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Abstract

Spherical harmonics are employed in a wide range of applications in com-
putational science and physics, and many of them require the rotation of
functions. We present an efficient and accurate algorithm for the rotation of
finite spherical harmonics expansions. Exploiting the pointwise action of the
rotation group on functions on the sphere, we obtain the spherical harmon-
ics expansion of a rotated signal from function values at rotated sampling
points. The number of sampling points and their location permits one to bal-
ance performance and accuracy, making our technique well-suited for a wide
range of applications. Numerical experiments comparing different sampling
schemes and various techniques from the literature are presented, making
this the first thorough evaluation of spherical harmonics rotation algorithms.
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1. Introduction

Spherical harmonics are employed in a wide range of applications in com-
putational science. In many areas, such as quantum chemistry, astronomy,
geoscience, scattering theory, electromagnetics, and computer graphics, the
rotation of the functions is also required: given the expansion

f(ω) =
L∑
l=0

l∑
m=−l

αlm ylm(ω),
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of a function f : S2 → R (or C) in the Hilbert space H≤L(S2) spanned by all
spherical harmonics ylm up to band L, one seeks the spherical harmonics basis
function coefficients ᾱ = (ᾱ0,0, . . . , ᾱl,m, . . . , ᾱl,l)

T of the rotated function
f̄ = Rf when the rotation group SO(3) acts pointwise on functions as f̄(ω) =
f(R−1ω) for arbitrary R ∈ SO(3).

The rotated basis function coefficients ᾱl in the lth spherical harmon-
ics band Hl are a linear combination of the unrotated coefficients αl in the
band and can hence be obtained with a matrix Rl as ᾱl = Rl αl. Direct ap-
proaches [1, 2] for computing spherical harmonics rotation matrices Rl were
already proposed in the 19th century but these are computationally expensive
and numerically unstable [3]. Recurrence schemes [4, 5, 6, 3, 7] alleviate some
of these problems but they remain slow and become numerically unstable for
the large number of bands that are increasingly required in applications [8, 9].
In contrast to the literature, we do not compute spherical harmonics rota-
tion matrices but employ a sampling formula for the lth spherical harmonics
band Hl and exploit that the action of the rotation group SO(3) is defined
point-wise. A rotated function f̄l = Rfl is then obtained by evaluating the
unrotated function fl at rotated sampling locations λ̄i = R−1λi and using a
change of basis from the sampling basis to spherical harmonics. Extensive
numerical experiments are presented, and to our knowledge this is the first
thorough empirical validation of spherical harmonics rotation algorithms.
The experiments demonstrate that our technique provides accuracy compa-
rable to the best known methods. The fastest technique currently available
is a variation of the algorithm by Pinchon and Hoggan [10], provided to us by
these authors, which appears here for the first time. Our technique provides
the additional advantage that it is easy to implement, overcoming a practical
limitation of other algorithms.

The remainder of the paper is structured as follows. In Sec. 2 we develop
our algorithm for rotating finite spherical harmonics expansions and discuss
the trade-offs that are available by the choice of sampling locations. In Sec. 3
experimental results are presented, and in Sec. 4 we discuss the relevance of
our algorithm and possible directions for future work. Our paper presents
the rotation of real spherical harmonics but all results hold with the usual
modifications in the complex setting.
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2. Rotation of Finite Spherical Harmonics Expansions

In Sec. 2.1 we will derive our technique in the continuous setting, while
its computer implementation is discussed in Sec. 2.2 when we formulate it
using linear algebra. The choice of sampling points, which is important for
the performance and accuracy of our technique, is discussed in Sec. 2.3.

