogonal spherical Haar wavelet bases, the pseudo Haar wavelets provide the

advantage that the filter coefficients are constant; in fact, they are identical to those of

the non-standard Haar wavelet basis in 2D [87]. An area-isometry assumption similar to

those by Ma et al. [47] had already been employed earlier by Pastor and Rodrigues [64] for

the Bio-Haar wavelets proposed by Schröder and Sweldens [90]. Unfortunately, neither

Pastor and Rodrigues nor Ma et al. analysed the error introduced by their assumptions.
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Spherical Haar wavelet bases have been employed in different applications. Wang et

al. [96] used the Bio-Haar wavelets for image based relighting (IBL). By exploiting the

structure of their high-dimensional data sets the authors were able to further compress the

representation in spherical wavelets with a standard 2D wavelet decomposition yielding

even better overall compression rates. Recently, Nain et al. used the Bio-Haar wavelets

for 3D-shape analysis and segmentation [53, 54]. Ma et al. [47] employed the pseudo

Haar basis for PRT, enhancing the triple product integral algorithm by Ng et al. [57].

In the literature, next to spherical wavelet bases also wavelets defined over planar do-

mains have been used to represent signals on S2. In contrast to wavelets parametrized

over the sphere, the techniques are limited in that mapping the sphere onto a planar

domain unavoidably leads to distortion. The most common planar wavelet representa-

tion for spherical signals has been proposed by Ng et al. [56] and uses 2D non-standard

Haar wavelets parametrized over the faces of a cubemap. In independent work, Roşca

developed a very similar representation. She also provides a more formal description of

the technique [70]. In the remainder of the thesis, we shall refer to this representation

as Haar cubemap basis. An alternative technique which uses a planar parametrization

of the sphere has been developed by Wang et al. [95]. There, the octahedral map [67]

is employed as parametrization of the sphere and the planarized signals are represented

in non-standard Haar wavelets in 2D [87]. Compared to the Haar cubemap basis this

representation suffers from a more severe distortion of the spherical domain (cf. Figure

2 in [95] and Figure 2 in [56]).

In computer graphics, the Haar cubemap basis has been used for example for PRT [57]

and PRT for dynamic scenes [101, 88]. Okabe et al. [60] employed the representation for

inverse rendering in computer vision. Similar to the work by Ng et al. [56], these authors

also demonstrated that Haar-like wavelet bases are better suited for the representation

of all-frequency signals than Spherical Harmonics. Lalonde and Fournier [45] used tensor

product wavelets for the representation of BRDFs. Although the authors argued that
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Haar-like wavelet bases are less efficient for the representation of low-frequency signals

than smoother wavelets, their results show that the differences are not significant in

practice.

The efficiency of Haar-like wavelet bases for processing signals has been demonstrated

in particular in computer graphics. Ng et al. [57] for example demonstrated that Haar-

like wavelet bases are significantly more efficient for the computation of triple product

integrals than other orthonormal representations such as Spherical Harmonics. Sun and

Mukherjee [88] later generalized this work. The use of a Haar-like basis enabled these

authors to efficiently compute n-factor product integrals.

The geodesic bisector subdivision is only one possibility to define a partition on the

sphere. In particular in geoscience and astronomy a variety of alternative constructions

have been developed; in the literature these are often denoted as Geodesic Discrete Global

Grid Systems (GDGGS) [74].

Many partition schemes are similar to the geodesic bisector subdivision. Following Sahr

et al. [74], these can be classified according to three criteria.

Base Polyhedron The most common choices for the base polyhedron are octahedron

and icosahedron. The icosahedron minimizes area and shape distortion while the octa-

hedron is better suited for hemispherical signals [76]. The alignment of the domains for

the octahedron also coincides with other parametrizations of the sphere.

Subdivision Scheme The subdivision, which yields the hierarchical structure of a

partition, can be performed either in the plane or on the surface of the sphere. Sub-

division schemes can be further classified by the number of child partitions that result

from a subdivision step and by the shape of the domains. For triangular domains, an

n2-fold subdivision is possible by choosing n − 1 new points on each edge of a parent
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partition. In practice only 4-fold and 9-fold subdivisions are used. In addition to subdivi-

sion schemes based on (possibly spherical) triangles, techniques based on quadrilaterals

or hexagons have been proposed. Most computations become however more involved

for non-triangular domains. Hexagonal domains have the additional disadvantage that

they cannot be subdivided into a set of smaller hexagons and approximations have to be

employed to obtain a hierarchical, strictly nested structure.

Inverse Map Projection If the subdivision is performed in the plane then the result-

ing domains have to be projected onto the sphere to establish a partition of S2. The book

by Snyder [85] provides an excellent overview over suitable projections and their prop-

erties. Relevant for the construction of a partition is thereby in particular the trade-off

between area and shape distortion provided by the individual schemes. The results by

White et al. [98] show that the geodesic bisector subdivision provides a good compromise

between area and shape distortion.

One of the most interesting partitions proposed in astronomy is the HEALPix scheme [33,

94]. The construction provides the advantage that all domains of the sphere at a given

level are of equal area, making the partition well suited for the development of orthonor-

mal bases. The shape distortion for the HEALPix domains is however non-uniform and

in particular for the pole regions rather large (cf. Figure 2 in [94]). The construction is

therefore less suited for the development of symmetric wavelet bases.

2.2 Basis Transformation Matrices

For many applications such as environment map rendering in computer graphics, molecu-

lar electronic structure calculations in physics, and the alignment of spherical data sets in

medical imaging, the rotation of spherical signals in their basis representation is necessary.

The problem has been studied extensively only for Spherical Harmonics where both ana-
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lytic and computational solutions for the rotation have been proposed [23, 13, 42, 44, 65].

For some time it was believed that no efficient algorithm for the rotation of a signal in a

wavelet basis representation exists [95]. By employing the same mathematical concepts

which permit rotations in the SH basis, Wang et al. [95] were recently able to show that

basis transformation matrices can be used for the rotation.

For wavelets, the number of basis functions used in an application is typically higher than

for the SH basis. The rotation matrices for wavelet bases are therefore significantly larger

than for Spherical Harmonics. Wang et al. [95] showed however that the matrices for

wavelets are very sparse. In combination with the sparse nature of the basis function coef-

ficient vectors for typical signals, this enabled Wang et al. to demonstrate that a rotation

of signals in a wavelet basis representation is practical in real-time applications [95].

2.3 Connection to the Presented Work

In this chapter different representations for spherical signals have been discussed. None of

the existing techniques is however particularly well suited for an efficient approximation

and processing of all-frequency signals on the sphere.

The global support of the basis functions makes harmonic bases such as Spherical Har-

monics well suited only for the representation of low-frequency signals. Spherical radial

basis functions are localized in both space and frequency and therefore efficient for the

representation of all-frequency signals. The non-hierarchical structure of the basis func-

tions makes it however very difficult to develop efficient algorithms to process a signal in

an SRBF basis. Additionally, the basis projection is prohibitive expensive for spherical

radial basis functions. Continuous spherical wavelets are designed for signal analysis and

therefore not suited for our applications.

Haar-like wavelet bases have proven to be efficient for approximating and processing all-
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frequency signals. For spherical signals, approaches which employ a planar parametriza-

tion of the sphere suffer however from distortion artifacts. Spherical Haar wavelets are

free of distortion but the bases proposed in the literature are limited to either be symmet-

ric or orthogonal, degrading the approximation performance of the representations. In

this thesis, we develop the SOHO wavelet basis which is both orthogonal and symmetric.

Our construction is similar to those by Schröder and Sweldens [76] and by Bonneau [7]

but differs in that we modify the geodesic bisector subdivision employed in their works.

This permits us to enforce both orthogonality and symmetry simultaneously.

Previous work employed wavelet bases defined over planar domains for the rotation of

signals in a wavelet basis representation. This makes a numerical computation of the

elements of the basis transformation matrices necessary. Additionally, rotation in a planar

parametrized representations can give rise to magnification of parametrization artifacts.

We show that for spherical Haar wavelet bases an analytic computation of the rotation

matrices is possible. Experimental results verify that spherically parametrized wavelets

are better suited for the rotations than representations defined over planar domains.
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Background

In this section we will establish the definitions and the notation for the remainder of the

thesis. A basic understanding of algebra and analysis is assumed.

3.1 Lp Spaces and Bases

3.1.1 Banach Spaces, Norms, and Lp Spaces

Definition 1. A Banach space X is a vector space over the field F, of real or complex

numbers, with a norm ‖ · ‖ → [0,∞[ such that every Cauchy sequence (with respect to

the metric d(x, y) = ‖x− y‖) in X has a limit in X.

Definition 2. The dual space X̃ of a Banach space X is the Banach space of continuous

linear maps X → F.

In the following we will denote with a “tilde” all entities which are associated with a dual

space.

21
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Of particular interest for the discussion in this thesis are the Banach spaces Lp of p-power

integrable functions. The norm `p associated with Lp is defined as

‖f‖p =

(∫
|f |p dµ

)1/p

, (3.1)

where f ∈ Lp and ‖f‖p < ∞, ∀f ∈ X. In the following, we will be mainly concerned

with the space L2 of functions with finite energy. Therefore, if not stated otherwise, ‖ · ‖

refers to the 2-norm.

The inner product on a Banach space X is a function 〈·, ·〉 : X × X → F. In this thesis

we will only consider real valued inner product spaces so that F = R. Every Banach

space X with an inner product can be equipped with the norm

‖x‖ = 〈x, x〉1/2 , x ∈ X.

3.1.2 Orthogonality and Biorthogonality

Let δk,k′ be the Kronecker delta with

δk,k′ =

 1 if k = k′

0 otherwise.

The elements of a sequence {fk}m
k=1 in a Banach space X are orthogonal if

〈fk, fk′〉 = δk,k′ .

Two sequences {fk}m
k=1 and

{
f̃k

}m

k=1
in a Banach space X and its dual X̃, respectively,

are biorthogonal if 〈
fk, f̃k′

〉
= δk,k′ .
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3.1.3 Bases and Frames of Banach Spaces

Definition 3. Let X be a Banach space. A sequence of vectors {ek}m
k=1 belonging to

X is a (Schauder) basis for X if, for each f ∈ X, there exist unique scalar coefficients

{ck(f)}m
k=1 such that

f =
m∑

k=1

ck(f) ek. (3.2)

The sequence {ek}m
k=1 is an ordered set, and it forms an unconditional basis if the sum

in Eq. 3.2 converges unconditionally for all f ∈ X; therefore, if {ek}m
k=1 is not an un-

conditional basis then there exists a permutation σ of the basis function sequence for

which
{
eσ(k)

}m

k=1
is not a basis of X [14]. Besides the existence of an expansion for

every f ∈ X, Definition 3 requires uniqueness of the basis function coefficient sequence

{ck(f)}m
k=1. This is usually guaranteed by requiring that the basis functions ek be linearly

independent.

Definition 4. Let {ek}m
k=1 be a sequence in a Banach space X. The elements of {ek}m

k=1

are linearly independent if
∑m

k=1 ckek = 0 implies that ck = 0 for all k = 1, 2, . . .m.

Different types of bases exist. In the past, orthonormal bases have often been considered

as particularly desirable. These bases are also of high importance for this thesis.

Definition 5. A sequence {ek}m
k=1 belonging to a Banach space X is an orthonormal

basis for X if {ek}m
k=1 is an unconditional basis and 〈ek, ek′〉 = δk,k′ for any k and k′.

A basis is orthogonal if 〈ek, ek′〉 = ρk,k′ δk,k′ , where ρk,k′ ∈ R is some constant. Given an

orthogonal basis, an orthonormal basis can be obtained easily by normalizing the basis

functions so that their norm is one. Unless stated otherwise, in the remainder of the

thesis the terms will therefore be used interchangeably.

Orthonormal bases provide a variety of desirable properties. For these bases it is however

often difficult to enforce additional constraints on the basis functions. Riesz bases are

more flexible:
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Definition 6. A sequence of functions {fk}m
k=1 is a Riesz basis for a Banach space X if

and only if it is an unconditional basis for X and

0 < inf
k
‖fk‖ ≤ sup

k
‖fk‖ <∞.

As a corollary to Definition 6, it is easy to see that every orthogonal basis is a Riesz

basis. The basis function coefficients {ck}m
k=1 ∈ F of a Riesz basis can be obtained with

a basis
{
f̃k

}m

k=1
of the dual space X̃ of X. The

{
f̃k

}m

k=1
form a continuous linear map

from X into F. This is summarized in the following theorem:

Theorem 1. Let {fk}m
k=1 be a Riesz basis for a Banach space X, then there exists a

unique sequence
{
f̃k

}m

k=1
such that

f =
m∑

k=1

〈f, f̃k〉fk =
m∑

k=1

ckfk (3.3)

for every f ∈ X. The sequence
{
f̃k

}m

k=1
is a Riesz basis of the dual space X̃ of X, and

{fk}m
k=1 and

{
f̃k

}m

k=1
are biorthogonal. The series in Eq. 3.3 is guaranteed to converge

unconditionally.

A proof can be found in the book by Christensen [14]. The sequence
{
f̃k

}m

k=1
is called

the dual basis of the primary basis {fk}m
k=1, and the dual of

{
f̃k

}m

k=1
is again {fk}m

k=1.

The term coordinate functionals is sometimes also used to refer to the dual basis [90].

Note the practical importance of Theorem 1: It states how the sequence of basis function

coefficients {ck}m
k=1 can be obtained given a basis and its dual.

Corollary 1. The dual basis of an orthonormal basis {fk}m
k=1 is {fk}m

k=1.

For an orthonormal basis it is therefore trivial to obtain the dual basis. This is not true

for general Riesz bases.

Remark 1. Computing the basis function coefficients for a function f is commonly de-

noted as projection or analysis. The weighted sum of the basis function coefficients and

the primary basis functions, which again yields f , is called reconstruction or synthesis.
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A generalization of Riesz bases are frames as we now discuss:

Definition 7. A countable family of elements {fk}m
k=1 in a Banach space X is a frame

for X if there exist strictly positive constants A and B such that

A‖f‖2 ≤
m∑

k=1

|〈f, fk〉|2 ≤ B‖f‖2, ∀f ∈ X. (3.4)

Note that {fk}m
k=1 is no longer required to be a basis of X. The lower condition in Eq. 3.4

implies that span {fk}m
k=1 = X, and it can be shown that for frames a similar expansion

exists as for bases in Eq. 3.2. Frames are overcomplete and one can think of them as

redundant bases. They can therefore provide alternative representations of signals.

3.2 Wavelets

The first wavelet basis was developed by Haar as early as 1910 [37]. After the Second

World War the development mainly continued in the area of signal processing with the

work on windowed Fourier transforms [29] and quadrature mirror filters [17]. A thorough

and systematic understanding of the underlying concepts did however not begin until the

1980s. Contributions came then from a variety of fields such as signal processing, physics,

computer graphics, and applied mathematics. This led to a substantial mathematical

theory but gave also rise to applicable and fast algorithms.

Some of the first non-trivial wavelets were developed by Daubechies, Meyer, and Gross-

mann, to name a few of the many contributors. The applicability of these first generation

wavelets was however limited by restrictive settings over which they were defined. In the

1990s, the work by Mallat, Sweldens and others generalized the concept of wavelets. The

resulting second generation wavelets can be defined on general subspaces of Rn, with

weighted measures, and irregularly sampled data.

Despite the significant theory behind wavelets, there is no comprehensive definition of
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them in a strictly mathematical sense. Three properties of a sequence {fk}m
k=1 in a space

Lp, with fixed but arbitrary 0 < p <∞, are usually required to consider it as a wavelet:

(P1) The sequence {fk}m
k=1 forms a Riesz basis or a frame of Lp. This guarantees perfect

reconstruction.

(P2) The elements of {fk}m
k=1 are localized in both space and frequency. The localization

guarantees efficient decorrelation of signals which is important for compression. For

typical signals a large proportion of the basis function coefficients is zero or close

to zero, and a few coefficients are sufficient to represent the salient characteristics

of a signal.

(P3) Fast algorithms for the analysis, synthesis, and processing of a signal in its basis

representation exist.

For wavelets typically the space L2 is considered and we will therefore restrict ourselves

to this space for the remainder of the thesis.

The characterization of wavelets as stated above is a rather liberal one, following those

in an article by Sweldens [91]. In this thesis we are only interested in wavelets that

are bases. This corresponds to a more conservative characterisation found for example

in another, more technical article by Sweldens [90]. In the following we will therefore

only consider wavelet bases and the term “wavelet” will always refer to this restrictive

characterization.

3.3 First Generation Wavelets

Next to properties (P1) to (P3) from the last section, first generation or classic wavelets

are characterized by two additional properties:
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• The basis functions are dyadic scales and translates of one mother wavelet ψ:

ψj,k = 2jψ + k, (3.5)

where j defines the scale or dilation of the basis functions and k determines the

translation on level j.

• Fourier analysis can be used to develop the basis and establish its properties.

For first generation wavelets much research was devoted to obtaining bases with two

properties: compact support and linear phase. Compact support is important because

the costs for analysis and synthesis increase rapidly with the support size. Linear phase

is desirable because it is an only mild form of phase distortion. This avoids the loss

in frequency localization which follows from nonlinear phase shift and guarantees that

efficient approximation and coding techniques exist. From a theoretical point of view,

bases with zero phase distortion are even more desirable. For many practical settings

however, for example when causality is required, bases with zero phase shift do not

exist [61]. Symmetry of the basis functions is a sufficient condition for linear phase. In

the literature, therefore often symmetry rather than linear phase is required for a wavelet

basis. Note that the symmetry of the SOHO wavelet basis is not related to the symmetry

of first generation wavelets. The interested reader is referred to the excellent book by

Chui [15] for a more detailed treatment of first generation wavelets.

Although classic wavelets do not suffer from global support of the basis functions, many

limitations of the Fourier basis still apply [90]:

(L1) First generation wavelets are defined in (infinite) Euclidean spaces Rn. Practical

applications require bases defined over finite spaces or arbitrary subspaces of Rn.

