
Wavelets – An Introduction

Christian Lessig∗

Abstract

Wavelets are used in a wide range of applications such as signal analysis,
signal compression, finite element methods, differential equations, and
integral equations. In the following we will discuss the limitations of tra-
ditional basis expansions and show why wavelets are in many cases more
efficient representations. A mathematical treatment of second generation
wavelets as well as an example will be provided.

1 What are wavelets . . . and why do we care?

Traditional basis expansions such as the Fourier transform and the Laplace transform have
proven to be indispensable in many domains. In the last decades it has however been
recognized that different limitations hamper the practicality of these representations:

(L1) Localization in space The Fourier transform is localized in frequency but the global
support of the basis functions prevents a localization in space1. For many applica-
tions in particular the local behaviour of signals is of interest.

(L2) Faster transform algorithms In recent years the advance of data acquisition technol-
ogy outpaced the available computing power significantly making the Fast Fourier
Transform with its O(n log n) complexity a bottleneck in many applications.

(L3) More flexibility Traditional basis expansions provide no or almost no flexibility. It is
therefore usually not possible to adapt a representation to the problem at hand. An
important reason for this lack of flexibility is the orthogonal nature of traditional
basis expansions.

(L4) Arbitrary domains Traditional basis representations can only represent functions de-
fined of Euclidean spaces Rn 2. Many real-world problems have embeddings
X ⊂ Rn as domain and it is desirable to have a representation which can be
easily adapted for these spaces.

(L5) Weighted measures and irregularly sampled data Traditional transforms can usually
not be employed on spaces with weighted measures or when the input data is
irregularly sampled.
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1The frequency localization of the Fourier transform refers to the fact that every Fourier basis

function captures characteristics of the input signal in a limited frequency band. Space localization
refers to a limited effective support of the basis functions in the primary domain, for audio signals,
for example, the primary or “space” domain is time.

2A notable exception is the sphere where, for example, Spherical Harmonics [10] provide a basis.



These limitations motivated the development of wavelets. Many different fields such as
applied mathematics, physics, signal processing, and computer science provided contri-
butions and today both a thorough mathematical theory and fast and practical algorithms
exist.

An important distinction between traditional basis expansions and wavelets is that there is
not a single set of basis functions that defines a wavelet. Instead, the members of a family
of representations with vastly different properties are denoted as wavelets. Common to all
of them are three properties:

(P1) The sequence {fk}m
k=1 forms a basis or a frame3 of Lp

4.

(P2) The elements of {fk}m
k=1 are localized in both space and frequency.

(P3) Fast algorithms for the analysis, synthesis, and processing of signals in its basis
representation exist.

These three properties – and the flexibility they leave – are the key to the efficiency and
versatility of wavelets.

Some of the first non-trivial wavelets that have been developed are the Daubechies
wavelet [4] and the Meyer wavelet [11]. These, and most other wavelets developed in
the 1980s, are first generation wavelets whose construction requires the Fourier transform
and whose basis functions have to be (dyadic) scales and translates of one particular mother
basis function5 (cf. Section 3). The limitations L3 to L5 thus still apply for first generation
wavelets. The work by Mallat and Sweldens overcame these restrictions and led to the
development of second generation wavelets which will be discussed in more detail in the
following section.

Wavelets can be categorized into discrete (DWT) and continuous (CWT) wavelet trans-
forms. To speak in broad terms, the basis functions of DWTs are defined over a discrete
space which becomes continuous only in the limit case, whereas the basis functions of
CWTs are continuous but require discretization if they are to be used on a computer; see
for example the book by Antoine et al. [1] for a more detailed discussion of the differ-
ences. In signal compression applications mostly discrete wavelets are employed, whereas
for signal analysis typically continuous wavelets are used.

2 Second Generation Wavelets

In this section a mathematical characterization of second generation wavelets will be pro-
vided. See the paper by Sweldens [17] or the thesis by Lessig [9] for a more comprehensive
treatment.

Second generation wavelets permit the representation of functions in L2, the space of func-
tions with finite energy 6, in a very general setting L2 ≡ L2(X,Σ, µ), where X ⊆ Rn is a
spatial domain, Σ denotes a σ-algebra defined over X , and µ is a (possibly weighted) mea-
sure on Σ7. The inner product defined over X will be denoted as 〈·, ·〉. A multiresolution
analysis M = {Vj ⊂ L2 | j ∈ J ⊂ Z} consisting of a sequence of nested subspaces Vj

on different levels j is employed to define the basis functions. M satisfies

3A frame is an overcomplete representation, that is some basis functions fi can be represented as
linear combination of other basis functions. See the book by Christensen [2] for more details.