2.1. A Rotation Algorithm for Spherical Harmonics: Continuous Theory

The space (H≤L, 〈·, ·〉) with the standard L2 inner product 〈·, ·〉 over the
sphere is spanned by (Legendre) spherical harmonics

ylm(ω) = ylm(θ, φ) = ηlm Plm(cos θ)


sin (|m|φ) m < 0

1 m = 0
cos (mφ) m > 0

, (1)

where ω = (θ, φ) is a point on the sphere, ηlm is a normalization constant
such that the ylm form an orthonormal basis, Plm is the associated Legendre
polynomial of degree l and order m, and the indices satisfy 0 ≤ l ≤ L and
−l ≤ m ≤ l. H≤L admits the orthogonal decompositionH≤L = H0⊕· · ·⊕HL

and the bands Hl are closed under the action of the rotation group SO(3).
For the rotation of a function f ∈ H≤L it is hence sufficient to consider the
restrictions fl ∈ Hl with f = f0 + · · · + fL. See for example the book by
Freeden et al. [11] for a more detailed discussion of spherical harmonics.

Our algorithm for rotating finite spherical harmonic expansions employs a
biorthogonal reproducing kernel basis for the space Hl. A reproducing kernel
kω̄(ω) is a function such that 〈kω̄(ω), f(ω)〉 = f(ω̄) for arbitrary ω̄ ∈ S2 and
it follows from the general theory [12, 13] that for Hl it is given by

kω̄(ω) =
∑

−l≤m≤l

ylm(ω) ylm(ω̄) =
2l + 1

4π
Pl(ω̄ · ω),

where the last equality holds by the spherical harmonics addition theorem.
With a sequence λ = {λi} of 2l + 1 points λi ∈ S2 such that the reproduc-
ing kernel functions ki(ω) ≡ kλi(ω) at the λi are linearly independent, the
functions {ki(ω)} form a basis for Hl and the associated dual basis {k̃j(ω)}
is uniquely defined by 〈ki(ω), k̃j(ω)〉 = δij. Any function fl ∈ Hl can then be
written as

fl(ω̄) =
2l+1∑
i=1

〈fl(ω), ki(ω)〉 k̃i(ω̄) =
2l+1∑
i=1

fl(λi) k̃i(ω̄) (2)
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Algorithm 1: Rotation for general sampling points.

Input: R,αl,Cl,λl
Output: ᾱl

Rotate sampling points, λ̄i = R−1λi.1

Evaluate fl ∈ Hl at rotated sampling points, f̄l = {
∑l

m=−l αlm ylm(λ̄i)}.2

Compute basis function coefficients of the rotated function, ᾱl = Sl f̄l.3

where the last equality follows from the reproducing property of the kernel
functions. The basis function coefficients with respect to the kernel basis are
thus given by the function values f(λi) at the sampling locations. Eq. 2 is
the analogue of the Shannon sampling theorem for the sphere and the lack of
a regular sequence on S2 is a principal reason for the biorthogonality of the
basis functions; in contrast, over the real line the set of sinc functions cen-
tered at the integers form an orthonormal basis for the space of bandlimited
functions over the real line.

By Eq. 2, the representation of a rotated function f̄l in the kernel basis is

f̄l = R fl =
2l+1∑
i=1

R fl(λi) k̃i =
2l+1∑
i=1

fl(R
−1λi) k̃i =

2l+1∑
i=1

fl(λ̄i) k̃i (3)

where we employed the point-wise definition of the rotation action. Since
both the kernel basis and spherical harmonics with fixed l span Hl, the
spherical harmonics coefficients ᾱlm of the rotated signal can be obtained by
a change of basis

ᾱlm =
〈
f̄l , ylm

〉
=

〈
2l+1∑
i=1

f(λ̄i) k̃i , ylm

〉
. (4)

2.2. A Rotation Algorithm for Spherical Harmonics: Discrete Formulation

With the isomorphism between Hl and Euclidean space R2l+1 provided
by spherical harmonics ylm, a representation of the reproducing kernel basis
functions is given by their basis function coefficients. These can be arranged
in matrix form to yield

Kl ≡ Kl(λ) =

 yl,−l(λ1) . . . yl,l(λ1)
...

. . .
...

yl,−l(λn) . . . yl,l(λn)

 ∈ Rn×n (5)
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Algorithm 2: Rotation for equi-latitude sampling points at ζ.