(L2) Applications such as analysis on curves and surfaces, and weighted approximations

require bases adapted to weighted measures. First generation wavelets are usually

limited to spaces with translation invariant (Haar-Lebesgue) measures.
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(L3) In practice it is often necessary to work with irregularly sampled data. First

generation wavelets require a regular sampling of the data.

3.4 Second Generation Wavelets

Second generation wavelets overcome the limitations of first generation wavelets and

permit the representation of functions in L2, the space of functions with finite energy, in

a very general setting L2 ≡ L2 (X,Σ, µ), where X ⊆ Rn is a spatial domain, Σ denotes a

σ-algebra defined over X, and µ is a (possibly weighted) measure on Σ. First generation

wavelets are therefore a subset of second generation wavelets where X = Rn and where

the Haar-Lebesgue measure is used for µ. The connection between first and second

generation wavelets has also been studied by Daubechies and Sweldens [19].

3.4.1 Forest and Trees

We will employ forests and trees as hierarchical index sets.

Definition 8. A forest (F , g, p, C,<) consists of a countable set F of nodes, along with

a set of root nodes R ⊆ F , a generation function g : F → Z , a parent function

p : F \ R → {F , ∅}, a children function C : F → p(F), and a partial ordering < of the

elements of F [31]. For arbitrary nodes 4,5 ∈ F , a forest can be characterized by:

1. C(4) = {5 ∈ F | p(5) = 4} .

2. 0 ≤ #C(4) <∞.

3. If 5 ∈ C(4) then g(5) = 1 + g(4) .

4. If p(4) = ∅ then 4 ∈ R, that is 4 is a root node.

5. The ordering < linearly orders the children C(4) for all 4 ∈ F .
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6. If g(4) < g(5) and pn(4) = pm(5) for some n,m ≥ 0, then 4 < 5, with

n,m ∈ Z+ .

The power function pn of the parent function p is defined as the identity for n = 0 and

pn(4) = p(pn−1(4)) for n > 0, with n ∈ Z+. An analogous definition is used for the

power function Cn of the children function C. We note that p(4) has cardinality zero

or one, while C(4) is of bounded but potentially arbitrarily large cardinality.

The given partial ordering extends to a linear ordering of the whole forest when each Fj

of F is ordered linearly, where

Fj = {4 ∈ F | g(4) = j} .

With the linear ordering we can index the elements of F with two indices j ∈ J and

k ∈ K(j), where J can be identified with the generation function, and K(j) is defined

by the linear ordering of Fj.

The depth d(F) of a forest is defined as

d(F) = max
4∈F

g(4).

A leaf � ∈ F of a forest is a node which has no children, that is #C(�) = ∅. We

will denote with B the set of all leaves in F . It is often convenient to think of leaves as

repeating at later generations:

F∗j = Fj

⋃ {⋃
i<j

B ∩ Fi

}
.

A tree T is a subset T ⊆ F so that for all 4,5 ∈ T there are n,m ∈ Z+ so that

© = pn(4) = pm(5). The node © ∈ T is the root node of the tree and #R = 1.

3.4.2 Multiresolution Analysis

The basis functions of first generation wavelets are scales and translates of one mother

wavelet function. For arbitrary spaces X ⊆ Rn it is not possible to define the notion of
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scaling and translation. In the second generation setting a multiresolution analysis M

is employed to define the basis functions.

Definition 9. A multiresolution analysis M = {Vj ⊂ L2 | j ∈ J ⊂ Z} is a sequence of

nested subspaces Vj on different scales j ∈ J which satisfies:

1. Vj ⊂ Vj+1.

2.
⋃

j∈J Vj is dense in L2.

3. For every j ∈ J , a Riesz basis of Vj is given by scaling functions {ϕj,k | k ∈ K(j)}.

The k ∈ K(j) form a general index set defined over the scaling functions on level j. It

follows from the fact that the Vj are Banach spaces and from Definition 2 that a dual

multiresolution analysis M̃ =
{
Ṽj | j ∈ J ⊂ Z

}
formed by the dual spaces Ṽj exists. A

basis of the spaces Ṽj is given by dual scaling functions ϕ̃j,k . These are required to be

biorthogonal to the primary scaling functions on the same level:

〈ϕj,k , ϕ̃j,k′〉 = δk,k′ k, k′ ∈ K(j). (3.6)

With Theorem 1, a basis expansion of a function f ∈ Vj0 , for some fixed j0 ∈ J , is then

given by

f =
∑

k∈K(j0)

〈f , ϕ̃j0,k〉ϕj0,k =
∑

k∈K(j0)

λj0,k ϕj0,k,

where λj0,k are scaling function coefficients.

3.4.3 Partition

Definition 10. Let Σ be a σ-algebra of a space X ⊆ Rn. A set of measurable subsets

S = {Sj,k ∈ Σ | j ∈ J , k ∈ K(j)} is a partition of X iff:

1. ∀j ∈ J : clos
⋃

k∈K(j) Sj,k = X and the union is disjoint; that is for fixed j, the

Sj,k provide a simple cover of X.
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2. K(j) ⊂ K(j + 1).

3. Sj+1,k ⊂ Sj,k.

4. For a fixed k0 ∈ K(j0),
⋂

j>j0
Sj,k0 is a set containing one point xk0 ∈ X.

5. Sj,k =
⋃

l∈C(Sj,k) Sj+1,l.

A partition forms a forest where the nodes are the Sj,k.

3.4.4 Scaling Basis Functions

It follows from the nested structure of the spaces Vj that the scaling functions ϕj,k satisfy

a refinement relationship. Every ϕj,k can be written as linear combination of scaling

functions ϕj+1,l at the next finer level:

ϕj,k =
∑

l∈K(j+1)

hj,k,l ϕj+1,l. (3.7)

The hj,k,l are scaling function filter coefficients. An analogous relationship with dual

scaling function filter coefficients h̃j,k,l holds for the ϕ̃j,k. In the following, it is assumed

that all filters are of finite extent and uniformly bounded. This implies that finite index

sets L(j, k) and K(j, l) exist with

L(j, k) = {l ∈ K(j + 1) | hj,k,l 6= 0}

K(j, l) = {k ∈ K(j) | hj,k,l 6= 0} .

Analogous index sets L̃(j, k) and K̃(j, l) exist for the dual scaling functions. Unless stated

otherwise, l is assumed to run over L(j, k) or L̃(j, k) and k over K(j, l) or K̃(j, l).

A necessary condition for the existence of a wavelet basis is the convergence of the

cascade algorithm to the primary and dual scaling functions. The algorithm for the

primary scaling basis functions is outlined below in Remark 2.
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Remark 2. Let {λj0,k = δk,k0 | k ∈ K(j0)} be a Kronecker sequence for fixed but arbitrary

j0 ∈ J and k0 ∈ K(j0). The sequences {λj,k | k ∈ K(j)}, for j > j0, is generated by

recursively applying

λj+1,l =
∑

k

hj,k,l λj,k.

The function f
(j)
j0,k0

is defined as

f
(j)
j0,k0

=
∑

k∈K(j)

λj,k χSj,k
for j ≥ j0, (3.8)

where χSj,k
is the characteristic function of Sj,k. If limj→∞ f

(j)
j0,k0

converges to a function

in L2 then it is defined to be the scaling function ϕj0,k0 . For j > j0, the function f
(j)
j0,k0

satisfies [90]:

f
(j)
j0,k0

=
∑

l

hj0,k0,l f
(j)
j0+1,l. (3.9)

The cascade algorithm for the dual scaling functions is defined analogously.

If the cascade algorithm converges for all j0 ∈ J and k0 ∈ K(j0) then the partition S

and the filter coefficients hj,k,l and h̃j,k,l define sets of primary and dual scaling functions

that satisfy the refinement relationship in Eq. 3.7. This can be seen by letting j →∞ in

Eq. 3.9.

3.4.5 Wavelet Basis Functions

The wavelet basis functions {ψj,m | j ∈ J , m ∈M(j)} span the difference spaces Wj,

with Vj ⊕Wj = Vj+1. The m ∈ M(j) form a general index set defined over the wavelet

basis functions at level j. It follows from the definition of the ψj,m over the subspace

Wj ⊂ Vj+1 that wavelet basis function filter coefficients gj,m,l exist with

ψj,m =
∑

l∈K(j+1)

gj,m,l ϕj+1,l. (3.10)

Analogous to the primary wavelet basis functions ψj,m, dual wavelet basis functions ψ̃j,m

exist. These span the difference spaces W̃j, with Ṽj ⊕ W̃j = Ṽj+1. Dual wavelet basis
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function filter coefficients g̃j,m,l define the ψ̃j,m as linear combinations of dual scaling

functions ϕ̃j+1,l. As with K(j, l) and K̃(j, l), the index sets M(j, l) and M̃(j, l) are

likewise defined, and L(j,m) and L̃(j,m) are index sets which run over the nonzero

wavelet basis function filter coefficients. Unless stated otherwise, in the following l is

assumed to run over L(j,m) or L̃(j,m) and m to run over M(j, l) or M̃(j, l).

The primary and dual wavelet basis functions are biorthogonal:

〈
ψj,m , ψ̃j′,m′

〉
= δj,j′ δm,m′ for k ∈ K(j), k′ ∈ K(j′). (3.11)

3.4.6 Filter Coefficients

The biorthogonality of the basis functions can be related back to the filter coefficients:

∑
l gj,m,l g̃j,m′,l = δm,m′

∑
l hj,k,l g̃j,m,l = 0

∑
l hj,k,l h̃j,k′,l = δk,k′

∑
l h̃j,k,l gj,m,l = 0,

(3.12)

for all j ∈ J , and k ∈ K(j) and m ∈M(j).

Proof. (Sketch) Given sets of primary and dual scaling basis functions, Eq. 3.6 together

with Eq. 3.11 yields

δk,k′ = 〈ϕj,k , ϕ̃j,k′〉 =

〈∑
l

hj,k,l ϕj+1,l ,
∑

l′

h̃j,k′,l′ ϕ̃j+1,l′

〉
.

It follows from the biorthogonality of the scaling basis functions that 〈ϕj,k, ϕ̃j,k′〉 = 0 if

k 6= k′. Therefore only the case k = k′ with δk,k = 1 has to be considered

1 =

〈∑
l

hj,k,l ϕj+1,l ,
∑

l′

h̃j,k,l′ ϕ̃j+1,l′

〉
.

From the properties of the inner product it follows that

1 =
∑

l

∑
l′

hj,k,l h̃j,k,l′ 〈ϕj+1,l , ϕ̃j+1,l′〉 .
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Eq. 3.6 implies that 〈ϕj+1,l, ϕ̃j+1,l′〉 = δl,l′ and therefore

1 =
∑

l

hj,k,l h̃j,k,l.

Analogous derivations show that the other relationships in Eq. 3.12 hold.

3.4.7 Wavelet Bases

A set of basis functions provides perfect reconstruction if the conditions in Eq. 3.12 hold,

and [75] ∑
k

hj,k,l h̃j,k,l +
∑
m

gj,m,l g̃j,m,l = 1. (3.13)

Definition 11. A biorthogonal wavelet basis Ψ is a sequence

Ψ = {ϕ0,0 , ψj,m | j ∈ J , m ∈M(j)} ,

where the basis functions provide perfect reconstruction. The primary basis functions of

Ψ are denoted ψ̂j,m ∈ {ϕ0,0, ψj,m} with ψ̂−1,0 ≡ ϕ0,0 , and analogously ψ̆j,m ∈
{
ϕ̃0,0, ψ̃j,m

}
with ψ̆−1,0 ≡ ϕ̃0,0 for the dual basis functions .

A function f ∈ L2 can be represented in a wavelet basis as

f =
∑
i∈I

〈
f , ψ̆i

〉
ψ̂i =

∑
i∈I

γi ψ̂i, (3.14)

where the γi are the basis function coefficients, and i ∈ I is a general index set defined

over all basis functions of Ψ. Note that the basis functions form a forest and I results

from the linear ordering of the forest.

The second generation setting assumes biorthogonal wavelets. For orthogonal wavelet

bases, the primary and dual basis functions coincide for all j and m [76], or, equivalently,

every basis function is orthogonal to every other basis function [87]. Orthogonal wavelets

are therefore a subset of biorthogonal wavelet bases. It can be shown that the perfect

reconstruction condition in Eq. 3.13 is satisfied for all orthogonal wavelet bases.
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3.4.8 Fast Wavelet Transform

The fast wavelet transform is a pair of efficient linear-time algorithms for computing the

wavelet transforms of a signal. The forward transform projects a signal into the wavelet

basis and yields the basis function coefficients for all levels j > n, where n is a finest

level on which the scaling function coefficients are known. The inverse wavelet transform

reconstructs a signal from its basis representation.

Theorem 2. Let Ψ be a wavelet basis, and ϕj,k, with j ∈ J and k ∈ K(j), be the

associated scaling basis functions, and let S be a signal represented in the basis formed

by the scaling functions at a level n.

The projection of S into the wavelet basis Ψ and the reconstruction of the signal from its

basis representation can be computed efficiently by recursively performing analysis and

synthesis steps, respectively.

An analysis step of the fast wavelet transform is given by

λj,k =
∑

l

h̃j,k,l λj+1,l and γj,m =
∑

l

g̃j,m,l λj+1,l, (3.15)

and computes the basis function coefficients at level j as linear combination of the scaling

function coefficients at level j + 1. A synthesis step takes the form

λj+1,l =
∑

k

hj,k,l λj,k +
∑
m

gj,m,l γj,m, (3.16)

and reconstructs the scaling function coefficients at level j + 1 from the basis function

coefficients at level j.

Proof. (Sketch) From Theorem 1 it is known that the basis function coefficient associated

with a wavelet basis function ψj,m can be obtained as

γj,m =
〈
S , ψ̃j,m

〉
.

From the refinement relationship in Eq. 3.10 it follows that

γj,m =

〈
S ,
∑

l

g̃j,m,l ϕ̃j+1,l

〉
.
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With the signal in its basis representation at level j + 1, we can write

γj,m =

〈 ∑
k′∈K(j+1)

λj+1,k′ ϕj+1,k′ +
∑

m′∈M(j+1)

γj+1,m′ ψj+1,m′ ,
∑

l

g̃j,m,l ϕ̃j+1,l

〉
,

and with the definition of the inner product it follows that

γj,m =
∑

k′∈K(j+1)

∑
l

λj+1,k′ g̃j,m,l 〈ϕj+1,k′ , ϕ̃j+1,l〉+
∑

m′∈M(j+1)

∑
l

γj+1,m′ g̃j,m,l 〈ψj+1,m′ , ϕ̃j+1,l〉

The biorthogonality of the scaling basis functions 〈ϕj,k , ϕ̃j,k′〉 = δk,k′ and 〈ψj,m , ϕ̃j,k〉 =

0 [76] yields

γj,m =
∑

l

g̃j,m,l λj+1,l.

The proofs for the other equations of the fast wavelet transform are analogous.

In general, the relationship between the scaling function coefficients at a finest level n

and a signal can only be approximated [5]. For Haar-like bases an exact computation of

the coefficients is possible.

Theorem 3. Let S =
∑

k∈K(n) sn,k χn,k be a discrete signal defined over the domains

of a partition at level n, and let Ψ be a Haar-like wavelet basis defined over the same

partition with the associated scaling functions ϕj,k = ηj,kχj,k, with j ∈ J and k ∈ K(j),

where ηj,k is a normalization factor. The scaling function coefficients of S in Ψ at level

n are λn,k =
sn,k

ηn,k
.

Proof. It is easy to see that the sequence {ϕn,k}k∈K(n) is a basis of the space over which

S is defined. From the representation of the discrete signal it follows that

S =
∑

k∈K(n)

ηn,k

ηn,k

sn,k χn,k

=
∑

k∈K(n)

sn,k

ηn,k

ϕn,k

⇒ λn,k =
sn,k

ηn,k

.

To obtain the original signal from its wavelet representation the normalization has to be

cancelled, that is sn,k = ηn,k λn,k.
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SOHO Wavelets

In this section we will derive the SOHO wavelet basis. To our knowledge this is the first

spherical Haar wavelet basis that is both orthogonal and symmetric. A novel subdivision

scheme of the sphere, which is used to construct the partition, enables us to obtain

the basis. The properties of the SOHO wavelets make the basis well suited for the

approximation and processing of all-frequency signals on the sphere.

The SOHO wavelet basis spans the space L2 ≡ L2(S2, dω) of functions with finite energy

on the sphere. The standard area measure dω on S2 is defined as dω ≡ dω(θ, φ) =

sin (θ) dθ dφ, where ω = (θ, φ) are the polar coordinates of a point on the unit sphere,

and θ ∈ [0, π] and φ ∈ [0, 2π] .

4.1 The Partition Scheme

The SOHO wavelet basis is defined over a partition P = {Tj,k | j ∈ J , k ∈ K(j)}. The

domains T0,k at the coarsest level are obtained by projecting a platonic solid with trian-

gular faces onto the sphere. The domains at the next finer level are formed by a 4-fold

subdivision. Every Tj,k has therefore four child domains T k
j+1,l. As shown in Figure 4.1,

37
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Figure 4.1: Subdivision of a spherical triangle.

these are obtained by inserting one new vertex vk
j,l on each of the arcs forming the sides

of Tj,k. The domains at the coarsest level T0,k are therefore the root nodes of a set of

partition trees and P is formed by the union of these trees.

In contrast to the partition used by Schröder and Sweldens [76], we do not employ the

geodesic bisector to define the new vertex positions. Instead we constructed a partition

for which the three outer child triangles T k
j+1,1, T

k
j+1,3, and T k

j+1,3 have equal area. This is

the key to the derivation of a basis which is both orthogonal and symmetric. In Section 4.4

the definition of the subdivision scheme employed in our work will be detailed.