4In the following we will only consider the space L2 of functions with finite energy.
5See the book by Chui [3] for a more detailed discussion.
6In engineering and many other disciplines, “finite energy” is often used synonymously with

“square-integrable”, that is the `2 norm of all functions in the space has to be finite.
7For first generation wavelets, X = Rn and µ is the Haar-Lebesgue measure [5].



Figure 1: Father scaling basis function ϕ and wavelet mother basis function ψ for the Haar
basis.

1. Vj ⊂ Vj+1.
2.

⋃
j∈J Vj is dense in L2.

3. For every j ∈ J , a basis of Vj is given by scaling functions {ϕj,k | k ∈ K(j)}.

The index set K(j) is defined over all basis functions on level j. Next to the primary
multiresolution analysisM, a dual multiresolution analysis M̃ = {Ṽj ⊂ L2 | j ∈ J ⊂ Z}
formed by dual spaces Ṽj exists, and a basis of the Ṽj is given by dual scaling functions
{ϕ̃j,k | k ∈ K(j)}. The primary and dual scaling functions are biorthogonal

〈ϕj,k, ϕ̃j,k′〉 = δk,k′ .

The nested structure of the spaces Vj ⊂ Vj+1 implies the existence of difference spaces
Wj with Vj ⊕ Wj = Vj+1. The Wj are spanned by sets of wavelet basis functions
{ψj,m | m ∈M(j)}. Analogous to the spaces Ṽj , dual wavelet spaces W̃j with Ṽj⊕W̃j =
Ṽj+1 exist. These are spanned by dual wavelet basis functions {ψ̃j,m | m ∈ M}. The pri-
mary and dual wavelet basis functions on all levels are biorthogonal

〈ψj,m, ψj′,m′〉 = δj,j′δk,k′ .

For all levels j, the spaces Vj and Wj are subspaces of Vj+1. This implies the existence of
refinement relationships

ϕj,k =
∑

l∈L(j,k)

hj,k,l ϕj,l and ψj,m =
∑

l∈L(j,m)

gj,m,l ϕj,l. (1)

The hj,k,l and gj,m,l are scaling filter coefficients and wavelet filter coefficients, respec-
tively. The index sets L(j, k) and L(j,m) are defined as

L(j, k) = {l ∈ K(j + 1) | hj,k,l 6= 0} L(j,m) = {l ∈ K(j + 1) | gj,m,l 6= 0}
and can be augmented by index sets

K(j, l) = {k ∈ K(j) | hj,k,l 6= 0} M(j, l) = {m ∈M(j) | gj,m,l 6= 0} .
In the following, unless stated otherwise, l is assumed to run over L(j, k) or L(j,m), k
over K(j, l), and m over M(j, l). Refinement relationships analogous to Eq. 1 hold for
the ϕ̃j,k and ψ̃j,m with dual filter coefficients h̃j,k,l and g̃j,k,m. The corresponding index
sets, for example L̃(j,mk), are defined analogous to the index sets for the primary basis
functions.

The discrete nature of second generation wavelets results from the definition of the basis
functions over a partition S. A set of measurable subsets {Sj,n | j ∈ J , n ∈ N}, with
N (j) being an index set defined over all Sj,n on level j, is a partition iff:

1. ∀j ∈ J : clos
⋃

n∈N (j) Sj,n = X and the union is disjoint; that is for fixed j the
Sj,n form a simple cover of X .



2. N (j) ⊂ N (j + 1).
3. Sj,n+1 ⊂ Sj,n.
4. For fixed n0 ∈ N (j),

⋂
j>j0

Sj,n is a set containing one point.

Subdivision schemes for embeddings X ⊂ Rn are well-known examples for partitions.

The properties of a wavelet basis can be related back to the filter coefficients. The biorthog-
onality of the basis functions, for example, can be written as∑

l gj,m,l g̃j′,m′,l = δj,j′δm,m′
∑

l hj,k,l h̃j,k′,l = δk,k′∑
l hj,k,l g̃j′,m,l = 0

∑
l h̃j,k,l gj′,m,l = 0.

