
Reactive Motion for an Animated Boxer

Kevin Forbes, Alexander Kolliopoulos

May 3, 2004

1 Introduction

In a round of boxing, a fighter will make decisions
and carry out actions to give himself an advantage,
by blocking or evading punches while using well
placed attacks to defeat an opponent in the ring. A
boxer must constantly decide what action will give
him the best chance of winning based on the per-
ceived state of the opponent and the boxer’s own
physical state. These decisions must occur with lit-
tle time for thought or analysis, using instinct and
technique from training. The goal of this project is
to capture an approximation to the reactive motion
required of a boxer in a ring in real time.

1.1 Previous Work

There has been significant interest in developing be-
havioural systems for controlling synthetic charac-
ters. Tu and Terzopoulos’s artificial fishes used a de-
terministic system built around an intention genera-
tor for making decisions [8]. In the same year, Karl
Sims presented his evolutionary approach to creat-
ing and controlling characters, but they are limited
to finding body configurations and control systems
to tackle only very simple tasks [7]. In work ad-
dressing problem solving at what may be considered
a cognitive level, situation calculus has been applied
to automatically animate a scene of a merman escap-
ing a shark by using obstacles in the environment to
his advantage. Such behaviour is much more human
in character, but it is beyond what should be neces-
sary for animating the reactive motion required in a
boxing ring.[3].

Beyond decision making, a reactive boxer must be
capable of motion in a variety of styles while ap-
pearing reasonably realistic. The problem of con-
trolling human-like characters has been addressed in
various ways. For example, [2] proposes compos-
ing self-rating controllers to manipulate a charac-
ter within the constraints of a physically simulated
system. This requires non-trivial computation to
run the simulation, even using shortcuts such as a
neural network technique for solving the physics [4];

and good controllers are notoriously difficult to de-
sign, even for simple tasks such as locomotion. Ap-
proaches using motion capture show more promise
for purposes of real time motion. Motion graphs are
particularly well suited to producing visually pleas-
ing motion from motion capture data, but given the
variety of motions involved in boxing, in addition to
making several styles available for each motion, it
would be difficult to produce a useful, highly con-
nected motion graph with a reasonable amount of
motion capture [5]. Zordan has done work combining
motion capture data with physical simulation and in-
verse kinematics in order to simulate athletics such
as boxing and dancing [9]. While these results are
impressive, a purely kinematic approach was chosen
for this project due to time constraints.

2 System Architecture

The system can be divided into two major compo-
nents: the reactive behavioural system, and the un-
derlying animation system. These two components
were designed to be independent, and although time
constraints led to some breaches in modularity, they
could be easily separated. Keeping the behavioural
code separate from the graphical simulation code
affords us a great deal of future adaptability.

2.1 The Animation System

At the lowest level, the animation system trans-
forms a hierarchy of joint matrices, which are used
to deform a polygonal mesh using linear blend skin-
ning. These meshes are textured and rendered us-
ing OpenGL. By varying the the transformations
applied to the joints over time, animation can be
achieved.

The most important object type in the animation
system is the actor. An actor represents one render-
able, animate being in the simulation. At the code
level, it associates a joint hierarchy and mesh with a
material type and a repertoire of prerecorded anima-
tion sequences. The association between actors and

1



2 Kevin Forbes, Alexander Kolliopoulos

these resources is many-to-one, which allows for the
efficient sharing of resources when multiple actors
are simulated.

2.1.1 Data Acquisition and Processing

All of the animations currently used by the system
were captured using a Vicon Motion Systems optical
motion capture system. A script of actions was pre-
pared which included all of the moves required by the
behavioural system. These were performed several
times each, in four long takes. The raw capture data
was processed using the ViconIQ software package,
and fit to a 19 joint skeletal human model. The re-
sulting joint transformation sequences were exported
to Maya. 1 Once in Maya, the joint transforms were
converted from a Z-up to a Y-up coordinate system,
and scaled so that the unit distance was equal to
one meter. The animation curves were simplified to
reduce the memory footprint of the final result. The
processed animation curves were used to construct
a Maya skeleton, which was bound to a polygonal
model of a boxer. No proper motion retargeting was
needed, since the model was constructed to have sim-
ilar proportions to the the mocap actor. Finally, the
animation was manually segmented into individual
movements, and the animation curves, skeleton, and
mesh were exported using a custom Maya plugin.