The characteristic function τj,k ≡ τj,k(ω) of the spherical triangle Tj,k is defined as

τj,k(ω) =


1 if ω ∈ Tj,k,

0 otherwise.

The area of Tj,k will be denoted αj,k with

αj,k =

∫
S2

τj,k(ω)dω =

∫
Tj,k

dω.
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4.2 Scaling Basis Functions

For a Haar-like basis, the scaling basis functions ϕj,k are constant over their support Tj,k

so that

ϕj,k = ηj,k τj,k,

where ηj,k is a normalization constant that is chosen so that the scaling functions satisfy

Eq. 3.6. It follows immediately from the disjoint nature of the Tj,k, for fixed j, that

the scaling basis functions on the same level j are orthogonal, that is 〈ϕj,k, ϕj,k′〉 = 0 if

k 6= k′. With the definition of the inner product on S2, the normalization constant is

∫
S2

ϕj,k ϕj,k dω = 1∫
Tj,k

(ηj,k τj,k) (ηj,k τj,k) dω = 1

η2
j,k

∫
Tj,k

dω = 1

η2
j,kαj,k = 1

⇒ ηj,k =
1

√
αj,k

.

The scaling functions for the SOHO wavelet basis are thus

ϕj,k =
τj,k√
αj,k

. (4.1)

An example for a scaling basis function at level 0 is shown in Figure 4.2. Given the ϕj,k,

the filter coefficients hj,k,l have to be chosen so that the refinement relationship in Eq. 3.7

is satisfied:

ϕj,k =
∑

l∈L(j,k)

hj,k,l ϕj+1,l

τj,k√
αj,k

=
∑

l∈L(j,k)

hj,k,l

τ k
j+1,l√
αk

j+1,l

.
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It follows from the partition that #L(j, k) = 4 and that the union of the τ k
j+1,l is τj,k.

The filter coefficients are therefore

hj,k,l =

√
αk

j+1,l

√
αj,k

. (4.2)

Theorem 4. For the filter coefficients in Eq. 4.2 and the partition P defined in Sec-

tion 4.1, the cascade algorithm converges to the scaling functions defined in Eq. 4.1.

Proof. Let {λj0,k = δk,k0 | k ∈ K(j0)} be a Kronecker sequence for fixed but arbitrary

j0 ∈ J and k0 ∈ K(j0). The sequences {λj,k | k ∈ K(j)}, for j > j0, are generated

recursively with

λj+1,l =
∑

k∈K(j,l)

hj,k,l λj,k . (4.3)

With the scaling function filter coefficients for the SOHO wavelets, Eq. 4.3 becomes

λj+1,l =
∑

k∈K(j,l)

√
αk

j+1,l

√
αj,k

λj,k, (4.4)

where #K(j, l) = 1 for the partition defined in Section 4.1. With λj0,k0 = 1, recursively

applying Eq. 4.4 yields

λj+1,l =

√
αj+1,l

√
αj,km

√
αj,km√

αj−1,km−1

. . .

√
αj0+2,k2√
αj0+1,k1

√
αj0+1,k1√
αj0,k

λj0,k0

=

√
αj+1,l

√
αj0,k0

. (4.5)

The coefficients λj,k in Eq. 4.4 and Eq. 4.5 are normalized. It was shown in Section 3.4.8

that for a Haar-like basis the scaling function coefficients λj,k must be denormalized to

obtain the original signal; for the cascade algorithm this is f
(j)
j0,k0

as defined in Equa-

tion 3.8.

With the normalization constant ηj,k = 1/
√
αj,k and the characteristic function τj,k, the

limit of Eq. 3.8 for j →∞ becomes

f
(∞)
j0,k0

= lim
j→∞

 ∑
k∈K(j)

1
√
αj,k

λj,k τj,k

 .
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With Eq. 4.5 this simplifies to

f
(∞)
j0,k0

= lim
j→∞

 ∑
k∈K(j)

1
√
αj,k

√
αj,k

√
αj0,k0

τj,k


yielding

f
(∞)
j0,k0

=
1

√
αj0,k0

lim
j→∞

 ∑
k∈K(j)

τj,k

 . (4.6)

It follows from the definition of the partition that the union of the τj,k, which form the

complete set of descendants of τj0,k0 at a fixed but arbitrary level j, is τj0,k0 . Eq. 4.6 can

then be written as

f
(∞)
j0,k0

=
1

√
αj0,k0

τj0,k0 ,

showing that the limit functions f
(∞)
j0,k0

are identical to the scaling functions of the SOHO

wavelet basis defined in Eq. 4.1.

4.3 Wavelet Basis Functions

We use a custom two-step approach to derive the wavelet basis functions for the SOHO

wavelets: In the first step we develop a semi-orthogonal basis, and in the second step

orthogonality and symmetry are enforced.

For a Haar-like basis, the wavelet basis functions associated with a partition Tj,k are

exclusively defined over the child partitions T k
j+1,l. Two wavelet basis functions ψj,m and

ψj,m′ defined on the same level j but over different partitions are thus trivially orthogonal.

For 〈ψj,m, ψj′,m′〉 = 0 with j 6= j′ to be true, we require that the wavelet basis functions

have a vanishing integral. To see that this in fact implies that the basis functions on

different levels are orthogonal, two configurations have to be considered. Without loss of

generality, let j < j′, and let ψj,m and ψj′,m′ be defined over Tj,k and Tj′,k′ , respectively.
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Figure 4.2: The scaling basis function and the three wavelet basis functions defined over

a partition at level 0. The top row shows the basis functions where the plus sign has

been employed in Eq. 4.15 to obtain a, the bottom row show the basis functions when

the negative sign has been used. The basis is defined over a partition derived from an

octahedron. Reddish tones indicate positive filter coefficients, bluish tones negative ones.

In case Tj′,k′ is a child of Tj,k, it follows from the strictly nested nature of the partition

that ψj,m is constant over the support of ψj′,m′ . The vanishing integral of ψj′,m′ then

implies that the inner product of ψj,m and ψj′,m′ is zero. If Tj′,k′ is not a child of Tj,k

then the support of the basis functions is disjoint. In this case the orthogonality is again

trivial.

For a Haar-like basis for which the wavelet basis functions have a vanishing integral it

is therefore sufficient to consider only one partition Tj,k, for fixed but arbitrary j ∈ J

and k ∈ K(j), together with its child partitions T k
j+1,l for the derivation of the wavelet

basis functions (cf. [7]). Similar to the scaling functions derived in Section 4.2, the result

will be a definition of the wavelets basis functions as functions of j and k. To simplify

the notation, the wavelet basis functions defined over Tj,k will be denoted ψi
j,k, with

i = 1, 2, 3, and the area of the partitions of interest will be abbreviated αl ≡ αk
j+1,l and
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αp ≡ αj,k; analogous notation will be used for the characteristic functions. In some cases

we will also omit the indices j and k. It is then understood that these are the fixed j

and k of Tj,k.

We already discussed the advantages of symmetric bases but did not yet provide a formal

definition [58].

Definition 12. A spherical Haar wavelet basis is symmetric if the basis function coeffi-

cients associated with a partition Tj,k, for arbitrary but fixed j ∈ J and k ∈ K(j), are

invariant to the labelling of the child domains T k
j+1,1, T

k
j+1,2, and T k

j+1,3.

This implies that we can change the labelling of T k
j+1,1, T

k
j+1,2, and T k

j+1,3, for a fixed

parent partition, without changing the numerical values of the associated basis function

coefficients (cf. Figure 4.1). Intuitively, this explains why symmetric bases provide

visually superior results. Note again, that this definition of symmetry is unrelated to the

concept of symmetry for first generation wavelets where it was a sufficient condition for

the linear phase of a basis.

For a fixed partition Tj,k, the analysis and synthesis steps in Eq. 3.15 and Eq. 3.16 can be

expressed as compact matrix-vector products. Perfect reconstruction requires that the

product of the analysis and synthesis matrices Aj,k and Sj,k, respectively, is the identity

I, that is Aj,kSj,k = I. This is equivalent to Aj,k = S−1
j,k . Basic results from linear algebra

imply the relationship simplifies to Aj,k = ST
j,k for an orthonormal basis. A synthesis step

in matrix-vector notation takes the form

λj+1,0

λj+1,1

λj+1,2

λj+1,3


=



hj,0 g0
j,0 g1

j,0 g2
j,0

hj,1 g0
j,1 g1

j,1 g2
j,1

hj,2 g0
j,2 g1

j,2 g2
j,2

hj,3 g0
j,3 g1

j,3 g2
j,3





λj

γ0
j

γ1
j

γ2
j


, (4.7)

where gi
j,l denotes the lth filter coefficient associated with the ith wavelet basis function ψi

j,k

defined over Tj,k, and the hj,l are the filter coefficients derived in Section 4.2. The vector
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on the right hand side in Eq. 4.7 contains the basis function coefficients associated with

Tj,k, and the result on the left hand side are the scaling function coefficients associated

with the child domains of Tj,k.

A semi-orthogonal wavelet basis is a biorthogonal basis for which the wavelet basis func-

tions are orthogonal to the scaling functions. For fixed Tj,k, this implies〈
ψ0

j,k , ϕj,k

〉
=
〈
ψ1

j,k , ϕj,k

〉
=
〈
ψ2

j,k , ϕj,k

〉
= 0. (4.8)

Eq. 4.8 can be expressed in Dirac bra-ket notation:

[〈Φj | Ψj〉] = 0, (4.9)

where [〈X | Y 〉] denotes the matrix of inner products of the two function sets X and

Y , and Φj and Ψj are the matrices containing the scaling and wavelet basis functions

defined over Tj,k, respectively. Eq. 4.9 can be expanded with the refinement relationship

in Eq. 3.10 [87, 24]:

[〈Φj | Φj+1〉]Gj = 0.

The matrix Φj is degenerate, containing only ϕj,k, and Φj+1 is formed by the four scaling

basis functions ϕk
j+1,l defined over the child partitions T k

j+1,l. The matrix of inner products

is thus

[〈Φj | Φj+1〉] =
1
√
αp

[
√
α0 τ0,

√
α1 τ1,

√
α2 τ2,

√
α3 τ3] .

Gj contains the desired wavelet basis function filter coefficients gi
j,l. The matrix spans

the nullspace of [〈Φj | Φj+1〉] and can therefore be obtained using existing techniques:

Gj =



−
√

α1√
α0

−
√

α2√
α0

−
√

α3√
α0

1 0 0

0 1 0

0 0 1


. (4.10)

Note that the wavelet basis functions defined in Eq. 4.10 are, up to a scaling factor,

identical to those of the Bio-Haar wavelets proposed by Schröder and Sweldens [76]. As

shown in the following the functions have a vanishing integral.
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Proof. We want to show that

0 =

∫
S2

ψ0
j,k dω.

Expanding this equation with the refinement relationship in Eq. 3.10 yields

Ω ≡
∫

S2

ψ0
j,k dω =

∫
S2

∑
l

gi
j,l ϕj+1,l dω.

Using the results from Eq. 4.10 gives

Ω =

∫
S2

−
√
α1√
α0

τ0√
α0

+
τ1√
α1

dω.

The filter coefficients and the normalization constants do not depend on the integrand

so that

Ω = −
√
α1√

α0
√
α0

∫
S2

τ0 dω +
1
√
α1

∫
S2

τ1 dω.

Performing the integration then yields the result

Ω = −
√
α1√

α0
√
α0

α0 +
α1√
α1

= −
√
α1 +

√
α1

= 0.

The derivations for the other two wavelet basis functions are analogous.

Given the semi-orthogonal basis derived above, we now have to enforce symmetry and

orthogonality of the wavelet basis functions, thereby taking care to preserve the prop-

erties that have already been established. The intimate relationship between the filter

coefficients and the basis functions thereby allows us to mainly consider the filter repre-

sentation of the basis functions in the derivation, orthogonality of the basis functions can

for example be guaranteed by requiring that the corresponding filter coefficient sequences

are orthogonal.
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With slight abuse of terminology, we can consider the basis derived so far as an “initial

guess”. Let S̃j,k be a synthesis matrix with the gi
j,l and hj,l derived previously. To obtain

a basis that has all desired properties, we could augment each wavelet basis function

coefficient in S̃j,k with an additional free parameter. A linear system could then be used

to enforce the required properties of the wavelet basis. The solution of the system, if

it exists, are the desired wavelet basis functions. However, we were not able to obtain

a solution for the system. In fact, we believe at the moment that a solution might not

exist.

We therefore decided to make the problem more tractable, requiring that the areas of the

three outer child partitions be equal; in Section 4.4 it will be shown that the partition

P can be constructed so that this constraint is satisfied. Given the area isometry of the

three outer child triangles, symmetry can be guaranteed by the following parametrization

of the synthesis matrix:

S̃j,k =



√
α0√
αp

−c
√

α1√
α0

−c
√

α1√
α0

−c
√

α1√
α0

√
α1√
αp

b a a
√

α1√
αp

a b a
√

α1√
αp

a a b


, (4.11)

where a, b, and c are the remaining free parameters. We used a linear system derived

from Eq. 4.11 to obtain a solution for the parameters. It follows from the symmetry of

the wavelet basis functions and the area isometry of the three outer child partitions that

three equations are sufficient to enforce the orthogonality of the basis functions and to

preserve the already established properties:

0 = −c
√
α1√
αp

+ 2a

√
α1√
αp

+ b

√
α1√
αp

(4.12)

0 = c2
α1

α0

+ a2 + 2ab (4.13)

0 = −c
√
α1 + 2a

√
α1 + b

√
α1, (4.14)

where the first equation guarantees semi-orthogonality, the second equation establishes
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the orthogonality of the wavelet basis functions, and the last equation enforces the vanish-

ing integral of the ψi
j,k. In fact, only two equations are necessary to enforce all constraints.

It is easy to see that Eq. 4.12 and Eq. 4.14 are not linearly independent and differ only

by a constant. One parameter can therefore be chosen freely. We set c = 1. The solution

to the linear system gives the wavelet basis functions for the SOHO wavelet basis:

ψ0
j,k =

Λ1

Λ0

τ0 +
1

Λ1

( (−2a+ 1) τ1 + a τ2 + a τ3)

ψ1
j,k =

Λ1

Λ0

τ0 +
1

Λ1

( a τ1 + (−2a+ 1) τ2 + a τ3)

ψ2
j,k =

Λ1

Λ0

τ0 +
1

Λ1

( a τ1 + a τ2 + (−2a+ 1) τ3),

with

a =
1±

√
1 + 3∆2

3
, (4.15)

where Λl ≡
√
αl and ∆ =

√
α1/α0. The area measures α0 and α1 are always positive

and thus a in Eq. 4.15 is guaranteed to be real. Note that there are two solutions for a

and therefore two different sets of wavelet basis functions. A side-by-side comparison of

the two sets is shown in Figure 4.2.

An orthonormal basis can be obtained by augmenting the wavelet basis functions ψl
j,k

with the normalization constant

%j,k =
1√

9a2 − 6a+ 1
.

Proof. For a normalized basis the inner product of a wavelet basis function and itself has

to satisfy 〈
ψi

j,k , ψ
i
j,k

〉
= 1.

Expanding the equation with the refinement relation in Eq. 3.10 and augmenting the

wavelet basis function with a (yet unknown) normalization constant %j,k yields

1 =

∫
S2

∑
l

%j,k g
i
j,l ϕ

k
j+1,l

∑
l′

%j,k g
i
j,l′ ϕ

k
j+1,l′ dω.
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The support of the scaling basis functions at level j + 1 is disjoint so that

1 =
∑

l

%2
j,k

(
gi

j,l

)2 ∫
S2

(
ϕk

j+1,l

)2
dω.

The scaling basis functions are normalized and the integral in the last equation is therefore

one. Expanding the sum then yields

1 = %2
j,k

(
α1

α0

+ a2 + a2 + (1− 2a)2

)
= %2

j,k

(
α1

α0

+ 6a2 − 4a+ 1

)
. (4.16)

Solving Eq. 4.15 for α1 gives α1 = aα0 (3a− 2). Employing this result in Eq. 4.16 yields

1 = %2
j,k

(
α0 (3a2 − 2a)

α0

+ 6a2 − 4a+ 1

)
.

The result then follows immediately

%j,k =
1√

9a2 − 6a+ 1
.

It follows from the symmetry of the SOHO wavelet basis that the normalization constant

is identical for all three wavelet basis functions defined over Tj,k.
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Figure 4.3: Differences between the equal-area subdivision developed for the SOHO

wavelet basis (top) and the geodesic bisector subdivision employed by Schröder and

Sweldens (bottom) [76]. It can be seen that our new subdivision scheme only slightly

displaces the vertices from the geodesic bisector.
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4.4 Construction of the Partition

In the last section it has been demonstrated that the SOHO wavelet basis can be con-

structed provided the three outer child triangles T k
j+1,l, T

k
j+1,2, and T k

j+1,3 of a partition

Tj,k have equal area. In this section we will introduce a novel subdivision scheme of the

sphere that yields a partition satisfying this constraint.

In the following, we consider again only one partition Tj,k, with fixed but arbitrary j ∈ J

and k ∈ K(j). Previous work positioned the vertices vk
j,l at the geodesic bisectors of the

spherical edges a, b, and c of the parent domain Tj,k (cf. Figure 4.1). This does not yield

child triangles with equal area. However, P , as defined in Section 4.1, only imposes a

topology on the partition. The vk
j,l can therefore be positioned so that α1 = α2 = α3 (cf.

[58]).