Input: R,αl,ζ
Output: ᾱl

Construct and rotate sample points,1

λ̄i = R−1λi with λi = (ζ, φi) and φi = (2πi)/(2l + 1).
Evaluate fl ∈ Hl at rotated sample points, f̄l = {

∑l
m=−l αlm ylm(λ̄i)}.2

Compute basis function coefficients of the rotated function,3

αlm = DFT{f̄l}m/(ηlm Plm(cos ζ)).1

where n = 2l + 1. Kl provides the change of basis from spherical harmonics
to the kernel basis so that fl(λ) = Klαl, where fl(λ) = (f(λ1), . . . , f(λn))T

and αl = (αl,−l, . . . , αl,m, . . . , αl,l)
T . Conversely, αl = K−1

l fl(λ) = Sl fl(λ).
The desired spherical harmonics coefficients ᾱl of the rotated function are
thus obtained as

ᾱl = Sl fl(λ̄) (6)

where fl(λ̄) = (fl(λ̄1), . . . , fl(λ̄n))T are the function values at the rotated
sampling locations λ̄i = R−1λi; it is easily verified that Eq. 6 is equivalent
to Eq. 4. Our rotation algorithm for finite spherical harmonics expansions
is summarized in Algo. 1. Note that the matrix Sl depends only on the
sampling locations but not on the rotation. It can hence be precomputed.

An alternative interpretation of our algorithm is to consider it as a fac-
torization of the classical spherical harmonics rotation matrix Rl, similar in
spirit to the work by Pinchon and Hoggan [10]. The rotated signal at the
unrotated sampling locations is given by f̄l(λ) = Kl(λ) ᾱl and by definition
f̄l(λ) = fl(R

−1λ). Additionally, the unrotated signal at the rotated sampling
locations is fl(R

−1λ) = Kl(R
−1λ)αl. One therefore has

Kl(λ) ᾱ = f̄l(λ)

Kl(λ) ᾱ = Kl(R
−1λ)α

ᾱ = K−1
l (λ)Kl(R

−1 λ)α

and the kernel matrix Kl factors the classical spherical harmonics rotation
matrix Rl as Rl = K−1

l (λ)Kl(R
−1λ), and analogously when m > n.

1DFT{f̄l}m refers to the mth coefficients of the Discrete Fourier Transform of f̄l with
−l ≤ m ≤ l where negative m correspond to sin(|m|x) and positive m to cos(mx).
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Figure 1: Left: Condition number (full) and average L2 rotation error (dashed) as a
function of the oversampling rate for l = 20. Right: Condition numbers for different
strategies to obtain sampling sequences with different oversampling rates (osr).

2.3. Sampling Locations

Previously we posited the existence of sampling sequences λ such that the
sampling points λi yield linearly independent kernel functions ki(ω) = kλi(ω)
forming a basis for Hl. The existence of sampling sequences is guaranteed by
a theorem due to Müller [14, p. 13][11, p. 51] and it can be shown that up to
a set of measure zero any set of 2l+ 1 points on the sphere can be employed.
However, in applications not only the existence of sampling sequences but
also their quality is of critical importance, and their choice enables balancing
accuracy and performance.

By Eq. 6 and Sl = K−1
l , with our technique the rotation of finite spherical

harmonics expansions is equivalent to the solution of a linear system. The
condition number cond (Kl) hence provides a quality measure for sampling
locations. A condition number of unity corresponds to an optimal sampling
sequence with an orthogonal kernel basis while a set of locations for which the
kernel functions are not linearly independent has an infinite condition num-
ber. As one would expect, well-distributed points on the sphere yield low
condition numbers and are well-suited for our rotation algorithm. We obtain
such locations by mapping quasi-random sequences from the unit square to
the upper hemisphere [15]; the restriction to the hemisphere is advantageous
since anitpodal points would yield co-linear basis functions. Additionally, we
also employ the spiral points that were proposed by Saff and Kuijlaars [16]
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as well-distributed sequences on S2. Fig. 1 shows that the performance of
different well-distributed sequences is qualitatively equivalent and that they
outperform sampling points obtained with a (pseudo) random number gener-
ator. The graphs also verify the close correlation between condition number
and rotation error, a connection that is only violated when a rotated sampling
location is close to a pole and the accurate evaluation of spherical harmonics
is difficult.