2.1.2 Playing Animations

Individual animation curve files are loaded into Key-
FrameAnim objects. The skeleton is assumed to
be a rigid articulated figure, so only rotation data
is loaded for non-root joints. These keyframes are
stored as time indexed sequences of quaternions.
The root joint is more complicated, since it describes
the skeleton’s global position and orientation. The
simulated boxers’ position has 3 degrees of freedom:
translation in X and Z, and rotation about the Y
axis. The root joint’s transformations in these de-
grees of freedom are modified at load-time to be
relative to an initial, identity transformation. This
allows for multiple animations to be played in se-
quence, with the ending root position of each be-
coming its successor’s beginning position. The root
joint’s remaining degrees of freedom are loaded with-
out any extra processing.

Given a time in milliseconds, a KeyFrameAnim
object can be queried for a whole-skeleton pose.
Quaternion slerp is used to interpolate between

1A web page describing the technical details of the cap-

turing process is at http://www.dgp.toronto.edu/~alexk/

fullmocap.html

keyframes. When an actor is made to begin play-
back of an animation, its current pose is stored.
Linear interpolation is used to smooth the transi-
tion from the actor’s initial pose to the animation’s
keyframed poses. The interval of this interpolation
can be changed to favour either higher fidelity to the
motion capture data, or smoother transitions.

2.1.3 Action Interface

While an actor can be controlled by specifying indi-
vidual animations for it to play, it is desirable to be
able to control it at a higher level. For example, in
our database, there are 12 different animations for
taking a step forward. While each of these anima-
tions perform the same action, they reflect different
styles of motion, such as “skilled” or “tired” to var-
ious degrees. There are also duplicate motions in
the database, which are semantically and stylisti-
cally identical, but were culled from different takes.
The actor’s controller would have to know the names
and attributes of all of these similar and redundant
animations in order to pick one to carry out its in-
tended actions.

The actor’s Repertoire object allows for high-level
control. It loads an XML file that contains annota-
tions for each animation file in the database. Each
animation file is associated with an action string, and
is given any number of named, weighted attributes.
For each action type, the repertoire creates an Act-
ionset object. An Actionset object constructs a ma-
trix of the weights, indexed by attribute and anima-
tion. Thus each row in the matrix gives a quantita-
tive assessment of an animation with respect to all of
the attributes used by animations that perform the
same action. Attributes that have no value given in
the XML file are assumed to be zero.

As the simulation runs, the controller feeds at-
tributes and values to the actor. These values repre-
sent the actor’s internal state and can be reset as
the actor’s state changes. For example, the con-
troller might set the “tired” attribute to zero at the
start of the simulation, and then set it to increas-
ingly higher values as the time passes and the actor
performs strenuous actions.

At any time, the controller can request that the
actor perform an action. The actor checks its Re-
pertoire for an Actionset that matches the requested
action string. If no match is found, the actor does
nothing. If a match is found, the actor constructs
a vector from its current attribute state. This vec-
tor is multiplied by the Actionset’s matrix, and the
resulting vector is taken to be a weighting of the
various animations’ suitability. Each element of this



CSC2529: Character Animation Final Project 3

vector is perturbed by a small random component to
break ties. The actor then starts playing the highest-
weighted animation.

This scheme allows the controller to direct an ac-
tor with an arbitrarily large repertoire using a small,
fixed vocabulary of action and attribute names. Ad-
ditional animations can be added to the actor’s re-
pertoire by simply changing the XML file. The qual-
ity of actor’s performance can be enhanced by filling
in the gaps in the permutations of the attributes. For
example, if a tired, amateur boxer throws a jab in
the current system, the jab animation played will be
either tired or amateur, depending upon the boxer’s
attributes’ relative weights. It would be possible,
however, to capture more motion data to provide a
specialized animation to play in such a situation.