Let vk
j,1 still be the geodesic bisector. The positions of vk

j,2 and vk
j,3 can then be obtained

from a system of equations:

cot

(
1

2
E

)
= cot(C) +

cot
(

1
2
β1

)
cot
(

1
2
γ
)

sin(C)
(4.17)

cot

(
1

2
E

)
= cot(B) +

cot
(

1
2
β2

)
cot
(

1
2
γ
)

sin(B)
(4.18)

cot

(
1

2
E

)
= cot(A) +

cot
(

1
2
b− 1

2
β1

)
cot
(

1
2
c− 1

2
β2

)
sin(A)

, (4.19)

where we used Eq. 36 from the book by Todhunter [92] to define the equations. The

variables on the right hand side of the equations are given in Figure 4.1, and E denotes

the spherical excess of the three outer child partitions. Solving this system for β1 and

β2 yields the positions of vk
j,2 and vk

j,3. The resulting formulae are lengthy and therefore

omitted.

In the following it will be shown that only one solution for the vertex positions exists

if the angles of the parent domain are labelled consistently. For the proof it is assumed

that the partition is derived from an octahedron or an icosahedron.



Chapter 4. SOHO Wavelets 51

Eq. 4.17, Eq. 4.18, and Eq. 4.19 have to be satisfied to obtain area isometry of the three

outer child partitions. To show that only one configuration satisfies this constraint the

following two equations will be examined

cot(C) +
cot
(

1
2
β1

)
cot
(

1
2
γ
)

sin(C)
= cot(B) +

cot
(

1
2
β2

)
cot
(

1
2
γ
)

sin(B)
(4.20)

cot(B) +
cot
(

1
2
β2

)
cot
(

1
2
γ
)

sin(B)
= cot(A) +

cot
(

1
2
b− 1

2
β1

)
cot
(

1
2
c− 1

2
β2

)
sin(A)

. (4.21)

Eq. 4.20 and Eq. 4.21 state that the areas of child partitions two and three, α2 and α3,

and child partitions two and one, α2 and α1, are equal, respectively. Both equations can

be solved for β1. The resulting functions f1(β2) and f2(β2) represent all (not necessarily

valid) configurations so that α2 = α3 and α2 = α1, respectively. The area isometry of

all outer child partitions is satisfied at the intersection point of f1(β2) and f2(β2). The

objective in the following is therefore to show that the two functions f1(β2) and f2(β2)

have exactly one intersection point for β1 ∈ (0, b] and β2 ∈ (0, c].

Remark 3. The angles A, B, and C are in [0, π] and let

As ≡ sin(A) Ac ≡ cos(A) At ≡ cot(A)

Bs ≡ sin(B) Bc ≡ cos(B) Bt ≡ cot(B)

Cs ≡ sin(C) Cc ≡ cos(C) Ct ≡ cot(C).

We will denote with a “bar” variables in cotangent space:

γ̄ ≡ cot
(

1
2
γ
)

b̄ ≡ cot
(

1
2
b
)

c̄ ≡ cot
(

1
2
c
)

and

β̄1 ≡ cot
(

1
2
β1

)
β̄2 ≡ cot

(
1
2
β2

)
,

where a = 2γ, b, c ∈ (0, π/2].

The inverse cotangent function acot(x) has a pole at x = 0 and further

lim
x→∞

acot(x) = 0 limx+→0 acot(x) = ∞

lim
x→−∞

acot(x) = 0 limx−→0 acot(x) = −∞.
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Figure 4.4: Inverse cotangent.

For x ∈ (0,∞] and x ∈ [−∞, 0) the inverse cotanget is continuous (cf. Figure 4.4).

Note that in cotangent space

lim
β2→0

cot

(
1

2
β2

)
= ∞,

and the domains of interest are then β̄1 ∈ [b̄,∞) and β̄2 ∈ [c̄,∞). Using the notation

introduced in Remark 3, the representations of f1(β2) and f2(β2) in cotangent space,

ḡ1(β̄2) and ḡ2(β̄2), respectively, are

ḡ1(β̄2) =
CsBt

γ
− Cc

γ̄
+
Cs

Bs

β̄2 (4.22)
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and

ḡ2(β̄2) = −
b̄γ̄Asβ̄2(β̄2 − c̄) +Bs

[
1 + b̄AtAs(c̄− β̄2) + c̄β̄2 + b̄AsBt(β̄2 − c̄)

]
γ̄Asβ̄2(c̄− β̄2) +Bs

[
b̄+ AsBt(c̄− β̄2) + b̄c̄β̄2 + AtAs(β̄2 − c̄)

] . (4.23)

Here the identity

cot(x− y) =
−1− cot(x) cot(y)

cot(x)− cot(y)

has been used for the derivation [2].

Lemma 1. The function ḡ1(β̄2) does not have a root for β̄2 ∈ [c,∞).

Proof. Eq. 4.22 is a linear equation in β̄2. Therefore, if both limβ̄2→∞ ḡ1(β̄2) > 0 and

ḡ1(c) > 0 then the function may not be a root for β̄2 ∈ [c̄,∞). It is easy to see that

lim
β̄2→∞

ḡ1(β̄2) = ∞,

and that

ḡ1(c̄) =
CsBt

γ̄
− Cc

γ̄
+
Cs

Bs

c̄

=
Cc

γ̄

[
Cs

Cc

Bc

Bs

− 1

]
+
Cs

Bs

c̄.

It follows from

Cc

γ̄

[
Cs

Cc

Bc

Bs

− 1

]
> 0 (4.24)

that ḡ1(c̄) > 0. To see that Eq. 4.24 is true, four different configurations have to be

considered. Without loss of generality, the angles in the parent triangle are defined so

that the following statements are true:

• B < π
2

and C < π
2
: B < C.

• B > π
2

and C > π
2
: B > C.

• One angle is greater than π
2

and one angle is smaller: B < π
2

and C > π
2
.

• At least one angle equals π
2
: C = π

2
.

It is easy to verify that in each case Eq. 4.24 holds.
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Lemma 2. The function ḡ2(β̄2) does not have a root for β̄2 ∈ [c̄,∞).

Proof. For ḡ2(β̄2) to have a root in β̄2 ∈ [c̄,∞) the numerator in Eq. 4.23, in the following

denoted by h̄(β̄2), has to have a root in the interval. The number of terms in h̄(β̄2)

makes it difficult to directly show that there are no roots in the domain of interest. It

will therefore be shown that limβ̄2→∞ h̄(β̄2) and h̄(c̄) are strictly positive and that the

equation does not have a critical point in β̄2 ∈ [c̄,∞). This implies that the quadratic

equation h̄(β̄2) has no root in the interval of interest.

For β̄2 →∞ it is again easy to see that

lim
β̄2→∞

h̄(β̄2) = ∞.

With β̄2 = c it follows that

h̄(c̄) = b̄γ̄Asβ̄2(c̄− c̄) +Bs

[
1 + b̄AtAs(c̄− c̄) + c̄2 + b̄AsBt(c̄− c̄)

]
= Bs +Bsc̄

2

> 0.

The derivative dh̄(β̄2)

dβ̄2
= h̄′(β̄2) is given by

h̄′(β̄2) = (c̄− b̄AtAs + b̄AsBt)Bs + b̄Asβ̄2 + b̄γ̄As(β̄2 − c̄),

which is a linear equation in β̄2. Again examining the function values at the boundaries

of the interval of interest shows that

lim
β̄2→∞

h̄′(β̄2) = ∞,

and

h̄′(c̄) = (c̄− b̄AtAs + b̄AsBt)Bs + b̄Asc̄+ b̄γ̄As(c̄− c̄)

= (c̄− b̄AtAs + b̄AsBt)Bs + b̄Asc̄+ b̄γ̄As(c̄− c̄)

= (c̄+ b̄As(Bt − At)))Bs + b̄Asc̄.
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As with the inverse cotangent, the cotangent function cot (x) is monotonic for x ∈ (0,∞]

and x ∈ [−∞, 0). Without loss of generality, choosing A and B so that B > A then

guarantees that h̄′(c̄) > 0. This implies that the derivative has no root for β̄2 ∈ [c̄,∞)

and it follows that ḡ2(β̄2) does not have a root in the interval of interest.

Theorem 5. The functions f1(β2) and f2(β2) have exactly one intersection point for

β2 ∈ (0, c], and β1 ∈ (0, b] is satisfied for this point.

Proof. It follows from Lemma 1 and Lemma 2 and the properties of the inverse cotangent

that f1(β2) and f2(β2) are continuous and monotonic for β2 ∈ (0, c]. Applying the inverse

cotangent to the results obtained in the proof of Lemma 1 shows that

lim
β2→0

f1(β2) = 0 and f1(c) > 0.

The function values of ḡ2(β̄2) at the boundaries of the interval of interest are

lim
β̄2→∞

ḡ2(β̄2) = − β̄
2
2

β̄2
2

(
b̄γ̄As + 0

−γ̄As + 0

)
= b̄

and

ḡ2(c̄) = −
b̄γ̄Asβ̄2(c̄− c̄) +Bs

[
1 + b̄AtAs(c̄− c̄) + c̄2 + b̄AsBt(c̄− c̄)

]
γ̄Asβ̄2(c̄− c̄) +Bs

[
b̄+ AsBt(c̄− c̄) + b̄c̄2 + AtAs(c̄− c̄)

]
= − Bs + c̄2

Bsb̄+ b̄c̄2

= −1

b̄
,

and therefore

lim
β2→0

f2(β2) = 2 acot

(
cot

(
1

2
b

))
> 0 and f2(c) = 2 acot

(
− 1

cot (1
2
b)

)
< 0.

Note that here is no contradiction with Lemma 2. The function ḡ2(β̄2) has a pole for

β̄2 ∈ [c̄,∞) in cotangent space which yields a root of f2(β2). Of importance for the proof

is however only that f2(β2) is continuous for β2 ∈ (0, c]. This is assured by the fact that

ḡ2(β̄2) has no root in the interval of interest.
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Subdivision Scheme Octahedron Icosahedron

Level 5 7 5 7

Our subdivision 43.0864 43.0417 53.5981 53.5808

Geodesic midpoint 45.0345 45.0022 54.0163 54.0010

Table 4.1: Shape distortion for the partition proposed in this thesis and the geodesic

bisector subdivision employed by Schröder and Sweldens [76]. The minimum internal

angle (in degrees) over all partitions was used as distortion measure.

The monotonicity of f1(β2) and f2(β2) now implies that there must exist exactly one

intersection point between the two functions for β2 ∈ (0, c]. From the function values of

f1(β1) at the boundaries of β2 ∈ (0, c] it follows that β1 ∈ (0, b]. The intersection point

is the desired configuration where the area of the three outer child triangles is equal (cf.

Fig 4.5).

For the partition T it is desirable to yield spherical triangles that are uniform so that

the arc lengths and the angles of the domains are equal. We have not yet been able

to prove bounds on the distortion introduced by our subdivision scheme. Numerical

experiments show however that it is not significantly larger than that for the geodesic

bisector subdivision. We used the minimum internal angle over all partitions to measure

the shape distortion. The results are given in Table 4.1.



Chapter 4. SOHO Wavelets 57

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

β
2

β 1

4 5 6 7 8

−1

0

1

2

3

4

5

6

7

8

acot(0.5 β
2
)

ac
ot

(0
.5

 β
1)

Figure 4.5: In the top figure f1(β2) (blue) and f2(β2) (red) are shown, ḡ1(β̄2) (blue) and

ḡ2(β̄2) (red) are graphed in the bottom plot. The limits for the functions are shown in

magenta and green.
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4.5 Unconditional Basis Property

In this section we will provide a proof which shows that the SOHO wavelets are an or-

thonormal basis of L2 ≡ L2(S2, dω). In a first step, it will be verified that the wavelets

developed in this thesis are an unconditional basis of L2. The result then follows immedi-

ately from the orthogonality of the basis functions. The proof is based on the results by

Girardi and Sweldens [31] and these authors deserve the most credit for the derivation.

In Section 3.1.3 a definition for an unconditional basis has already been provided. For

the proof we will employ an alternative, more practical one [31, 14]:

Theorem 6. A sequence of functions {ek}m
k=1 is an unconditional basis for a Banach

space X if for every f ∈ X a unique family {ck}m
k=1 of real numbers exists so that∑m

k=1 ck ek converges unconditionally to f . This is true iff the following two conditions

hold:

(C1) clos span {ek}m
k=1 = X

(C2) A constant Γ exists so that for all finite subsets K ⊂ Z+ \ 0wwwww∑
k∈K

εk ck ek

wwwww
p

≤ Γ

wwwww∑
k∈K

ck ek

wwwww
p

, (4.25)

for all choices of ck ∈ R and εk = ±1. For fixed p, the smallest Γ for which the

inequality holds is the unconditional basis constant Γp.

See for example the book by Christensen [14] for a proof. Note that the εk guarantee

that the sequence
∑m

k=1 ck ek converges unconditionally.

To prove that the SOHO wavelets are an unconditional basis of L2 we will show that

conditions (C1) and (C2) in Theorem 6 hold. As detailed in Section 4.1, the SOHO

wavelet basis is defined over a forest of partition trees. The disjoint nature of the trees

implies that it is sufficient to show that Theorem 6 holds for a basis defined over one

partition tree T (cf. [31]). We will employ the index set H defined over T for the proof.
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For convenience, we define the set G(4) ∈ H with #(G(4)) = #(C(4) − 1) to index

the wavelet basis functions defined over a partition τ4, 4 ∈ H. Note that

I =

(⋃
4∈T

G(4)

)
∪ ϕ0,0,

where I is defined as in Section 3.4.5 and denotes an index set over all basis functions.

Remark 4. Consider the equality

span {ϕ5 | 5 ∈ C(4)} = span {ϕ4, ψγ | γ ∈ G(4) } , (4.26)

where 4,5 ∈ H. To verify that the sequences on the left and right hand side of Eq. 4.26

are in fact identical we examine their properties using basic results from the previous

sections:

1. The functions in each set are orthogonal.

2. The cardinality of both sets is identical.

3. Both sets are defined over the same set of partitions, namely {τ5 | 5 ∈ C(4)}.

The third property implies that the sequences in Eq. 4.26 are defined over the same space

and it follows from property one and property two that the sequences are bases. Thus

the sequences are two different orthogonal bases of the same space. From the refinement

relationships for the scaling and wavelet basis functions it follows that

span
{
ϕ5 | 5 ∈ Ci(4)

}
= span

{
ϕ4, ψγ | γ ∈

i−1⋃
k=0

G(Ck(4))

}
, (4.27)

for fixed i.

Remark 5. It follows from the definition of a partition that

L2 = clos span {τ4 | 4 ∈ H} . (4.28)

From the definition of the scaling functions it then follows immediately that

L2 = clos span(Φ), (4.29)

where Φ = {ϕ4 | 4 ∈ H}.
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Lemma 3.

L2 = clos span(Ψ)

Proof. With Eq. 4.29 it is sufficient to prove that

τδ ∈ clos span(Ψ) , ∀δ ∈ H. (4.30)

From the definition of a wavelet basis it is known that ϕ0,0 ∈ Ψ. Eq. 4.30 therefore

trivially holds when δ is the root node of H. In the following it is therefore assumed that

g(δ) ≥ 0. Let 4 ∈ H be of the form 4 = pi(δ) for some i > 0. We define the function

fi as

fi = τδ −
αδ

α4
τ4. (4.31)

Now consider Eq. 4.27 where the indices for i and 4 correspond to those in this proof.

Obviously, τδ is in the span of the left hand side of Eq. 4.27, and τ4 is in the span because

it can be defined in terms of its descendants using the refinement relationship in Eq. 3.7.

Thus, fi is in the span of the sequence on the left hand side of Eq. 4.27. It then follows

immediately that fi is also in the span of the sequence one the right hand side of this

equation.

By construction, fi has a vanishing integral. The scaling function ϕ4 on the right hand

side of Eq. 4.27 is constant over the support of fi. Therefore, 〈ϕ4, fi〉 = 0 , that is fi

does not have a component along ϕ4. It follows that

fi ∈ span

{
ψγ | γ ∈

i−1⋃
k=0

G(Ck(α))

}
. (4.32)

We can always choose i so that 4 is the root node of H. This implies that τ4 lies in the

span of Ψ because ϕ0,0 ∈ Ψ. Since fi and τ4 are in span(Ψ) and the vector space L2 is

closed under addition, τδ has to be in the span of Ψ (by simply writing τδ as sum of fi

and αδ

α4
τ4 from Eq. 4.31).



Chapter 4. SOHO Wavelets 61

Definition 13. Let a sequence X of random variables X1, X2, X3, . . . be a discrete-time

stochastic process (DTSP). A DTSP Y is a martingale with respect to another DTSP X

if

E(Yn+1 | X1, . . . , Xn) = Yn, ∀n,

that is the conditional expected value of the next event Yn+1 given all the past observa-

tions (X1, . . . , Xn) is equal to the last event Yn.

Definition 14. A martingale difference sequence is a martingale satisfying

E(Yn+1 | X1, . . . , Xn) = 0, ∀n.

For the proof of (C2) we also employ Burkholder’s inequality.

Theorem 7. If {fi}n
i=1 is a simple martingale with respect to a non-decreasing sequence

{Σi}n
i=1 of sub-σ-fields of Σ, then its corresponding martingale difference sequence {di}n

i=1

satisfies wwwww
n∑

i=1

εi ci di

wwwww
p

≤ (p∗ − 1)

wwwww
n∑

i=1

ci di

wwwww
p

, (4.33)

for all n ∈ N and all choices of ci ∈ R and ε = ±1.

See [8, 9, 10] for proofs. The form of Burkholder inequality is essentially identical to those

of Eq. 4.25. (C2) can therefore be shown by verifying that Ψ is a martingale difference

sequence. The unconditional basis constant is then (p∗ − 1), with p∗ = 2 for L2.

Let the conditional expected value of a piecewise constant function f be

E(f | Σ) =
n∑

i=1

∫
Ei
fdµ

µ(τEi
)
τEi
, (4.34)

where τ0 ∈ Σ and supp(f) ⊂ supp(τ0). The sub-σ-field Σ0 of Σ is generated by a partition

π = {E1, E2, . . . En} of τ0. For the proof we employ the convention 0/0 = 0.