We investigated two strategies to improve the condition numbers obtained
with well-distributed point sets: increasing the number of sampling points
and optimizing their location. Previously we assumed that n = 2l + 1 sam-
pling points are employed. When m > n points are used one obtains an
overcomplete basis (or a frame) for which the dual basis functions are de-
fined by a left pseudo-inverse of the kernel matrix.2 It is known from the
signal processing literature that oversampling often improves accuracy and
robustness [17, 18], and in Appendix C we show that the condition number
approaches unity as the number of sampling points goes to infinity. Fig. 1
demonstrates empirically that overcomplete representations improve the con-
dition number and the rotation error, and that a small oversampling rate is
sufficient to obtain close to optimal accuracy. Oversampling requires more
function evaluations than critical sampling, making it computationally more
expensive. To improve the accuracy of our rotation algorithm without in-
creasing the computational costs at runtime, we employed numerical opti-
mization of the sampling locations to improve the condition number of the
kernel matrix. We were not able to derive an analytic expression for the
gradient of cond (Kl) but a BFGS optimizer [19] with finite differences and
restarts based on different, well-distributed point sets performed well for
our purposes. Fig. 1 shows the considerable improvements in the condition
number that can be obtained by optimization. The main limitation of opti-
mization are the high computational costs, although these occur only once
and during precomputation.

An interesting alternative to the sequences obtained with the above con-
structions is provided by sampling sequences λi = (ζ, φi) with a fixed lat-
itude ζ. By Eq. 1, the kernel matrix can then be factored as Kl(ζ) =
Pl(ζ)F where F is the discrete Fourier transform matrix and the nonzero

2For our experiments we employed the Moore-Penrose pseudo-inverse that yields the
minimal norm dual.
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elements of the diagonal matrix Pl(ζ) are given by pmm = Plm(cos ζ) with
−l ≤ m ≤ l. The basis function coefficients ᾱlm of the rotated function
can then be recovered with Algo. 2. From the orthogonality of the discrete
Fourier transform it follows that cond (Kl(ζ)) is given by cond (Pl(ζ)) =
max (|Plm(cos ζ)|)/min (|Plm(cos ζ)|) and the accuracy of the algorithm is
determined by ζ. Experiments show that beyond a critical latitude the con-
dition number deteriorates as the distance from the equator increases and
for l ≤ 150 latitudes with 75◦ ≤ ζ < 90◦ should be employed. When other
latitudes are used or for very large l the accuracy is insufficient only for a
very small number of rotated coefficients ᾱlm where Plm(ζ) is very small. A
practical work-around is hence to compute these coefficients with Algo. 1 us-
ing a small number of additional sampling points with θ 6= ζ. An interesting
choice for the latitude is ζ = π/2 which locates the sampling sequence on the
equator and leads to the recent algorithm by Gimbutas and Greengard [9];
see Appendix A for details.

3. Experimental Evaluation

We evaluated our algorithm for the rotation of finite spherical harmonics
expansions with different choices for the sampling points and compared its
accuracy and performance to various techniques in the literature. As sam-
pling sequences we employed optimized point sets with different oversampling
rates, nested sampling points where the sampling locations for band l are a
subset of those for band l + 1, and equi-latitude points with ζ = 9π/20
for which the fast Fourier transform was used to speed up computations.
With nested sampling points the recurrent structure of spherical harmonics
evaluation can be exploited, enabling faster evaluation at the sampling loca-
tions. Even with nesting, in particular for low bands, a large fraction of the
computation time is spent on spherical harmonics evaluation. We therefore
determined the sample values fl(λ̄i) also from a representation of fl in the re-
producing kernel basis, with primary and dual basis functions interchanged,
which is slightly more efficient than spherical harmonics when the spherical
harmonics addition theorem is exploited and only Legendre polynomials have
to be evaluated. Our technique has a computational complexity of O(sL3)
for nested sampling points and O(sL4) for non-nested points, where s is
the oversampling rate. A detailed analysis of the instruction count for our
technique is available in Appendix B.
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Figure 2: Average L2 error of experiments (osr = oversampling rate).