2.2 The Behavioural System

The boxers’ mental model is based on that of Tu and
Terzopoulos’s artificial fishes. This model has been
shown to be adequate for reacting to threats imme-
diately and in real time, while carrying out the goals
of the creature. Where an artificial fish is interested
in avoiding predators, eating, or mating, a boxer is
instead concerned with avoiding incoming punches,
attacking the opponent, and conserving his energy.
When a decision needs to be made, an intention gen-
erator is used to select an intention given the boxer’s
perceived state of the world and internal state. This
intention is passed to the behavioural routines, which
further refine the intention to a specific action to be
carried out by the boxer. This action is passed to
the animation system which acts as the motor con-
troller for the boxer by playing back an appropriate
motion captured animation.

2.2.1 Boxer State and Perception

The boxer’s internal state determines the style of
motion that is used as well as modifying his be-
haviour. The main internal state parameters, which
may be loaded from a boxer profile XML file, de-
termine a boxer’s skill, style, and strength. Each
of these parameters is tied to styles of motion that
a boxer is capable of, with skill selecting skilled or
amateurish motion and style selecting defencive or
offencive motion. Whether a boxer uses energetic
or tired motion is controlled by the boxer’s internal
energy parameter. Unlike the other parameters, the
energy is dynamic and changes as a fight progresses.
A boxer’s energy will be lowered as he moves, es-
pecially by throwing punches, but energy may be
recovered by taking a moment to let his head clear.

Additionally, a boxer receives an artificial boost to
energy when a punch lands to correspond with the
motivation that a well placed hit can bring a fighter.
Very often one will see a tired boxer launch into a
rush of attacks after a critical blow to the opponent.

A boxer has some perception of the state of the
world around him. As long as the opponent is within
about 60 degrees of the boxer’s gaze, he is consid-
ered to be visible, and the boxer knows the relative
angle to the opponent. When the opponent is not
visible, the boxer only knows that the opponent dis-
appeared to the right or left. Further, more detailed
motion, such as incoming punches, can only be de-
tected if the joint in interest is within a cone with
angle about 45 degrees from the central view vector.
Hence, hooks and uppercuts may be missed if they
come in from the side or below. It is assumed that
the boxer can always tell approximately where he is
in the ring based on the portion of the ring visible,
so no limitations are made on the perception of ring
boundaries.

2.2.2 The Intention Generator

Like artificial fishes, the artificial boxer has an inten-
tion generator. However, unlike artificial fishes, the
conditions of the boxer’s intention generator do not
return true or false. Instead, they return a number
between 0 and 1, reflecting the boxer’s confidence
in the assessment of the condition. Thus, the confi-
dence acts as a probability that the boxer will con-
sider the condition to be true. A random number
r ∈ [0, 1] is generated, and if r is less than the con-
fidence, the condition is considered to be true. This
adds a stochastic element to the intention genera-
tor, but it also presents an opportunity to perform
simple learning.

Each condition is associated with an adjustment,
which is a positive number. When the adjustment is
less than 1, it means that the boxer has a lower confi-
dence in the condition than what the condition func-
tion actually returns. For adjustments greater than
1, the boxer has a higher confidence than what is
returned by the condition function. To apply an ad-
justment less than 1, the confidence is simply modi-
fied by ĉ = αc, where ĉ is the adjusted confidence, c is
the value returned by the condition function, and α

is the adjustment value for that condition. This has
the effect of lowering the confidence, but there can
be problems if α becomes too small, in which case
the condition nearly always is assessed to be false. It
is almost certainly the case that the designer of an
artificial boxer will want to specify states in which a
condition must evaluate to true, regardless of the ad-



4 Kevin Forbes, Alexander Kolliopoulos

 

�������
�		��
����

���
�
�		��
���

 		��
���
����
�����

�

�����
������

�
���
��
�		������
�		��
���

����� ����
��������

����
�

 	
�����
�����������

�����������
�
���

����	
�
��	
��

�

�����
������

�
�
���

���

���

��� ���

���

���

���

�������

�
��

�
��

�
�� �
��

�
��

�
��

�
��

Figure 1: The Intention Generator

justment for that condition. To allow for this, when
a condition function returns 1, no adjustment is ap-
plied. Adjustments greater than 1 are handled in a

similar manner, with ĉ = 1 −
(1−c)

α
for c 6= 0.