Lemma 4. Fix a finite subset {γi}n
i=1 from I that satisfies γ1 < γ2 < . . . < γn. Let

τ0 ∈ Σ+ be such that supp (ψγi
) ⊂ τ0 for all i. Consider the partition

πi =
{
τ i
1, τ

i
2, τ

i
3, τ

i
4, τ0 \

(
τ i
1 ∪ τ i

2 ∪ τ i
3 ∪ τ i

4

)}
, (4.35)
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of τ0, where the τ i
l ∈ Σ+ are the partitions over which ψγi

is defined. Let Σi = σ({πj |

1 ≤ j ≤ i}). Then

1. ψγi
is Σi-measurable for i = 1, . . . , n,

2. E(ψγi+1
|Σi) = 0 for i = 1, . . . , n− 1.

Proof. The first property holds because ψγi
is defined over the first four atoms of the

subset πi of Σi. Because i = 1, . . . , n− 1, the atoms ς of Σi

• are disjoint from the support of ψγi+1
, if g(ς) = g(ψγi+1

) and p(ς) 6= p(ψγi+1
) ,

• contains the support of ψγi+1
, if g(ς) < g(ψγi+1

) ,

• are identical to the atoms over which ψγi+1
is defined, if p(ς) = p(ψγi+1

) .

From the vanishing integral of ψγi+1
it then follows that the second property holds.

We can now show that Ψ is an unconditional basis of L2.

Theorem 8. The wavelets Ψ form a unconditional basis for L2 with basis constant 1.

Proof. With Lemma 3 it is sufficient to show that Burkholder’s inequality holds for Ψ.

Consider the sequence {fi}n
i=1 given by

fi =
i∑

j=1

ψγj
, (4.36)

where γi and Σi are defined as in Lemma 4. Σi contains all πj corresponding to the ψj

which form fi. From property 1 of Lemma 4 it then follows that fi is Σi-measurable, and

therefore fi = E(fi,Σi).

The linearity of the conditional expectation operator and property 2 of Lemma 4 yield

E(fi+1 | Σi)− E(fi | Σi) = E(fi+1 − fi | Σi) = E(ψγi+1
,Σi) = 0,

and thus E (fi+1 | Σi) = fi. Therefore {fi}n
i=1 is a martingale with the martingale differ-

ence sequence Ψ.



Chapter 5

Basis Transformation Matrices for

Rotation

Many applications require the alignment of data sets. Image processing is one well known

example (Figure 5.1), but also product integral calculations in physics and computer

graphics, and processing and analysis of spherical data sets in medical imaging rely on a

common alignment of signals. For applications where basis representations are employed

alignment corresponds to representing all functions in the same basis, requiring a change

of basis for those signals that are represented in a basis other than the target basis used

for the computations. The projection of a signal into a target basis can be accomplished

by multiplying its representation in the original source basis with a basis transformation

matrix. The elements aij of these matrices project the information represented by the jth

basis function in the source basis onto the ith basis function in the target basis. The size

of matrices is hence N ×M , where M and N are the numbers of basis functions in the

source and target basis, respectively. Despite their significant size, basis transformation

matrices are nonetheless practical due to the highly sparse nature of both the matrices

and basis function coefficient vectors for typical signals.

63
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(a) (b)

Figure 5.1: Comparing the signals in (a) is not possible due to the different alignment of

the partitions. After resampling a comparison of the signals in (b) is possible. Clearly

visible are the resampling artifacts which occur for domains of finite extent.

In computer graphics, a well-known application involving the alignment of data sets is

the solution of the rendering equation [40]:

B(x, ω0) =

∫
Ωn

L(x, ω)V (x, ω)ρ(x, ω0, ω) (ω ◦ n(x)) dω, (5.1)

where x is a surface point in a scene, B(x, ω0) is the reflected light at x into direction

ω0, L(x, ω) is the incident radiance at x from direction ω, V (x, ω) is the binary visibility

term which determines if light coming from direction ω is blocked by objects in the scene,

ρ(x, ω0, ω) is the BRDF of the surface in the local coordinate system at x, and n(x) is

the surface normal. The integral is computed over all possible directions ω of incident

radiance in the upper hemisphere Ωn of the local surface coordinate system at x. For

efficiency, in most cases the factors of the product integral are represented in a suitable

basis such as spherical Harmonics or wavelets.

To compute the appearance of a virtual scene, the rendering equation has to be solved

at all visible surface points. Storing a basis representation of the BRDF for all possible

orientations of the local surface coordinate system is however impractical. A feasible

alternative is to store one representation of the BRDF and employ rotation in the basis

to align the function to local surface coordinate systems. For wavelet bases the alignment

amounts to rotating the partition over which the basis is defined (Figure 5.2). The
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(a) (b) (c)

Figure 5.2: Rotation of a signal. The original signal is shown on the left hand side. A

rotated version of the signal is obtained by rotating the partition over which the basis

is defined (middle). Performing the basis transformation yields the rotated signal in the

target basis (right). Note that the partition of the target basis has the same alignment

of the partition of the original, unrotated basis.

rotated basis then depends on the orientation of the local surface coordinate system and

is no longer aligned with the basis representations of the other factors of the rendering

equation, making an efficient solution of the product integral impossible. Considering

the rotated basis as source basis, we can employ a basis transformation matrix to project

the rotated BRDF into the basis of the remaining factors of the product integral. After

projection, the light transport factors are again aligned, allowing an efficient solution of

the rendering equation.

What is commonly referred to as rotation in a wavelet basis representation is therefore

not only the rotation of a signal but also the projection from the rotated source basis into

a target basis which is better suited for processing. In many cases, such as the previous

example, the original basis of the unrotated signal and the target basis are identical

(Figure 5.2). Important for the practicality of rotations in a wavelet basis representation

is that it is not necessary to explicitly obtain the representation of a signal in the rotated

source basis. With the results from Chapter 3.4 it follows that the basis representations
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of the unrotated signal in the original basis and those of the rotated signal in the source

basis are identical.

In the following, we will first develop basis transformation matrices for general Riesz

bases. The result will then be employed to derive the rotation matrices for spherical

Haar wavelet bases. To compare the rotation in spherically and planar parametrized rep-

resentations, we also derive the rotation matrices for the Haar cubemap basis. In contrast

to the work by Wang et al., we chose the Haar cubemap basis as planar representation

because it is more common for applications [57, 101, 88] and the distortion of mapping

the sphere onto a planar domain is for the cubemap less severe than for the octahedral

map [67].

5.1 Basis Transformation Matrices for Riesz Bases

Let {fi1}i1∈I1 and {gi2}i2∈I2 be two normalized Riesz bases acting as source and target

bases, respectively, and let
{
f̃i1

}
i1∈I1

and {g̃i2}i2∈I2 be the corresponding dual bases as

defined in Theorem 1.

The representation of a signal S in the source basis is
∑

i1∈I1 ci1fi1 . The target basis

representation of S can then be obtained by the projection:

S =
∑
i2∈I2

〈(∑
i1∈I1

ci1fi1

)
, g̃i2

〉
gi2

=
∑
i2∈I2

∑
i1∈I1

ci1 〈fi1 , g̃i2〉 gi2

=
∑
i2∈I2

∑
i1∈I1

ci1 βi1,i2 gi2 .

The coupling coefficients βi1,i2 forming the basis transformation matrices Υ are defined

as

βi1,i2 = 〈fi1 , g̃i2〉 . (5.2)
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We emphasize that the derivation in this section holds for arbitrary Riesz bases {fi1}i1∈I1

and {gi2}i2∈I2 ; rotation, where the bases differ in their alignment, is only one possible

application.

5.2 Rotation Matrices for Spherical Haar Wavelets

5.2.1 Derivation of Coupling Coefficients

Let Ψ1 and Ψ2 be two spherical Haar wavelet bases acting as source and target basis, re-

spectively, and let P1 = {Tj1,k1 | j1 ∈ J1, k1 ∈ K1(j1)} and P2 = {Tj2,k2 | j2 ∈ J2, k2 ∈ K2(j2)}

be the partitions over which the bases are defined. Furthermore, let the source basis be

a rotated version of the target basis so that Ψ1 has then been obtained by rotating the

partition over which Ψ2 is defined, that is

Tj1,k1 = RTj2,k2 for all j1 = j2, k1 = k2, (5.3)

where R ∈ SO(3) is a unitary rotation around the origin. The partition of a spherical

Haar wavelet basis is defined over the sphere. The rotation therefore only alters the

position of the domains Tj2,k2 on the sphere but does not affect their shape. The definition

of the basis functions over the partitions implies then that the source and target bases

differ only in the position of the basis functions on the sphere, allowing a straightforward,

analytic computation of the coupling coefficients (cf. [95]).

Let ψ̂i1 = ψ̂j1,m1 ∈ Ψ1, with i1 ∈ I1 \ 0, and ψ̆i2 = ψ̆j2,m2 ∈ Ψ2, with i2 ∈ I2 \ 0, be a

primary and a dual wavelet basis function in the source and target basis, respectively.
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With Eq. 5.2, the coupling coefficient between the two basis functions is

βi1,i2 =

∫
S2

ψ̂j1,m1ψ̆j2,m2 dω

=

∫
S2

∑
l1

gj1,m1,l1 ϕj1+1,l1

∑
l2

g̃j2,m2,l2 ϕ̃j2+1,l2dω

=
∑
l1

∑
l2

gj1,m1,l1 g̃j2,m2,l2

∫
S2

ηj1+1,l1 τj1+1,l1 η̃j2+1,l2 τ̃j2+1,l2dω

=
∑
l1

∑
l2

ηj1+1,l1 gj1,m1,l1 η̃j2+1,l2 g̃j2,m2,l2

∫
S2

τj1+1,l1 τ̃j2+1,l2 dω

=
∑
l1

∑
l2

ηj1+1,l1 η̃j2+1,l2 gj1,m1,l1 g̃j2,m2,l2 αl1,l2 , (5.4)

where αl1,l2 denotes the area over which τj1+1,l1 and τ̃j2+1,l2 overlap, and ηj,l and η̃j,l are

the normalization constants of the primary and dual scaling basis functions, respectively.

The derivations for the other three configurations of scaling and wavelet basis functions

are analogous yielding

β0,i2 = η0

∑
l2

η̃j2+1,l2 g̃j2,m2,l2 α0,l2

βi1,0 = η̃0

∑
l1

ηj1+1,l1 gj1,m1,l1 αl1,0

β0,0 = η0 η̃0 α0,0,

where the index 0 denotes the scaling basis functions, and i1 ∈ I1 \ 0 and i2 ∈ I2 \ 0 are

defined exclusively over the wavelet basis functions.

Although the rotation matrices can be computed analytically, in practice the rotated

signals suffer from resampling artifacts similar to those in Figure 5.1. These result from

the finite extent and unaligned nature of the partitions over which source and target

bases are defined.



Chapter 5. Basis Transformation Matrices for Rotation 69

0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

500

nz = 21876
0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

500

nz = 21954

Figure 5.3: Quasi block symmetric structure of the basis transformation matrices for

spherical Haar wavelet bases defined over a partition derived from an octahedron. Iden-

tical blocks are shown in the same color.

5.2.2 Quasi Block Symmetry

For spherical Haar wavelet bases defined over sphere-symmetric partitions derived from an

octahedron or an icosahedron the rotation matrices exhibit the block structure depicted

in Figure 5.3. Every block can be observed twice in such a matrix but, in contrast to

block symmetric matrices, the positions of the blocks are not symmetric to the main

diagonal of the matrix. We denote this structure as quasi block symmetric.

In the following, after introducing the necessary notation, we will formally establish that

the rotation matrices for spherical Haar wavelet bases have a quasi block symmetric

structure. The proof also provides some insights of why the matrices are symmetric.

Let Ψ1 and Ψ2 be two SOHO wavelet bases as defined in the derivation in Chapter 5.2.1,

and let T0,k2 be the projection of an octahedron or an icosahedron onto the sphere. The

basis functions defined over one partition tree are thereby labeled consecutive and the

total ordering results from a linear ordering of the trees. We furthermore require that

P2 is symmetric on the sphere so that for every Tj2,k2 exactly one Tj2,k′2
exists with
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vj2,k2,l = −vj2,k′2,l, for l = 1, 2, 3, where the vj2,k2,l are the vertices of a spherical triangle

that defines a partition. In the following we will denote the symmetric equivalent of an

entity with a “bar”, the domain symmetric to Tj2,k2 is thus T̄j2,k2 . We can now state the

following theorem:

Theorem 9. Let Ψ1 and Ψ2 be a source and a target basis as defined above. The basis

transformation matrix Υ projecting Ψ1 into Ψ2 is then quasi block symmetric in the

sense that

• the matrix has a block structure,

• two nonzero blocks in the matrix are identical.

Proof. (Sketch) With R ∈ SO(3) being the unitary rotation which yields the source basis,

it follows from the definition of the target basis Ψ2 on the sphere that applying R to P2

does not alter the structure of the partition or the shape of the Tj2,k2 , implying that the

source basis exhibits the same symmetry on S2 as the target basis.

Let ψj1,m1 and ψ̄j1,m1 be the same wavelet basis function of the source basis defined over

Tj1,k1 and T̄j1,k1 , respectively, and let ψj2,m2 and ψ̄j2,m2 defined over Tj2,k2 and T̄j2,k2 , re-

spectively, be an analogous pair of the target basis. With Eq. 5.4, the coupling coefficient

βi1,i2 between the wavelet basis functions ψj1,m1 = ψi1 and ψj2,m2 = ψi2 is

βi1,i2 =
∑
l1

∑
l2

ηj1+1,m1,l1 ηj2+1,m2,l2 gj1,m1,l1 gj2,m2,l2 αl1,l2 , (5.5)

where

αl1,l2 =

∫
S2

τj1+1,l1 τj2+1,l2 dω. (5.6)

For the quasi symmetry to hold, we have to show that βi1,i2 and β̄i1,i2 are identical, where

β̄i1,i2 is the coupling coefficient between ψ̄j1,m1 and ψ̄j2,m2 .

It follows from the definition of the SOHO wavelet basis that the filter coefficients gj,m,l

and the normalization factors ηj+1,l in Eq. 5.5 only depend on the areas of the domains

over which the wavelet basis functions are defined but not on their position on the
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sphere. Due to the symmetry of P1, the domains Tj1,m1 and T̄j1,m1 , and their children

have the same shape and scale and therefore also the same area. The filter coefficients

and normalization factors associated with ψj1,m1 and ψ̄j1,m1 in Eq. 5.5 are thus identical.

The symmetry of P2 implies that the same is true for ψj2,m2 and ψ̄j2,m2 . It is easy to see

that the overlaps αl1,l2 and ᾱl1,l2 between domains τj1+1,l1 and τj2+1,l2 , and the symmetric

equivalents τ̄j1+1,l1 and τ̄j2+1,l2 are identical for every possible combination of l1 and l2.

Given that the filter coefficients and the normalization factors associated with a wavelet

basis function and its symmetric equivalent are identical, and that αl1,l2 = ᾱl1,l2 , for all

possible combinations of l1 and l2, it follows immediately from Eq. 5.5 that βi1,i2 = β̄i1,i2 .

Analogous derivations show that the identity also holds for coupling coefficients resulting

from the remaining configurations of scaling and wavelet basis functions.

The block structure of the rotation matrices results from the definition of the partitions

as forests of trees. Each block in a matrix relates the basis functions defined over one

partition tree of the source basis to the basis functions defined over one partition tree of

the target basis. That the symmetry of individual coupling coefficients βi1,i2 and β̄i1,i2

carries over to blocks follows from the consistent labeling of the partitions across trees.

The proofs for the quasi block symmetric structure of rotation matrices for other spher-

ical Haar wavelet bases are analogous (then again considering primary and dual basis

functions).

Until now we only assumed that the partition P2 of the target basis is symmetric on S2.

It is easy to see that this is always true for the geodesic bisector subdivision employed by

Schröder and Sweldens [76]. For the novel subdivision scheme proposed in Chapter 4.4,

the symmetry has to be guaranteed by the construction of the partition. We employ

rotation and reflection of one initial partition tree to enforce symmetry.

The quasi block symmetric structure of the rotation matrices is not only of theoretical

interest but also important for applications. Basis transformation matrices for wavelet
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Figure 5.4: Top view of rotated (blue) and unrotated (black) Haar cubemap basis. On

the right hand side the projection of a partition of the rotated basis (red, dashed) onto

the target basis is shown, a wavelet basis function on level 0 is indicated in green.

bases are usually large [95] and the symmetric structure enables to significantly reduce

their storage costs.

5.3 Rotation Matrices for the Haar Cubemap Basis

5.3.1 Derivation of Coupling Coefficients

Computing the coupling coefficients for the Haar cubemap basis is more complex than

for spherical Haar wavelets. Let Ψ1 and Ψ2 be the source and the target Haar cubemap

basis, respectively, and let Ψ1 be a rotated version of Ψ2. Except for canonical rotations

by multiples of π/2 around the principal axes, the domains of the basis functions of Ψ1

and Ψ2 are not aligned; an example is shown in Figure 5.4. A direct computation of

the coupling coefficients is therefore not possible. Different approaches can be employed
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to align the domains of the bases. We decided to project the partition of Ψ1 onto the

domain of Ψ2 yielding a projected source basis Ψ̆1; an example of the projection of a

partition on level 0 is shown in the left image in Figure 5.4. The coupling coefficients

can then be computed as proposed by Wang et al. [95]: A basis function ψ̆i1 of Ψ̆1 is

first resampled onto the domains on the finest level of the partition P2 of Ψ2, yielding

a resampled version ψ̄i1 of ψ̆i1 in the target basis. The coupling coefficients between ψ̆i1

and all basis functions of the target basis are then obtained by performing a wavelet

transform of the signal given by ψ̄i1 .

An alternative approach to aligning the domains of the basis functions is to project

the partitions of both Ψ1 and Ψ2 onto the sphere. The coupling coefficients can then

be computed on S2. This approach might lead to less distortion but we have not yet

investigated the idea in more detail.