From the literature we employed the algorithms by Ivanic and Rueden-
berg [3], Blanco et al. [7], Pinchon and Hoggan [10], and Gimbutas and
Greengard [9], implemented in C/C++ using double precision and, when
available, based on implementations provided by the original authors. For
the algorithm proposed by Pinchon and Hoggan [10] we employed two vari-
ants: the first obtains the spherical harmonics rotation matrix and then
applies it to a coefficient vector as proposed in the original publication (‘Pin-
chon Matrix’), while the second is a variation suggested to us by the authors
that avoids the explicit computation of the rotation matrix and applies the
coefficient vector incrementally to the highly sparse factorization employed
in the work (‘Pinchon Vector’), yielding a computational complexity of only
O(L2) instead of O(L3) for the original technique.

Average L2 errors per band and execution times are reported in Fig. 2 and
Fig. 3. Other error norms are qualitatively equivalent to the presented results
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and have been omitted. All graphs have been obtained by averaging over a
large number of random rotations and reference solutions were obtained as
in previous work [9].

The experimental results in Fig. 3 show that nested sampling points
(ShrK, osr = 1.0, nested) are more efficient than optimized sampling se-
quences without this structure, as expected from the lower computational
complexity. For lower bands, a representation of fl in the kernel basis (ShrK,
osr = 1.0, zonal) provides an additional performance advantage. For higher
bands, the fast Fourier transform makes equi-latitude points almost as ef-
ficient as nested sampling points, and we expect even better performance
when the nested structure of the equi-latitude points is also exploited. In
all cases, Pinchon Vector is the fastest algorithm, due to the lower computa-
tional complexity. As shown in Fig. 2, optimized sampling locations (Shrk,
osr = *, opt.) provide significantly higher accuracy than well-distributed
sequences (ShrK, osr = 1.0, nested) and equi-latitude points, in particular
when combined with oversampling. In this case only little accuracy is lost
and our algorithm performs comparably to the technique by Pinchon and
Hoggan [10] which is currently the most accurate one in the literature.

4. Discussion

With our algorithm the spherical harmonics coefficients of a rotated sig-
nal are obtained using a sampling formula for the sphere and by exploiting
the point-wise definition of the action of SO(3) on functions. In contrast
to most techniques in the literature that construct spherical harmonics ro-
tation matrices, our algorithm is simple to implement and enables one to
trade-off accuracy and performance, making it well-suited for a wide range
of applications. We presented an empirical validation of our technique and
to our knowledge this is the first extensive comparison of spherical harmon-
ics rotation algorithms available in the literature. The experimental results
demonstrate that our technique attains accuracy comparable to the best
methods. The fastest technique currently available is those by Pinchon and
Hoggan [10] when the rotation matrix is not constructed explicitly, as was
suggested and provided to us by these authors, and it has been evaluated for
the first time in this paper. A possible disadvantage of our technique is that
the sampling matrices Sl have to be precomputed and stored. However, the
technique by Pinchon and Hoggan [10] suffers from similar drawbacks and
for our technique it can be avoided with equi-latitude sampling locations.
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Our algorithm was inspired by work by Higgins and Kempski [20, 21]
and Freeden and co-workers [11] who proposed sampling theorems for the
sphere similar to Eq. 2. However, these authors did not consider biorthogonal
kernel bases that are an important ingredient to our technique. Algorithms
similar to ours were proposed previously by Stern [22], see also the paper
by James [5], and Gimbutas and Greengard [9]. Unfortunately, Stern’s work
received only very little attention after its inception and he also did not
investigate different sampling locations or the mathematics underlying the
technique. Gimbutas and Greengard [9] recently proposed an interesting
variation of our technique with sampling points on the equator, cf. Appendix
A. Our work provides a general framework for their algorithm and clarifies
its theoretical underpinning.