(2)

A set of scaling and wavelet basis functions provides perfect reconstruction if Eq. 2 holds
and ∑

k

hj,k,l h̃j,k,l +
∑
m

gj,m,l g̃j,m,l = 1.

We can now define a biorthogonal wavelet basis. The scaling basis function at the top-most
level and the wavelet basis functions across all levels form a biorthogonal wavelet basis

Ψ = {ϕ0,0, ψj,m | j ∈ J ,m ∈M(j)}
if the filter coefficients associated with the basis functions provide perfect reconstruction.
A function f ∈ L2 can then be represented as

f =
∑
i∈I

〈
f, ψ̃i

〉
ψi =

∑
i∈I

γi ψi.

The γi are the basis function coefficients and I is an index set defined over all basis func-
tions, including the scaling function at the top-most level.

Computing inner products to determine the basis function coefficients γi is computationally
expensive and can be difficult, in particular if X is not a Cartesian space. The fast wavelet
transform allows to project a signal into its basis representation and to reconstruct it in
linear time O(n) with n being the size of the signal. An analysis step of the fast wavelet
transform takes the form

λj,k =
∑

l

h̃j,k,l λj+1,l and γj,m =
∑

l

g̃j,m,l λj+1,l,

and computes the basis function coefficients at level j from the scaling function coefficients
at level j + 1. A synthesis step takes the form

λj+1,l =
∑

k

hj,k,l λj,k +
∑
m

gj,m,l γj,m

and computes the scaling function coefficients at level j + 1 from the basis function coef-
ficients at level j.

Next to biorthogonal wavelet bases, also semi-orthogonal and orthogonal wavelets exist.
For a semi-orthogonal wavelet basis, the spaces Vj and Ṽj coincide, or equivalently,

〈ϕj,k, ψj,m〉 = 0 and
〈
ϕ̃j,k, ψ̃j,m

〉
= 0.

If additionally the wavelet basis functions are orthogonal, that is
〈ψj,m, ψj′,m′〉 = δj,j′δm,m′

then the wavelet basis is orthogonal. In this case the primary and dual basis functions
coincide [12]. The ability to develop bases that are not fully orthogonal but which still
permit to efficiently determine the basis function coefficients, via the inner product with the
dual basis functions or the fast wavelet transform, adds significant flexibility to the design
of bases and is one of reasons for the efficiency of wavelets in many different domains.



Figure 2: Wavelet transform for a discrete signal of length 8 with the Haar wavelet. Next to
the signal (black) also the basis functions on each level are shown (blue and cyan). On the
left and right side, respectively, the computations of the scaling function coefficients λj,k

and the wavelet basis function coefficients γj,m are shown.

3 Wavelets in Action

After this rather mathematical treatment of wavelets let us now look at an example and
revisit some of the properties of wavelet bases in a more concrete setting8.

The wavelet basis we will employ is the (unnormalized) Haar basis [7]. The father and
mother wavelets ϕ(x) and ψ(x), respectively, are shown in Figure 1, and the basis functions
are formed as dyadic scales and translates of ϕ(x) and ψ(x)

ϕj,k ≡ ϕ(2jx− k) and ψj,m ≡ ψ(2jx−m) with k,m = 0, · · · , 2j − 1.

The Haar basis is a first generation wavelet although it is easily possible to construct it in a
second generation setting; see, for example, the thesis of Lessig for more details on how to
construct Haar-like wavelets over arbitrary domains [9].

The (discrete) signal that is analysed in our example has length 8 and is shown in the top
row of Figure 2. The left side of the figure shows how the scaling basis function coefficients
λj,k are computed. Note how the dimension of the spaces Vj is reduced by half when we
go from level j + 1 to level j. This is the realization of the nested structure of the spaces
Vj ⊂ Vj+1. The difference spacesWj are not shown explicitly in Figure 2 but these contain
the information that is lost by downsampling Vj+1 to obtain Vj .