Note that the projection which is necessary to align the domains of the source and target

basis functions can magnify the distortion resulting from a planar parametrization of the

sphere. An example is given in Figure 5.5. The magnification is thereby not limited to

the Haarcube map basis but can occur for any approach which uses wavelets defined over

a planar domain to represent spherical signals.

5.3.2 Pseudo block symmetry

The rotation matrices for the Haar cubemap basis exhibit a similar structure as the

matrices for spherical Haar wavelets. However, the structure differs in that some coupling

coefficients in the matrices are exchanged and for some the sign is flipped. We therefore

denote it as pseudo block symmetric structure. The violations from quasi block symmetry

exhibit a regular pattern which is independent of the rotation of the source basis making

it possible to compress the rotation matrices for the Haar cubemap basis in a similar way

as the matrices for spherical Haar wavelets.
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The block structure in the matrices arises again from the construction of the partitions

as forests of trees. For the Haar cubemap basis each partition tree is defined over one

face of the cubemap.

5.4 General Basis Transformation Matrices

We remark that basis transformations as discussed in this chapter are a general concept

and rotation is only one particular application. Other interesting operations are for ex-

ample scaling and resampling, or convolution of signals. In the past such operations have

been computed in the native domain of a signal. The ability to perform the computation

in the basis representation is becoming increasingly important as the size of many data

sets is reaching several gigabytes and beyond [98, 33, 95]; for example digital imagery

with several gigapixel resolution became recently available [1]. Manipulating these data

sets in their native representation is impossible for most of today’s hardware, and the

trend in the last years showed that the size of data sets is increasing much more rapidly

than available computing power and memory bandwidth. Furthermore, manipulating

data sets in a wavelet domain is attractive as many modern data compression schemes

are based on wavelet basis representation [20, 50, 95].
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Figure 5.5: Distortion introduced by the rotation for a signal represented in the Haar

cubemap basis.



Chapter 6

Experiments

6.1 Introduction

In contrast to other spherical Haar wavelet bases proposed in the literature, the SOHO

wavelet basis is both fully orthogonal and symmetric. The superior theoretical prop-

erties of the basis do however not necessarily lead to a better performance in practice.

We therefore performed a variety of experiments to evaluate the practical relevance of

orthogonality and symmetry. To provide results which are useful in a variety of fields,

we limited ourselves to general experiments that provide insights for a wide range of ap-

plications. The bases that have been employed for comparison are representations which

are alternatives to the SOHO wavelet basis in practical settings.

The results presented in this chapter are limited in that we were neither able to explore

the whole space of possible parameters, nor could we compare the SOHO wavelet basis

to all representations for spherical signals proposed in the literature. It should however

be noted that some experiments have been omitted because the results have already been

presented in other works. Refer for example to the works by Ng et al. [56] or Okabe et

al. [60] for a comparison of Spherical Harmonics and Haar-like bases, or to the work by

76
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Schröder and Sweldens [76] for experiments with smooth discrete wavelets on the sphere.

After a discussion of the methodology (Section 6.2) and the implementation (Section 6.3)

which have been used for the experiments, we will first analyze some properties of the

SOHO wavelets (Section 6.4), before the approximation performance of the basis is eval-

uated (Section 6.5), and the efficiency of the rotation matrices developed in Section 5 is

assessed (Section 6.6). We conclude the chapter with a discussion of the presented results

(Section 6.7).

6.2 Methodology

6.2.1 Bases

To assess the efficacy of the SOHO wavelet basis for the approximation of spherical

signals, we compared it to six previously prosposed spherical Haar wavelet bases: the Bio-

Haar basis developed by Schröder and Sweldens [76], the pseudo Haar wavelets employed

by Ma et al. [47], and the nearly orthogonal bases proposed by Nielson et al. [58] and

by Bonneau [7]. We used the Bio-Haar basis because it is the most popular spherical

Haar wavelet basis and has been employed in a variety of applications [96, 64, 53]. The

pseudo Haar basis was interesting to us for its simplicity — the filter coefficients are in

fact identical to those of the non-standard Haar wavelets in 2D [87] — although this

comes at the price that the pseudo Haar basis is not a basis of the space L2(S2, dω).

See Appendix A for a proof. Nearly orthogonal bases have in the limit case the same

desirable properties as the SOHO wavelets. We were thus interested to see if the limit

properties are also of practical relevance.

To evaluate the efficacy of the rotation of signals represented in the SOHO wavelet basis,

we compared its performance to three previously proposed representations for spherical

signals. Next to the Bio-Haar basis and the pseudo Haar wavelets we also employed the

Haar cubemap basis for these experiments. Note that a direct comparison of the SOHO
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wavelet basis and the Haar cubemap basis is difficult; the bases are defined over different

numbers of partition trees yielding different signal resolutions for fixed tree levels. In

Section 6.6.2 therefore only relative error measures are provided.

6.2.2 Signals

Three signals have been employed for the experiments:

• A “real world” signal which has features in the full frequency spectrum.

• A piecewise constant signal only containing jump discontinuities.

• A (very) smooth, unimodal signal.

The signals are shown in Figure 6.1. For convenience we will use nomenclature from com-

puter graphics and refer to the them as “texture map”, “visibility map”, and “BRDF”,

respectively. We used 8-bit, low dynamic range versions of the signals for the experi-

ments. Given the longitude-latitude maps shown in Figure 6.1, spherical signals defined

over the domains of a partition at a fixed level n have been obtained with Monte-Carlo

sampling.

6.2.3 Error Norms

For the experiments we employed the `1 and the `2 norm as error measures. The `2

norm is the standard measure for the space L2(S2, dω) and has been used in a variety

of applications. In the literature, it has been argued that for images the `1 error norm

better corresponds to the perceived image quality than for the example the error in the

`2 norm [21]. The test signals shown in Figure 6.1 can be seen as images on the sphere

and we therefore also employed the `1 norm in our experiments.

Numerical error measures such as the `1 and the `2 norm are valuable in many contexts.
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They are however often inadequate to measure the quality of a signal as it is perceived

by humans [66]. We therefore also provide reconstructions of approximated and rotated

signals which permit a visual, though subjective, evaluation of the quality.

6.2.4 Approximation of Signals

The approximation of a signal is a common objective in many applications where basis

representations are used. In most cases the approximation is subject to the constraint

that it should minimize the error in an `p norm, for 0 < p <∞, for a given number of basis

function coefficients k. Efficiently finding the optimal set of basis function coefficients,

that is the set which minimizes the error in the `p norm under consideration, is however

in general not possible (cf. [36]).

Let

S =
∑
i∈I

γi ψ̂i

be the wavelet basis representation of a signal S, and let Ī ⊂ I be an index set with

#Ī < #I elements. An approximation S̄ of S is then given by

S̄ =
∑
i∈Ī

γi ψ̂i.

The set of elements which has been excluded from I to form Ī will be denoted as Π = I\Ī.

With Eq. 3.1, the approximation error in an `p norm, for fixed but arbitrary 0 < p <∞,

is (cf. [86])

E ≡ ‖S − S̄‖p =

(∫
X

S − S̄
p
dx

) 1
p

=

(∫
X

∑
i∈Π

γi ψ̂i


p

dx

) 1
p

. (6.1)

With the refinement relationship for the wavelet basis functions and ψi = ψj,m this yields

E =

(∫
X

∑
i∈Π

γi

∑
l

gi,l ϕ
i
j+1,l


p

dx

) 1
p

.
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Figure 6.1: Signals (as longitude-latitude maps) employed for the experiments.
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In the following, we will split the domain X and integrate over the partitions Sn,k sepa-

rately. The level n corresponds to the partitions over which the wavelet basis functions

at the finest level are defined. The normalization constant of the lth scaling basis func-

tion over which the ith basis function ψ̂i is defined will be denoted with ηi
j+1,l, and it is

assumed that γi is zero if the support of ψ̂i is disjoint from χn,k. For a Haar-like basis,

we can then write

E =

 ∑
k∈K(n)

∫
Sn,k

∑
i∈Π

γi
gi,l

ηi
j+1,l

χn,k


p

dx

 1
p

.

The integrals over the Sn,k are always positive so that

E =

 ∑
k∈K(n)

∑
i∈Π

γi
gi,l

ηi
j+1,l


p(∫

Sn,k

χn,k dx

)p
 1

p

.

Performing the integration yields

E =

(∑
k∈K

(n)

∑
i∈Π

γi
gi,l

ηi
j+1,l


p

µ(Sn,k)
p

) 1
p

. (6.2)

From Eq. 6.2 it can be concluded that it is for Haar-like wavelet bases very difficult to

efficiently obtain the optimal set of basis function coefficients which minimizes the error

in an `p norm. In particular the absolute value of a sum of signed values in Eq. 6.2 makes

it difficult to find the set Π which minimizes the error E. Since Haar-like wavelet bases

are the simplest wavelets, the result generalizes to arbitrary wavelet bases.

Theorem 10. For an orthonormal basis the optimal approximation in the `2 norm with

k basis function coefficients can be obtained efficiently in O(N logN).
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Proof. Given Eq. 6.1, the squared error in the `2 norm is

(
‖S − S̄‖2

)2
=

∫
X

(∑
i∈Π

γi ψ̂i

)2

dx

=

∫
X

(∑
i1∈Π

γi1 ψ̂i1

∑
i2∈Π

γi2 ψ̂i2

)
dx

=

∫
X

∑
i1∈Π

∑
i2∈Π

γi1γi2 ψ̂i1ψ̂i2 dx. (6.3)

It follows from Eq. 6.3 that for arbitrary wavelet bases the best approximation in the

`2 norm cannot be computed efficiently (cf. Theorem 11). However, for an orthonormal

basis where 〈ψ̂i1 , ψ̂i2〉 = δi1,i2 , Eq. 6.3 can be further simplified yielding

(
‖S − S̄‖2

)2
=
∑
i∈Π

γ2
i 〈ψ̂i, ψ̂i〉

=
∑
i∈Π

γ2
i . (6.4)

For an orthonormal basis the best approximation in the `2 norm can therefore be obtained

by choosing Ī so that it contains the k largest basis function coefficients from I.

Thus, finding the optimal approximation for an orthonormal basis in the `2 norm requires

first performing a full wavelet transform of an input signal, and then sorting the resulting

coefficients. With a worst case complexity of O(N logN) for the best sorting algorithms,

this yields a log-linear complexity. In practice, for the reconstruction of a signal after

approximation all but the k largest basis function coefficients are assumed to be zero.

Note that this is similar to the effect of quantization where very small basis function

coefficients become zero because of the limited precision of the representation. The main

difference is that in the approach employed in our experiments the number of nonzero

basis function coefficients is known a priori. In the remainder of the thesis we shall refer

to this approximation strategy as k-largest approximation.

The Bio-Haar basis is semi-orthogonal. Using the k-largest approximation strategy is

therefore not optimal in the `2 norm. It follows from the minimal support of the basis
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functions that the optimal approximation can still be computed at moderate costs.

Theorem 11. For the Bio-Haar basis employing the k largest coefficients cj,m1 with

cj,m1 = γj,m1

∑
m2

γj,m2

∑
l

gj,m1,l gj,m2,l αj+1,l for {m2 ∈M(j) | p(Tj,m1) = p(Tj,m2)} ,

over all j ∈ J and m1 ∈ M(j), minimizes the approximation error in the `2 norm for

an approximation with k coefficients.

Proof. Given Eq. 6.3,

(
‖S − S̄‖2

)2
=
∑
i1∈Π

∑
i2∈Π

γi1 γi2

〈
ψ̂i1 , ψ̂i2

〉
, (6.5)

we observe that each basis function coefficient γi1 is present in more than one term of the

double sum. For a basis where the basis functions have global support, γi1 appears in #Π

summands. For a basis with locally supported basis functions the number of (nonzero)

terms with γi1 is given by the number of inner products
〈
ψ̂i1 , ψ̂i2

〉
which are nonzero.

The vanishing integral of the wavelet basis functions for the Bio-Haar basis implies that

the inner product is zero if ψ̂i1 and ψ̂i2 are defined on different levels (cf. Section 4.3) or

if one of the basis functions is the scaling basis function on the coarsest level. It follows

from the strictly nested nature of the partition that the inner product 〈ψj,m1 , ψj,m2〉 of

two wavelet basis functions on the same level vanishes if p(Tj,m1) 6= p(Tj,m2). For wavelet

basis functions defined over the same partition, that is p(Tj,m1) = p(Tj,m2), the inner

product is

〈ψj,m1 , ψj,m2〉 =
∑
l1

∑
l2

gj,m1,l1 gj,m2,l1

∫
S2

ϕj+1,l1 ϕj+1,l2 dω. (6.6)

For fixed j, the support of the ϕj,k is disjoint. The integral in Eq. 6.6 is thus nonzero

only if l1 = l2. With the definition of the primary scaling functions for the Bio-Haar

basis it follows that

〈ψj,m1 , ψj,m2〉 =
∑

l

gj,m1,l gj,m2,l αj+1,l.
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The full contribution cj,m1 of a basis function coefficient γj,m1 to the signal in the `2 norm

is thus

cj,m1 = γj,m1

∑
m2

γj,m2

∑
l

gj,m1,l gj,m2,l αj+1,l for {m2 ∈M(j) | p(Tj,m1) = p(Tj,m2)} .

Finding the optimal approximation in the Bio-Haar basis is significantly more expensive

than the k-largest approximation for orthonormal bases. However, overall the computa-

tional costs are still moderate.

6.2.5 Error Computation for Rotation

Let

S =
∑

k1∈K(n1)

ck1τn1,k1 and Sr =
∑

k2∈K(n2)

ck2τn2,k2

be the representations of a (reconstructed) signal before and after rotation in a spherical

wavelet basis, and let the error introduced by the rotation be

Ep = ‖S − Sr‖p.

To simplify the notation, in the following we will omit the indices n1 and n2 so that

τk1 ≡ τn1,k1 and τk2 ≡ τn2,k2 . As discussed in Section 5.2, the partitions over which S and

Sr are defined have in general different alignments and thus resampling is necessary to

obtain the error Ep. For a fixed source partition τk1 , let
{
τ k1
k2

}
be the set of all target

partitions that overlap with τk1 . The difference between the weighted average color of the

τ k1
k2

and the color of τk1 yields then the error for the fixed source partition. The weights

wk1,k2 of the target partitions are given by the normalized overlaps, that is

wk1,k2 =
αk1,k2

αk1

,

where αk1,k2 denotes the overlap between τk1 and τ k1
k2

, and αk1 is the area of the fixed

source partition τk1 . Similar to the computation of the rotation matrices, for the Haar
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cubemap basis the domains over which the signals are defined have to be aligned prior

to resampling. We again employed the approach outlined in Section 5.3 and projected

the source partitions onto the domains of the target partitions.

Next to the errors in the `1 and the `2 norm, we also analysed the sparsity of the rotation

matrices. This is an important measure for the computational costs of performing basis

transformations (cf. Chapter 2.7 in [68]). In the plots in this chapter instead of the

sparsity the density of the rotation matrices is shown, this measure is defined as the

number of nonzero elements in a matrix over the total number of elements.

The error introduced by the rotation and the sparsity of the rotation matrices depend

on the particular rotation. For example for a spherical Haar wavelet basis defined over a

partition derived from an octahedron, a rotation by multiples of π/2 around the principal

axes does not introduce any error. It is easy to see that the partitions of the source and

target basis are aligned in these cases. However, as already discussed, general rotations

suffer from resampling artifacts. We used a Monte-Carlo approach to sample the space

of all possible rotations and to obtain the results reported in Section 6.6.

6.2.6 Approximation of Rotation Matrices

Many of the nonzero coupling coefficients in a basis transformation matrix are very

small (cf. Section 6.6.3). Intuitively, it might thus be possible to approximate basis

transformations with small error by employing only the k largest coupling coefficients.

Analogous to the discussion in Section 6.2.4, the question then arises if discarding the

smallest basis function coefficients yields the optimal approximation, or if otherwise the

subset of the coupling coefficients which minimizes the projection error for a fixed number

of nonzero coefficients can still be found efficiently.

In the following, it will be shown that in general the k largest coupling coefficients do

not yield the optimal approximation, and that the optimal set of coupling coefficients is
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unlikely to be found efficiently.

Let

Sr =
∑
i2∈I2

(∑
i1∈I1

ci1 βi1,i2

)
ψ̂i2

be the projection of a signal S =
∑

i1
ci1ψ̂i1 from a source wavelet basis with basis

functions ψ̂i1 onto a target wavelet basis with basis functions ψ̂i2 . An approximation of

the projection can be obtained by using only a subset of the coupling coefficients. For

fixed i2, let Ī i2
1 ⊂ I1, with #Ī i2

1 < #I1, be the index set which runs over the nonzero

coupling coefficients after approximation. The projection is then

S̄r =
∑
i2∈I2

∑
i1∈Ī

i2
1

ci1βi1,i2

 ψ̂i2 .

Index sets Πi2
1 of coefficients which have been discarded by the approximation can be

defined as Πi2
1 = I1 \ Ī i2

1 . The approximation error in an `p norm, for fixed but arbitrary

0 < p <∞, is thus

‖Sr − S̄r‖p =

(∫
S2

Sr − S̄r

p
dω

)1/p

=

∫
S2


∑
i2∈I2

(∑
i1∈I1

ci1 βi1,i2

)
ψ̂i2 −

∑
i2∈I2

∑
i1∈Ī

i2
1

ci1 βi1,i2

 ψ̂i2


p

dω

1/p

=

∫
S2


∑
i2∈I2

 ∑
i1∈Π

i2
1

ci1 βi1,i2

 ψ̂i2


p

dω

1/p

. (6.7)

The sum
∑

i1∈Π
i2
1
ci1 βi1,i2 in Eq. 6.7 yields real numbers and the equation is therefore

similar to Eq. 6.1. It follows that it is very difficult to obtain the optimal approximation

of a basis transformation in an `p norm, for arbitrary 0 < p <∞.