An interesting question for future work is the existence of optimal sam-
pling sequences although the connection to other point distribution problems
on the sphere [16, 23] makes us believe that the problem is very hard. Ad-
ditionally, orthogonal kernel bases, which are particularly desirable from a
computational point of view, cannot exist [24] due to the non-existence of
tight spherical designs [25, 26]. A better theoretical understanding of suit-
able latitudes for equi-latitude sampling points, in particular for very large
bands, is also desirable.

A Matlab implementation of our algorithm as well as the C++ framework
used for the experiments, including optimized sampling sequences, are avail-
able at http://www.dgp.toronto.edu/people/lessig/shrk/. Parts of the
Matlab code are based on Frederik Simons repository [27].
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Appendix A. Spectral Spherical Harmonics Rotation

In this appendix we will briefly outline the connection between the re-
cent work by Gimbutas and Greengard [9], which they referred to as spectral
method, and our algorithm. Assume equi-latitude sampling points on the
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equator are employed so that ζ = π/2. At first sight, this choice seems
unfortunate since one-half of the Plm(0) vanish and the corresponding basis
function coefficients cannot be recovered. However, the remaining coefficients
αlm̃ with m̃ = {−l ≤ m ≤ l | Plm(0) 6= 0} can be computed to very high
accuracy. The condition number for this sub-problem is less than ten even
for band 1000, cf. Fig. 1. By exploiting that the derivative ∂Plm(t)/∂t |t=0

of the associated Legendre polynomials on the equator is non-zero exactly
for those m̂ = {m} \ {m̃} where the function values vanish, we can deter-
mine the remaining αlm̂ by derivative sampling, an approach which is in fact
well known in the sampling literature [28]. The closure of the derivative un-
der rotation follows from the equivalence with one of the vector Spherical
Harmonics basis functions [11, Lemma 12.7.2].

Appendix B. Instruction Count

The instruction count for our technique for nested sampling points for an
oversampling rate s and a maximum spherical harmonics band l are

mult / div 12.66 sL3 + 79.5 sL2 + 62.83 sL+ 9 s
sqrt 0.66 sL3 + 2.5 sL2 + 1.83 sL

sin / cos 8 sL+ 4 s

and for non-nested sampling points one has

mult / div 4.25 sL4 + 3.1L3 + 49.5 sL2 + 41.54 sL+ 9 s
sqrt 0.25 sL4 + 1.66 sL3 + 1.55 sL2 + 0.23 sL

sin / cos 4 sL2 + 8 sL

The complete analysis is available online at http://www.dgp.toronto.

edu/people/lessig/shrk/data/shrk_instruction_count.pdf.

Appendix C. Proofs

Lemma 1. The condition number of the kernel matrix converges to unity as
the oversampling rate approaches infinity.

Proof. The kernel matrix has unit condition number if and only if its columns
are orthonormal. The scalar product of two columns is an unnormalized
Monte Carlo estimator for the inner product of the corresponding Spherical
Harmonics basis functions. Since these are orthonormal and the condition
number is invariant under scalar scaling this immediately yields the desired
result.
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[7] M. A. Blanco, M. Flórez, M. Bermejo, Evaluation of the rotation matri-
ces in the basis of real spherical harmonics, Journal of Molecular Struc-
ture 419 (1997) 19–27.

[8] S. Kenyon, J. Factor, N. Pavlis, S. Holmes, Towards the Next Earth
Gravitational Model, in: Society of Exploration Geophysicists 77th
Annual Meeting, San Antonio, Texas, USA, 2007.
URL http://earth-info.nga.mil/GandG/wgs84/gravitymod/new_

egm/EGM08_papers/EGM-2007-final.pdf

[9] Z. Gimbutas, L. Greengard, A fast and stable method for rotating
spherical harmonic expansions, Journal of Computational Physics
228 (16) (2009) 5621–5627. doi:10.1016/j.jcp.2009.05.014.