Figure 1 shows the intention generator tree used
for the boxers. Adjustments are learnt by scoring
paths taken in the intention generator tree. When
an event occurs that is beneficial to a boxer, such
as landing a punch, the adjustments for each condi-
tion in the path taken to the intention that resulted
in the positive behaviour are modified. Specifically,
conditions that evaluated to true have their adjust-
ments raised, and those that were false have their
adjustments lowered. Hence, in the future, the same
successful path will be more likely to be taken. Neg-
ative events, such as a blocked punch or taking an
opponent’s hit are scored similarly. However, some
nodes in the path will be scored more often than
others, so they should receive a smaller modification
to their adjustment. For example, the facing condi-
tion will always receive a modification since it is at
the root of the tree. To address this, each node up
from the last condition before the selected intention
will receive half the modification of the node further
down the tree in the path.

2.2.3 The Behavioural Routines

Once an intention has been generated, it is passed
to the behaviour routines. This simplifies design of
the behavioural system of the boxer by separating
high level strategies from low level specific action se-
lection. Each of the intentions must be represented
with a behaviour routine: face opponent, approach

opponent, recover, evade, attack, escape ropes, and
defend. This system of selecting actions given in-
tentions presents a method of controlling a boxer
that does not require a user to be concerned with
selecting a specific action. Instead, a user may sup-
ply intentions with key presses, or perhaps mouse
gestures, and let the boxer decide how to interpret
the intention with the behaviour routines. For our
purposes, the behaviour routines are fairly simple.
One example is the face opponent behaviour rou-
tine, which queries the boxer’s perception for the
approximate angle to the opponent and then acti-
vates either a large or small step to the left or right,
depending on what is perceived to be the quickest
way to line up the enemy. The attack behaviour
routine will stochastically select a punch based on
the distance to the opponent and the state of the
boxer. No learning is applied at the behaviour rou-
tine level, but it is not difficult to imagine a system
of informing the behaviour routines of their success
or failure and allowing them to modify themselves
in a routine dependent fashion to complement the
learning in the intention generator. The main bar-
rier to this would be the amount of coding required.
Since each behaviour routine functions in a differ-
ent way, the reinforcement learning would have to
be custom designed for each routine.

3 Results

In the final system, two boxers load their profiles
from XML files, and one may be controlled by ei-
ther the user or a reactive intention generator. User
control is in the form of keyboard input that corre-
sponds to either direct action commands or inten-
tions. While mouse input has been considered, it
would not be particularly useful because most ac-
tions must play out to completion before a new ac-
tion may begin. This is to encourage realistic looking
motion, and it prevents intention dithering which oc-
curs even more so in this system than artificial fishes,
because of the stochastic element. The only actions
that may be interrupted with a new action are the
turns, because without this it is very difficult to face
the opponent with any accuracy. Even with this, we
only allow interruption to occur at tenth of a sec-
ond intervals to reflect the reaction time of a real
boxer. We have experimented with allowing other
locomotion animations to be interruptible, but this
results in a reactive boxer that twitches constantly,
changing its mind between whether it should turn or
walk. Hence, the control of the mouse could only be
used for gestures corresponding to normal input and



CSC2529: Character Animation Final Project 5

perhaps turning angles.

The learning system of the intention generator
turns out to be quite sensitive to the reward and
punishment scheme used. For a while we had trouble
with the boxers discovering that they could stay far
enough from each other to be safe and just stand in
place recovering energy without fighting. This was
corrected by punishing the recover intention when
the boxer is not tired, as this will not win a fight.