With Eq. 6.7, the squared error in the `2 norm is

(
‖Sr − S̄r‖

)2
=

∫
S2

∑
i2∈I2

 ∑
i1∈Π

i2
1

ci1 βi1,i2

 ψ̂i2

2

dω.
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For an orthonormal basis this can be simplified to

=
∑
i2∈I2

 ∑
i1∈Π

i2
1

ci1 βi1,i2

2

.

Minimizing the sum
∑

i1∈Π
i2
1
ci1βi1,i2 is however still difficult. Therefore, also for p = 2 and

an orthonormal basis it is unlikely that an efficient algorithm for obtaining the optimal

approximation of a basis transformation matrix exists.

Rather than using a fixed number of basis function coefficients for the approximation of

the rotation matrices, we employed in the experiments a threshold t ∈ [0, 1] in the range

of the matrix elements to find the coupling coefficients which are assumed to be zero. As

shown above, this approximation strategy does in general not minimize the projection

error. However, it is data-independent and can be computed off-line.

6.2.7 Experimental Setup

To increase the comparability of the results, all experiments have been performed with

the same parameters and settings, and usually only one parameter was varied to obtain

specific results.

For the Bio-Haar basis the k largest coefficients cj,m1 , as derived in Chapter 6.2.4, were

used to obtain approximations; for all other bases the k-largest approximation strategy

has been employed. The input signals were defined over domains on level eight of the

partition trees. A full wavelet transform therefore yielded for each tree 16, 834 basis

function coefficients defined over seven levels. The octahedron was used as the base

polyhedron for all spherical Haar wavelet bases.

For the rotation experiments, the source basis was always a rotated version of the target

basis as defined in Chapter 5.2.1, and both the basis function coefficient vectors of the

signals and the rotation matrices were not approximated.
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6.3 Implementation

The experiments presented in this chapter were devoted to exploring and better under-

standing the properties of the SOHO wavelet basis. The implementation therefore closely

resembled the underlying mathematics and was designed to provide a flexible framework

to conduct the experiments. Similar to Schröder and Sweldens [76], we employed a tree

data structure to represent the partitions and the basis functions. This simplified the

computation of statistics and allowed us to easily relate additional data to the nodes.

Performance considerations were of no concern in the implementation because the fast

wavelet transform guaranteed the existence of linear-time algorithms for the basis projec-

tion of a signal and for reconstruction. All experiments were implemented in the Matlab

programming environment [51] and computations were performed exclusively in double

precision.

The experiments showed that the implementations are very similar for all spherical Haar

wavelet bases. The computations for the SOHO wavelet basis differed in that not the

geodesic bisector was used to obtain the new vertex positions during subdivision. In

contrast to the true spherical Haar wavelet bases, for the pseudo Haar basis at runtime

no computation of the filter coefficients was necessary.

We also performed some initial experiments with the CUDA general purpose parallel

programming language for graphics processing units [59]. These verified that the wavelet

transforms for the SOHO wavelet basis can be computed very efficiently. The implemen-

tation additionally showed that the computations are amenable to parallelization which

is an increasingly important factor for the practical efficiency of algorithms (cf. [62, 63]).

The numerical stability of the SOHO wavelets is guaranteed by the orthonormality of the

basis. During our experiments we observed however that it is for the basis advantageous

to employ the numerical inverse of the analysis matrix for reconstruction rather than an

analytically computed synthesis matrix. Only this guaranteed in the experiments perfect



Chapter 6. Experiments 89

reconstruction. Otherwise, approximately one digit of precision was lost during each level

of the transform.

To compute the coupling coefficients which form the basis transformation matrices it is

necessary to determine the overlap between partitions of the source and target basis.

For spherical Haar wavelets, the analogue of a 2D clipping algorithm on S2 was used to

obtain the spherical polygon that prescribes the overlap. The area of the polygon was

obtained by first subdividing it into spherical triangles and then computing the area of

the triangles. For the Haar cubemap basis we used a clipping algorithm on the faces of

the cubemap to determine the overlap between a partition of the projected source basis

and the domains on the finest level of the target partition. In the future, a rasterization

algorithm might provide significantly better performance to obtain the overlap. For

the spherical Haar wavelets and the Haar cubemap basis we employed the hierarchical,

strictly nested structure of the partition trees to avoid unnecessary computations; that is,

if two partitions are disjoint then with Eq. 5.4, and the analogue for the Haar cubemap

basis, it is guaranteed that the coupling coefficients between basis functions which are

defined over the descendants of the two partitions are zero.

6.4 Properties of the SOHO Wavelet Basis

6.4.1 Optimal SOHO Wavelet Basis

Let Ψ+ and Ψ− be SOHO wavelet bases where the plus and the minus sign has been used

to compute the parameter a in Eq. 4.15, respectively. Basis functions of Ψ+ and Ψ− are

shown in Figure 4.2.

Figure 6.2 shows the approximation performance of the two bases. For the texture map

and the visibility map, Ψ− performs better than Ψ+ in both error norms. For the BRDF,
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in the `2 norm both bases provide almost identical results, and in the `1 norm slight

advantages for Ψ+ can be observed for this signal. We argue that Ψ− provides overall

better results than Ψ+. In the following, we will therefore refer to Ψ− as the SOHO

wavelet basis.

6.4.2 Structure of Basis Function Coefficient Vectors

For the SOHO wavelet basis, the Bio-Haar basis, and the pseudo Haar wavelets, Figure 6.4

and Figure 6.5 show mean values of the magnitude of the basis function coefficients on

different levels. For all bases an exponential decay (linear in the semi-log plot) in the

magnitude of the coefficients can be observed. Figure 6.4 shows that the basis function

coefficients for the Bio-Haar basis decay significantly slower than for the SOHO wavelet

basis.

In Figure 6.6 and Figure 6.7, the nonzero basis function coefficients over different levels

are reported. For the texture map and the BRDF, only a very small number of basis

function coefficients is zero for all three bases. This is particularly surprising in the light

of the results in Figure 6.4 and Figure 6.5 where an exponential decay in the magnitude

of the coefficients has been observed. For the visibility map, shown in Figure 6.7, the

number of coefficients which are zero is significantly larger than for the other two signals.

A considerable number of nonzero coefficients can still be observed for the SOHO wavelet

basis reaching about 80% on level seven. For the Bio-Haar basis about 50% of the basis

function coefficients are nonzero on this level. The pseudo Haar basis has a significantly

smaller number of nonzero coefficients than the other two bases and at level seven only

about 5% of the coefficients are nonzero. We believe that the superior performance of

the pseudo Haar basis results from the fact that it is not basis of L2(S2, dω); that is, the

basis is not able to represent small details and, in contrast to the true spherical Haar

wavelet bases, the basis function coefficients are therefore zero.
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6.5 Efficiency of Signal Approximation

6.5.1 Optimal Approximation for the Bio-Haar Basis

For the Bio-Haar basis, in Figure 6.3 the k-largest and the optimal approximation strat-

egy derived in Chapter 6.2.4 are compared. The plots show clearly that for the semi-

orthogonal Bio-Haar basis the k-largest approximation strategy provides significantly

higher error rates than the optimal approximation. An interesting aspect of the results

is that the optimal approximation strategy in the `2 norm also yields lower error rates in

the `1 norm.

6.5.2 Comparison of Spherical Haar Wavelet Bases

For the spherical Haar wavelet bases employed in the experiments, in Figure 6.8 to

Figure 6.11 the errors rates in the `1 and `2 norm for the approximation of signals with

different numbers of nonzero basis function coefficients are shown.

For both error norms, the basis Bonneau2 performs very similar to the SOHO wavelets;

in fact, in the plots the two bases are in most cases indistinguishable. For the visibility

map, the `1 and `2 error rates for the basis Bonneau1 are higher than for the SOHO

wavelet basis; for the other two signals both bases achieve very similar results. The two

bases developed by Nielson et al. provide almost the same error rates as the SOHO

wavelets for the texture map; for the visibility map however, in particular in the `1 norm,

the error rates are higher. The basis Nielson1 is for the BRDF slightly worse than the

SOHO wavelet basis whereas the basis Nielson2 provides slight advantages. With the

exception of the BRDF where the pseudo Haar wavelets achieve similar results than the

SOHO wavelet basis, the Bio-Haar wavelets and the pseudo Haar basis provide for all

signals higher error rates than the other bases.
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The graphs in Figure 6.9 and Figure 6.11 show that the approximation error for the

visibility map vanishes if 8, 192 or more nonzero basis function coefficients are employed

for the reconstruction. About five percent of the coefficients are thus sufficient to capture

the whole information of the signal. This verifies that Haar-like bases are very efficient

for the representation of piecewise constant signals.

Figure 6.12 to Figure 6.17 show reconstructions of approximated signals for the SOHO

wavelet basis, the Bio-Haar basis, and the pseudo Haar wavelets. The plots for the nearly

orthogonal bases look in most cases very similar to those for the SOHO wavelet basis

and are therefore omitted. Detail views of the reconstructed texture map are provided

in Figure 6.18 to Figure 6.21. For the texture map 6.25%, or 8, 192, of the basis function

coefficients were nonzero for the reconstruction. For the visibility and the BRDF 0.78%,

or 1, 024, of the basis function coefficients were retained. For comparison signals that

have been obtained by reconstruction with the full coefficient vectors are provided.

Although any judgement of the results is limited by the subjectivity of the perceived error,

we believe that the SOHO wavelet basis provides for all signals visually significantly better

results than the other two spherical Haar wavelet bases shown in the comparison. For the

texture map, the SOHO wavelet basis yields sharper edges and the signal appears less

noisy. The basis is also able to preserve more details. This can be observed in particular

in the detail views, for example in the regions corresponding to Italy and Cuba. For

the BRDF, the reconstructed signal for the SOHO wavelet basis appears significantly

smoother than the signals for the other two bases and it is therefore more similar to

the original function. Although differences to the reconstruction with the full coefficient

vector are visible, all bases capture the characteristics of the BRDF well with a very small

number of basis function coefficients. This shows that Haar-like bases are also suitable

for the representation of smooth signals. For the visibility map, the SOHO wavelet basis

provides again sharper edges than the Bio-Haar basis and the pseudo Haar wavelets.
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6.5.3 Comparison of Partitions

The SOHO wavelet basis can be defined over a partition derived from a tetrahedron, an

octahedron, or an icosahedron. In the following, we will refer to these bases as ΨT , ΨO,

and ΨI , respectively. Figure 6.22 to Figure 6.25 show the error rates in the `1 and the

`2 norm resulting from an approximation of signals in the different SOHO wavelet bases.

For high approximation ratios, ΨI provides the best results in the `2 norm. With an

increasing number of nonzero coefficients however, ΨT becomes increasingly better and

with more than 32, 768 basis function coefficients this basis provides superior results. In

the `2 norm, the results obtained with ΨO lie in between those for ΨT and ΨI . In the `1

norm, no clear advantage for any of the bases can be observed. For the BRDF, the base

polyhedron has almost no effect on the performance and all bases perform very similar.

For the texture map, ΨT provides significantly better results than the other two bases;

the basis is however only slightly better than ΨO for the visibility map. In the `1 norm,

for the texture map and the visibility map ΨI provides higher error rates than ΨT and

ΨO.

In Figure 6.26 and Figure 6.27 reconstructed signals obtained from ΨT , ΨO, and ΨI with

6.25% nonzero basis function coefficients are shown. Artifacts are clearly visible for the

signal obtained from ΨT . Visually, ΨO and ΨI provide similar results. However, we

believe that the structure of the partition is more visible for ΨI .

6.6 Properties of Rotation Matrices

6.6.1 Comparison of Spherical Haar Wavelet Bases

The errors rates in the `1 and the `2 norm resulting from rotations of the test signals in

the SOHO wavelet basis, the Bio-Haar basis, and the pseudo Haar wavelets are shown
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in Figure 6.32 to Figure 6.34. For the texture map, the SOHO wavelet basis provides in

both the `1 and the `2 norm the lowest error rates, thereby only slightly outperforming

the Bio-Haar basis. The results for the BRDF are similar. For the visibility map, the

Bio-Haar basis is slightly better than the SOHO wavelet basis in both error norms. The

pseudo Haar basis provides for the BRDF and the visibility map in both the `1 and the

`2 norm significantly higher error rates than the other two bases. Only for the texture

map, the error rates for this basis are similar to those for the SOHO wavelets and the

Bio-Haar basis. Figure 6.35 shows that the rotation matrices for the Bio-Haar wavelets

are significantly sparser than the matrices for the SOHO wavelet basis and the pseudo

Haar basis. This results from the smaller support of the wavelet basis functions for the

Bio-Haar basis.

In Figure 6.36 and Figure 6.37 reconstructions of rotated signals in the target basis are

shown. In Figure 6.37 also the plot of a rotated signal in the source basis is provided. For

all bases the reconstructions appear smoothed which results from the unavoidable resam-

pling. The Bio-Haar basis preserves thereby slightly less detail than the SOHO wavelet

basis. Clearly visible is the loss of detail for the pseudo Haar basis. This corresponds

well to the results in the error plots.

6.6.2 Rotation Matrices for the Haar Cubemap Basis

In Figure 6.38 to Figure 6.40 the `1 and `2 error rates resulting from the rotation of

signals in the SOHO wavelet and the Haar cubemap basis are compared. For the texture

map and for the visibility map, the SOHO wavelet basis provides significantly lower error

rates in both error norms. For the BRDF, the `2 error rates for both representations are

almost identical, and in the `1 norm the Haar cubemap basis provides lower error rates.

In Figure 6.41 the density of the rotation matrices for the two bases is compared. The

plots show that the SOHO wavelet basis provides consistently sparser matrices.
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6.6.3 Approximation of Rotation Matrices

For the SOHO wavelet basis and the Haar cubemap basis, in Figure 6.42 the `1 and `2

error rates resulting from the rotation of the texture map with approximated rotation

matrices are shown. The results for other levels and the remaining test signals are similar

and therefore omitted. For the experiments discussed in this section the test signal was

defined on level four.

For both error norms and for both bases, the error resulting from the rotation increase

almost linearly with increasing approximation threshold t. The density of the approxi-

mated rotation matrices decreases however exponentially. This is shown in Figure 6.43.

6.7 Discussion

What representation is best suited for an application has to be decided in the specific

context. We nonetheless believe that the results presented in this chapter affirm that the

SOHO wavelet basis is an attractive representation for a wide range of applications.

In Chapter 6.5 the approximation performance of the different spherical Haar wavelet

bases employed in the experiments has been compared. Both the numerical error mea-

sures and the quality of reconstructed signals demonstrated that the Bio-Haar basis and

the pseudo Haar basis are less efficient for the approximation of signals than the other

bases. The nearly orthogonal bases provided approximately the same performance as the

SOHO wavelet basis. We expected that these bases are better suited for approximation

than the Bio-Haar and the pseudo Haar basis but the observed performance was surpris-

ing to us. We initially thought that this might result from the high subdivision level on

which the signals were defined. Additional experiments, whose results are not provided

in this chapter, showed however that the nearly orthogonal bases achieve also for coarser

resolutions of the input signals approximately the same error rates as the SOHO wavelet
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basis. In practice a fully orthogonal basis provides therefore no clear advantage over a

nearly orthogonal one. If this is also true for other applications such as product integral

calculations has to be investigated in the future.

Although the pseudo Haar basis did, overall, not outperform the true spherical Haar

wavelet bases, we were nonetheless surprised by its performance. For almost all experi-

ments it provided competitive results. The assumption that the subdivision always yields

child domains with equal area [47] seems therefore in practice to be reasonable. It will

be interesting to explore if this is also true for other applications such as product integral

calculations.

Although the spherical Haar wavelet bases employed for the experiments performed best

for the piecewise constant visibility map, the results from Chapter 6.5 nonetheless demon-

strate that the bases are also efficient for the representation of all-frequency signals. These

results affirm earlier observations by Schröder and Sweldens [76] and Ng et al. [56].

As discussed in Chapter 6.4.2 when signals are represented without approximation, for the

SOHO wavelet basis a significantly smaller proportion of the basis function coefficients

is zero than for the Bio-Haar and pseudo Haar basis. It thus seems to be surprising that

the SOHO wavelets outperform the other two bases for the approximation of signals.

We believe that this discrepancy hints that the SOHO wavelet basis is able to better

decorrelate signals. This argument is strengthened by the results provided in Figure 6.28

to Figure 6.31 where it is shown that for the SOHO wavelet basis a small fraction of the

basis function coefficients is sufficient to capture the salient characteristics of a signal.

In Chapter 6.4.2 it was shown that the magnitude of the basis function coefficients

decays exponentially with increasing level on which the coefficinets are defined. This

result resembles observations made by Shapiro for 2D wavelets in image compression

applications [79]. The decay in the magnitude of the coefficients is a statistical value

and can be interpreted as an increasing likelihood for (spatial) correlations in signals
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when the support of the basis functions decreases. Large basis function coefficients can

however also be observed on high levels of wavelet transforms. These correspond to

high-frequency features such as edges. Results from perception theory indicate that the

preservation of these coefficients during approximation is particularly important for the

perceived quality of reconstructed signals [79].

In Chapter 6.5.3 the approximation performance of SOHO wavelet bases defined over

different base polyhedron has been compared. None of the platonic solids employed in

the experiments showed thereby a clear advantage. However, we want to argue that for

general applications the octahedron is the best choice. The corresponding basis provided

always good results and in none of the experiments did it yield the highest error rates. A

partition derived from an octahedron allows additionally to directly represent hemispher-

ical signals, and the alignment of the faces of an octahedron with over parametrizations

of the sphere is beneficial for many applications.