14



URL http://linkinghub.elsevier.com/retrieve/pii/

S0021999109002691

[10] D. Pinchon, P. E. Hoggan, Rotation Matrices for Real Spherical Har-
monics: General Rotations of Atomic Orbitals in Space-Fixed Axes,
Journal of Physics A: Mathematical and Theoretical 40 (2007) 1597–
1610.
URL http://stacks.iop.org/1751-8121/40/1597

[11] W. Freeden, T. Gervens, M. Schreiner, Constructive Approximation on
the Sphere (With Applications to Geomathematics), Oxford Sciences
Publication. Clarendon Press, Oxford University, 1998.

[12] N. Aronszajn, Theory of Reproducing Kernels, Transactions of the
American Mathematical Society 68 (3) (1950) 337–404.
URL http://www.jstor.org/stable/1990404

[13] S. Saitoh, Integral Transforms, Reproducing Kernels and their Appli-
cations, Pitman Research Notes in Mathematics, Longman Scientific &
Technical, 1997.

[14] C. Müller, Spherical Harmonics, Lecture Notes in Mathematics,
Springer, 1966.

[15] J. Cui, W. Freeden, Equidistribution on the
Sphere, SIAM J. Sci. Comput. 18 (1997) 595–609.
doi:http://dx.doi.org/10.1137/S1064827595281344.

[16] E. Saff, A. Kuijlaars, Distributing many points on a sphere, The Math-
ematical Intelligencer 19 (1) (1997) 5–11. doi:10.1007/BF03024331.
URL http://www.springerlink.com/index/10.1007/BF03024331

[17] J. Kovacevic, A. Chebira, Life Beyond Bases: The Advent of Frames
(Part I), Signal Processing Magazine, IEEE 24 (4) (2007) 86 – 104.
doi:10.1109/MSP.2007.4286567.
URL http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?

arnumber=4286567

[18] S. G. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way,
third ed. Edition, Academic Press, 2009.

15



[19] C. Zhu, R. H. Byrd, P. Lu, J. Nocedal, Algorithm 778: L-BFGS-
B:Fortran subroutines for large-scale bound-constrained optimization,
ACM Transactions on Mathematical Software (TOMS) 23 (4).
URL http://portal.acm.org/citation.cfm?id=279236

[20] B. L. Kempski, Extension of the Whittaker-Shannon Sampling Series
Aided by Symbolic Computation, M.Sc. thesis, Anglia Polytechnique
University, Cambridge (1995).

[21] J. R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foun-
dations, Oxford University Press, Oxford, 1996.

[22] D. Stern, Classification Of Magnetic Shells, J. Geophys. Res. 70 (15)
(1965) 3629–3634.
URL http://www.agu.org/journals/ABS/1965/JZ070i015p03629.

shtml

[23] D. Armentano, C. Beltrán, M. Shub, Minimizing the discrete logarith-
mic energy on the sphere: The role of random polynomials, Trans.
Amer. Math. Soc. 363 (2011) 2955–2965.
URL http://www.ams.org/journals/tran/2011-363-06/

S0002-9947-2011-05243-8/home.html

[24] I. H. Sloan, R. Womersley, Extremal Systems of Points and Numerical
Integration on the Sphere, Advances in Computational Mathematics
21 (1) (2004) 107–125. doi:10.1023/B:ACOM.0000016428.25905.da.
URL http://www.springerlink.com/content/w2304u80w0542578/

[25] E. Bannai, R. M. Damerell, Tight spherical designs, I, Journal of the
Mathematical Society of Japan 31 (1) (1979) 199–207.
URL http://projecteuclid.org/euclid.jmsj/1240319488

[26] E. Bannai, R. M. Damerell, Tight Spherical Designs, II, J. London Math.
Soc. s2-21 (1) (1980) 13–30.

[27] F. J. Simons, F. A. Dahlen, M. A. Wieczorek, Spatiospectral Concen-
tration on a Sphere, SIAM Review 48 (3) (2006) 504–536.
URL http://link.aip.org/link/?SIR/48/504/1

[28] P. P. Vaidyanathan, Sampling Theorems for Nonbandlimited Signals,
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