The right column in Figure 2 shows that the magnitude of the wavelet basis function coef-
ficients γj,m is a measure for the local variation in a signal; coefficient γ2,0, for example,

8Due to the flexible nature of wavelets the following discussion does not apply to the same degree
to all different wavelet bases.



has the largest magnitude and it is easy to see that the corresponding region of the signal is
in fact those with the biggest variation. This property of the wavelet basis function coeffi-
cients holds not only for the Haar basis but can observed for all wavelet representations; the
scaling functions act as average operator, or low frequency filter, whereas the wavelet basis
functions are difference operators, or high-pass filter. The correlation that can be found
in all natural signals – from images on YouTube to cosmological radiation – makes this
one of the keys to the efficiency and versatility of wavelets. For data compression applica-
tions, for example, it can be exploited that most of the wavelet basis function coefficients
for correlated signals are small and can thus be disregarded without significant error in the
signals. For data analysis applications large basis function coefficients are of interest be-
cause deviations from typical behaviour (or correlations) is usually considered as “feature”
(cf. [13]).

The basis function coefficient γ2,0 = 7, with its large magnitude, does not only tell us that
there is a feature but it also tells us where the feature is. For the wavelet basis function
coefficients the index m represents the space localization of the wavelet basis functions
whereas the band or scale index j corresponds to the frequency localization. In our example
the feature is thus at the beginning of the signal and it has a high frequency.

4 Further Readings

There are currently thousands of books on wavelets and even more papers with the same
subject. Below is a short (and biased) list of literature the interested reader might consider
as helpful for further explorations.

• Wavelets in Computer Graphics [15] The book provides a very gentle introduction
with many (visual) examples from Computer Graphics.

• Wavelet Primer [14] The paper is a summary of the book Wavelets in Computer
Graphics (see above).

• The Lifting Scheme: A Custom-Design Construction of Biorthogonal
Wavelets [16]: The paper introduces the lifting schemes which is an important
tool for second generation wavelets and which allows to construct more sophisti-
cated wavelets from simpler ones.

• SIGGRAPH 1996 Course Notes [19]: Notes from a tutorial on second generation
wavelets and the lifting scheme.

• Spherical Wavelets [12] The paper describes how wavelets on the sphere S2 can
be constructed and it exemplifies the power of second generation wavelets.

• SOHO Wavelets [9] The master thesis provides a comprehensive introduction into
second generation wavelet theory and explains how a basis with custom properties
can be constructed.

• A New Class of Unbalanced Haar Wavelets that form an Unconditional Basis
for Lp on General Measure Spaces [6] The paper provides a proof showing that
second generation Haar-like wavelets are (unconditional) bases.

• An Introduction to Frames and Riesz Basis [2] The book provides the mathemati-
cal theory behind overcomplete representations, so-called frames.

• Two Dimensional Wavelets and their Relatives [1] The book approaches wavelets
from a group-theoretic approach; the authors are theoretical physicists.

• Ripples in Mathematics [8] A standard introductory book on wavelets.

• Wavelets: What’s next? [18] The essay describes (in an amusing way) the past,
present, and future of research in wavelets.
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[12] SCHRÖDER, P., AND SWELDENS, W. Spherical Wavelets: Efficiently Represent-
ing Functions on the Sphere. In SIGGRAPH ’95: Proceedings of the 22nd annual
Conference on Computer Graphics and Interactive Techniques (New York, NY, USA,
1995), ACM Press, pp. 161–172.

[13] SHANNON, C. E. A Mathematical Theory of Communication. The Bell System
Technical Journal 27 (july, october 1948), 379–423, 623–.

[14] STOLLNITZ, E. J., DEROSE, T. D., AND SALESIN, D. H. Wavelets for Computer
Graphics: A Primer, Part 1. IEEE Comput. Graph. Appl. 15, 3 (1995), 76–84.

[15] STOLLNITZ, E. J., DEROSE, T. D., AND SALESIN, D. H. Wavelets for Computer
Graphics: Theory and Applications. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1996.

[16] SWELDENS, W. The Lifting Scheme: A New Philosophy in Biorthogonal Wavelet
Constructions. In Wavelet Applications in Signal and Image Processing III (1995),
A. F. Laine and M. Unser, Eds., Proc. SPIE 2569, pp. 68–79.

[17] SWELDENS, W. The Lifting Scheme: A Custom-Design Construction of Biorthogo-
nal Wavelets. Appl. Comput. Harmon. Anal. 3, 2 (1996), 186–200.

[18] SWELDENS, W. Wavelets: What Next? Proc. IEEE 84, 4 (1996), 680–685.
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