For the rotation of signals in a spherical Haar wavelet basis, the numerical results for the

SOHO wavelets and the Bio-Haar basis were almost identical. Reconstructions of rotated

signals show however that the SOHO wavelet basis is better suited for the rotation than

the Bio-Haar basis. A comparison of the rotation performance of the SOHO wavelets

and the Haar cubemap basis showed that rotation in the SOHO wavelet basis, both in

terms of computational costs and of resulting error, is more efficient. We argue that this

observation can be generalized and that spherically parametrized bases are more efficient

than other representations for the rotation of signals.

The results from Chapter 6.6.3 demonstrate that the k-largest approximation strategy

for rotation matrices provides good results in practice; although we showed that it is

in general not optimal. For applications the strategy has the advantage that it is data-

independent and can thus be computed off-line. The results from Chapter 6.6.3 also

show that an approximation of the matrices is highly efficient: the error rates increase

linearly with increasing approximation ratio but the number of nonzero coefficients de-
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creases exponentially. Thus, with only modest additional error in the rotated signals, the

computation time and the storage costs can be significantly reduced by approximating

the rotation matrices.

In recent literature, it has often been argued that orthonormal bases are too restrictive

to be useful in a wide range of applications. In particular the missing possibility to

enforce additional constraints on the basis functions is considered as impractical. The

results provided in this chapter show however that this argumentation is too simplistic.

Many applications employ basis representations for the approximation of signals and the

ability to efficiently compute the optimal approximation is therefore highly relevant. The

k-largest approximation strategy can be computed very efficiently, and in the past it has

therefore been used for a wide range of representations. The results from Section 6.5.1

show however that this approximation strategy is far from optimal for non-orthonormal

bases.

Although for orthonormal bases the k-largest approximation strategy is provably optimal

only in the `2 norm, the presented results, in particular those from Section 6.5.1, suggest

that an optimal or good approximation strategy in the `2 norm provides also low error

rates in the `1 norm and visually pleasing results.
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6.8 Graphs
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Figure 6.2: Performance of the SOHO wavelet basis for the two possible choices of the

sign in the computation of parameter a in Eq. 4.15.
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Figure 6.3: Optimal approximation in the `2 norm, as derived in Section 6.2.3, versus

k-largest approximation for the Bio-Haar basis.
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Figure 6.4: Decay of the magnitude of the basis function coefficients for the SOHO

wavelet basis (top) and the Bio-Haar basis (top) with increasing level. The reported

numbers are the mean over all coefficients at the level.
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Figure 6.5: Decay of the magnitude of the basis function coefficients for the pseudo Haar

basis with increasing level. The reported numbers are the mean over all coefficients at

the level. The different scale of the coefficients compared to the SOHO wavelet basis and

the Bio-Haar basis in Figure 6.4 results from the fact that the pseudo Haar basis is not

normalized.
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Figure 6.6: Fraction of nonzero coefficients for the SOHO wavelet basis (top) and the

Bio-Haar basis (bottom). Note that some graphs coincide and are therefore not clearly

visible.
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Figure 6.7: Fraction of nonzero coefficients on each level for the pseudo Haar basis. Note

that some graphs coincide and are therefore not clearly visible.



Chapter 6. Experiments 105

10
2

10
3

10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

Coefficients Retained

L2
 E

rr
or

Texture Map

SOHO
Bio−Haar
Pseudo Haar
Nielson1
Nielson2
Bonneau1
Bonneau2

10
2

10
3

10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Coefficients Retained

L2
 E

rr
or

BRDF

SOHO
Bio−Haar
Pseudo Haar
Nielson1
Nielson2
Bonneau1
Bonneau2

Figure 6.8: Approximation performance of spherical Haar wavelet bases in the `2 norm

for the texture map (top) and the BRDF (bottom).
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Figure 6.9: Approximation performance of spherical Haar wavelet bases in the `2 norm

for the visibility map.
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Figure 6.10: Approximation performance of spherical Haar wavelet bases in the `1 norm

for the texture map (top) and the BRDF (bottom).
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Figure 6.11: Approximation performance of spherical Haar wavelet bases in the `1 norm

for the visibility map.
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Figure 6.12: Reconstructed texture map for the SOHO wavelet basis (top) and the Bio-

Haar basis (bottom) for an approximation which retained 6.25% of the basis function

coefficients of the full signal.
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Figure 6.13: Reconstructed texture map for the pseudo Haar wavelets for an approxima-

tion which retained 6.25% of the basis function coefficients of the full signal (top), and a

reconstruction with the full coefficient vector (bottom).
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Figure 6.14: Reconstructed BRDF for the SOHO wavelet basis (top) and the Bio-Haar

basis (bottom) for an approximation which retained 0.78% of the basis function coeffi-

cients of the full signal.
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Figure 6.15: Reconstructed BRDF for the pseudo Haar wavelets for an approximation

which retained 0.78% of the basis function coefficients of the full signal (top), and recon-

struction with the full coefficient vector (bottom).
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Figure 6.16: Reconstructed visibility map for the SOHO wavelet basis (top) and the Bio-

Haar basis (bottom) for an approximation which retained 0.78% of the basis function

coefficients of the full signal.
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Figure 6.17: Reconstructed visibility map for the pseudo Haar wavelets for an approx-

imation which retained 6.25% of the basis function coefficients of the full signal (top),

and reconstruction with the full coefficient vector (bottom).
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Figure 6.18: Detail of the reconstructed texture map for the SOHO wavelet basis (top)

and the Bio-Haar basis (bottom) for an approximation which retained 6.25% of the basis

function coefficients of the full signal.
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Figure 6.19: Detail of the reconstructed texture map for the pseudo Haar wavelets for an

approximation which retained 6.25% of the basis function coefficients of the full signal.
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Figure 6.20: Detail of the reconstructed texture map for the SOHO wavelet basis (top)

and the Bio-Haar basis (bottom) for an approximation which retained 6.25% of the basis

function coefficients of the full signal.
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Figure 6.21: Detail of the reconstructed texture map for the pseudo Haar wavelets for an

approximation which retained 6.25% of the basis function coefficients of the full signal.
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Figure 6.22: Approximation performance of SOHO wavelet bases defined over partitions

derived from different base polyhedron. The graphs show the error in the `2 norm for

the texture map (top) and the BRDF (bottom).
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Figure 6.23: Approximation performance of SOHO wavelet bases defined over partitions

derived from different platonic solids. The graphs show the `2 error for the visibility map.
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Figure 6.24: Approximation performance of SOHO wavelet bases defined over partitions

derived from different platonic solids. The graphs show the `1 error for the texture map

(top) and the BRDF (bottom).
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Figure 6.25: Approximation performance of SOHO wavelet bases defined over partitions

derived from different platonic solids. The graphs show the `1 error for the visibility map.



Chapter 6. Experiments 123

Figure 6.26: Reconstructed texture map for SOHO wavelet bases defined over partitions

derived from an octahedron (top) and an icosahedron (bottom). For the reconstruction

6.25% of the coefficients of the full signal have been retained.
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Figure 6.27: Reconstructed texture map for a SOHO wavelet basis defined over partitions

derived from an tetrahedron (top). For the reconstruction 6.25% of the coefficients of

the full signal have been retained. The signal at the bottom has been obtained with the

full coefficient vector and a partition derived from an octahedron.
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Figure 6.28: Reconstructed texture map for the SOHO wavelet basis with 64 (top) and

256 (bottom) nonzero coefficients.
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Figure 6.29: Reconstructed texture map for the SOHO wavelet basis with 512 (top) and

2, 056 (bottom) nonzero coefficients.



Chapter 6. Experiments 127

Figure 6.30: Reconstructed texture map for the SOHO wavelet basis with 8, 192 (top)

and 16, 384 (bottom) nonzero coefficients.
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Figure 6.31: Reconstructed texture map for the SOHO wavelet basis with 32, 768 nonzero

coefficients (top) and the full coefficient vector (bottom).
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Figure 6.32: Performance of spherical Haar wavelet bases for the rotation of the texture

map in its wavelet basis representation.
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Figure 6.33: Performance of spherical Haar wavelet bases for the rotation of the BRDF

in its wavelet basis representation.



Chapter 6. Experiments 131

2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

Level

L2
 E

rr
or

Visibility Map

SOHO
Bio−Haar
Pseudo Haar

2 3 4
0

5

10

15

20

25

30

Level

L1
 E

rr
or

Visibility Map

SOHO
Bio−Haar
Pseudo Haar

Figure 6.34: Performance of spherical Haar wavelet bases for the rotation of the visibility

map in its wavelet basis representation.
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Figure 6.35: Sparsity of rotation matrices. Note that some graphs almost coincide and

are therefore not clearly visible.
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Figure 6.36: Reconstructed signals in the target basis after rotation for the SOHO wavelet

basis (top) and the Bio-Haar basis (bottom).
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Figure 6.37: Reconstructed signals in the target basis after rotation for the pseudo Haar

wavelets (top). In the bottom picture the rotated signal in the source basis is shown.
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Figure 6.38: Performance of the SOHO wavelet basis and the Haar cubemap basis for

the rotation of the texture map in its wavelet basis representation.
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Figure 6.39: Performance of the SOHO wavelet basis and the Haar cubemap basis for

the rotation of the BRDF in its wavelet basis representation.
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Figure 6.40: Performance of the SOHO wavelet basis and the Haar cubemap basis for

the rotation of the visibility map in its wavelet basis representation.
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Figure 6.41: Sparsity of rotation matrices.
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Figure 6.42: Performance of the SOHO wavelet basis and the Haar cubemap basis for

the rotation of the texture map in its wavelet basis representation with approximated

rotation matrices. The plots for other signals are similar and therefore omitted.
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Figure 6.43: Sparsity of the rotation matrices for different approximation ratios.



Chapter 7

Future Work

The work presented in this thesis can be continued in a variety of directions.

Firstly, it would be interesting to answer the questions which had to remain unresolved

in this thesis. What are sufficient conditions for the existence of an orthogonal and sym-

metric spherical Haar wavelet basis is one of the remaining problems. In our construction

an area constraint has been employed, but it is at the moment unclear if any constraint

at all is necessary to obtain a SOHO-like basis, or if alternative constraints exist. If the

shape distortion of the novel subdivision scheme introduced in Chapter 4.4 is bounded

is a second question which has yet to be answered.

We believe that many applications might benefit from the use of the SOHO wavelet basis.

In computer graphics, for example the solution of the rendering equation [40] is likely

to be more efficient with a representation of the light transport factors of the integral

equation in the SOHO wavelet basis. The factors are usually not aligned and have to be

rotated before a solution can be obtained efficiently. It would be interesting to explore

the possibility of computing the basis transformation matrices for these rotations at

runtime, thereby avoiding approximations and reducing the otherwise significant storage

requirements [95].
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Beyond computer graphics, applications for example in medical imaging, astrophysics,

and geoscience might benefit from the use of the SOHO wavelet basis. In medical imaging

in particular the orthonormality of the basis will be of interest; for example the ability

to rigorously establish error bounds. For the very large data sets in astrophysics and

geoscience the superior approximation performance of the SOHO wavelet basis will be

beneficial.

We believe that the concept of performing basis transformations to implement operators

will prove to be useful for many different problems in a variety of fields. An obvious

application is a data manipulation system which entirely operates in the basis domain

(cf. [77, 57, 95]). As already discussed in Chapter 5.4, with the steadily increasing

size of data sets such systems will become indispensable. The applicability of basis

transformations is at the moment limited by the high costs of performing transforms.

We believe that revealing the connections between the fast wavelet transform and basis

transformation matrices is the key to overcome these limitations. It will thereby be

interesting to explore what are sufficient conditions for the existence of fast transform

algorithms and how these depend on different operators and bases. This research might

also lead to the development of new wavelet bases specifically designed for particular

operations.

We showed in Chapter 6.2.4 that it is very difficult to find the optimal set of coupling

coefficients which minimizes the error of a basis transformation in an `p norm. In practice,

we obtained good results by using the k largest coupling coefficients. This is however the

obvious strategy and it will be worth to explore alternative approaches.

The development of alternative wavelet representations for spherical signals is another

interesting direction for future work. Smoother wavelets for example would be interesting

for the representation of signals such as BRDFs. Orthogonality and symmetry are also

desirable for these bases but it has to be explored whether or not both properties can
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be preserved for smoother bases. The use of alternative constructions for the partition is

another research direction which might lead to interesting, new spherical wavelet bases.

The HEALPix scheme [33] and the Snyder projection [84] for example provide equal area

domains on each level of a partition tree. The derivation of orthonormal wavelet bases

is with these partitions thus straightforward. It is however at the moment unclear if it

is possible to obtain symmetric bases with these schemes. It also has to be investigated

to which extend the significant shape distortion of these subdivision schemes affects

the performance of the bases for the approximation and rotation of signals in the basis

representation.

The SOHO wavelet basis is defined on the sphere S2. It would be interesting to develop

bases with similar properties on other domains such as general subdivision surfaces or

spherical shells. Such bases would be useful for example for finite element methods,

climate modeling and PRT for dynamic scenes.

Overcomplete sequences such as frames have shown to be useful in a variety of appli-

cations in Euclidean spaces. We believe that such representations will also be valuable

for the processing of spherical signals. The possibility that rotationally invariant frames

exist is an interesting example.
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Chapter 8

Conclusion

In this thesis we developed the SOHO wavelet basis. To our knowledge this is the first

spherical Haar wavelet basis that is both fully orthogonal and symmetric. Our result

refutes earlier claims which doubted the existence of such a basis [7]. We also derived

basis transformation matrices for the rotation of signals represented in spherical Haar

wavelet bases such as the SOHO wavelets. The coupling coefficients forming the rotation

matrices can be computed analytically, in contrast to the numerical calculation of the

coefficients that was necessary in previous work.

Experimental results affirm that the superior theoretical properties of the SOHO wavelet

basis also yield practical advantages. For the approximation of spherical signals, the

SOHO wavelet basis provides competitive or lower error rates than other spherical Haar

wavelet bases in both the `1 and the `2 norm. The visual quality of reconstructed signals

confirms these results, emphasizing the importance of both orthogonality and symmetry.

Compared to the Haar cubemap basis, rotation in the SOHO wavelet basis yields in

general lower error rates in both the `1 and the `2 norm. The Haar cubemap basis ad-

ditionally suffers from a magnification of parametrization artifacts. Compared to other

spherical Haar wavelet bases, the rotation of signals in the SOHO wavelet basis provides
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visually superior results although numerical error measures do not verify the superiority

in all cases. Approximating the rotation matrices by using only the k largest coupling

coefficients is for all examined wavelet representations efficient.

Combining the findings in this thesis, we believe that the SOHO wavelet basis provides

a more efficient representation for all-frequency signals defined on the sphere than previ-

ously proposed representations. We believe that this will enable more efficient solutions

for many problems in computer graphics and beyond.
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Appendix A

Properties of the Pseudo-Haar Basis

In the following it will be shown that the pseudo Haar basis proposed by Ma et al. [47]

is not a basis of the space L2 ≡ L2(S2, dω) of functions with finite energy on the sphere.

In Section 3.1.3 the definition of a basis has been given. To show that the pseudo Haar

basis is not a basis of L2 it is sufficient to provide a counter example where the sequence

in Eq. 3.2 does not converge.

Proof. Let B be a partition obtained with the geodesic bisector subdivision from an

octahedron. A constant signal f with magnitude c defined over the first octant of B is

given by

f = c τ0,0, (A.1)

with τ0,0 ∈ B. Let
{
ψ̂i

}
i∈I

be the pseudo Haar wavelets with the same assumptions as

in the work by Ma et al. [47]. For this sequence Eq. 3.2 takes the form

f =
∑
i∈I

γi ψ̂i =
∑
i∈I

〈
f , ψ̂i

〉
ψ̂i. (A.2)

Obviously, the inner product in Eq. A.2 is zero if supp(f)∩supp(ψ̂i) = ∅. In the following

therefore only the basis functions defined over the first partition tree have to be considered
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and we will denoted with K̂(j) an index set defined over the partitions of the first octant

on level j.

Considering the projection of f into the pseudo Haar basis yields the scaling basis function

coefficient

λ0,0 = 〈f , ϕ0,0〉 .

With the refinement relationship in Eq. 3.7 one obtains

=

∫
S2

c τ0,0

∑
l

h0,0,l ϕ1,l dω.

For the pseudo Haar basis the scaling functions are one over their support so that

= c
∑

l

h0,0,l

∫
S2

τ0,0 τ1,l dω

= c
∑

l

h0,0,l α1,l.

An analogous calculation shows that the wavelet basis function coefficients are

γj,k = c
∑

l

gj,k,l αj+1,l,

with j ∈ J and k ∈ K̂(j).

Note that all basis function coefficients are nonzero. This follows from the non-vanishing

integral of the wavelet basis functions. Combining the basis function coefficients with

Equation A.2, and employing the refinement relationship for the wavelet basis functions

yields

f̂ =
∑
l1

(
c
∑
l2

h0,0,l2 α1,l2

)
h0,0,l1 ϕ1,l1 +

∑
j∈J

∑
k∈K̂(j)

∑
l1

(
c
∑
l2

gj,k,l2 αj+1,l2

)
gj,k,l1 ϕj+1,l1 .
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It is easy to see that the filter coefficients hj,k,l and gj,k,l for the pseudo Haar basis satisfy

Eq. 3.12. It follows that

f̂ = c
∑

l

α1,l ϕ1,l +
∑
j∈J

∑
k∈K̂(j)

c
∑

l

αj+1,l ϕj+1,l

= c

∑
l

α1,l τ1,l +
∑
j∈J

∑
k∈K̂(j)

∑
l

αj+1,l τj+1,l

 (A.3)

The union of the τj,k for fixed j and k ∈ K̂(j) form τ0,0. The geodesic bisector subdivision

does however not yield child domains with equal areas and the scaling factors αj,k on the

right hand side of Eq. A.3 are therefore not constant. Thus f̂ is not constant over its

support which implies that f 6= f̂ , that is Eq. 3.2 is not satisfied.

With the same derivation it is easy to show that the SOHO wavelet basis satisfies Eq. 3.2

for the constant signal f .
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