In testing with a user controlled boxer, we found
that a fairly aggressive style is effective, and it is
somewhat reassuring that more than once, one of
the boxers has discovered this and raised the adjust-
ment on the opening condition significantly. Often
this may result in the other boxer getting beaten so
badly that he is fairly helpless. In normal conditions,
one can observe some characteristics of a real boxing
match, with fighters dodging punches and catching
each other off guard.

Limitations can be seen in the system of adjusting
the intention generator since conditions may only be
favoured or disfavoured, making them more or less
likely to be true independent of the state of the en-
vironment beyond the condition function. This is a
strength of the approach for its simplicity and speed,
but it also prevents any deeper cognitive learning.

4 Conclusions

We have presented a method of animating and con-
trolling a reactive boxer using motion capture and a
dynamic intention generator. Much of the way box-
ers behave is reliant on the choices of weights for
rewards and punishments. However, despite the ap-
parent simplicity of the approach with the intention
generator consisting of only six conditions and seven
behaviour routines, a wide range of behaviours can
be observed. Some interesting directions for future
work in reactive motion might be to make modifi-
cations to the intention generator’s connectivity as
in [7], running hundreds of simulations to automat-
ically generate effective intention generators from a
selection of conditions. Another possibility is to in-
corporate more information about the state of the
environment as in [1], if the limitations of the huge
possible state space inherent in a sport even as sim-
ple as boxing can be overcome. One might also con-
sider learning at the behaviour routine level, as has
been noted. Indeed, reactive motion is an area with
a wide range of possibilities that have yet to be ex-
plored. With this project we have found some degree
of success in extending methods designed for much
simpler creatures to animating reactive boxers.

A Boxing Strategy

Boxers fight favouring one side toward the oppo-
nent; a right-handed boxer will approach the oppo-
nent with his left side, and a left-handed boxer will
do the opposite. In this work, we always assume a
right-handed boxer, but technique is the same for
a left-handed boxer. Keeping one’s side toward the
enemy makes it easier to defend oneself as the vul-
nerable midsection is turned away from any direct
punches the opponent might throw, and it gives the
left hand a shorter distance to travel to the oppo-
nent. A boxer would want to give the weaker arm
more reach because it is used defensively for the most
part, while the stronger arm is reserved for more
powerful punches.

There are essentially four types of punches in box-
ing: the jab, cross, hook, and uppercut [6]. The jab
is the only punch thrown with the left arm, and it
is used either defensively to keep the opponent at
a distance and off balance or offensively to set up
more powerful punches. The cross, also known as a
straight right, is typically used as a power punch to
keep the opponent back, and it also is the easiest and
safest of the right-handed punches to execute. The
hook utilizes the right hand as well, but it requires
arching and turning of the body which can leave the
boxer vulnerable. This risk is made acceptable by
the fact that it is often difficult to see an approaching
hook, because they come in from the side. Finally,
the uppercut is even more risky because of the way
it leaves a boxer open to quicker attacks, and it’s
range is limited. However, a well placed uppercut
can be quite powerful, making it dangerous for both
boxers involved.

Offence makes up only part of the strategy nec-
essary for a successful boxer. For all but the most
powerful boxers, careful defence must play an im-
portant role. This includes making use of blocks,
raising one’s gloves to cover the face while using the
elbows to protect the chest and midsection. While
blocks are effective at stopping most punches from
causing serious damage to a boxer, it can be drain-
ing and demoralizing to try to block too many power
punches. To throw an opponent off, one must dodge
and throw feints and jabs. A feint is a motion that
resembles the start of the punch, but without the
follow through. This is to make it more difficult for
an opponent to read a boxer’s motion, so when a real
punch does come, the opponent won’t be ready for
it.

Beyond the general strategies described here,
there are notable styles of boxing: grinding, box-
ing, and punching. A grinder is the most rare of



6 Kevin Forbes, Alexander Kolliopoulos

Figure 2: Reactive boxers fighting

the three types of boxers one might see. A grinder
would be characterized by playing defensively and
chipping away at an opponent. This is especially ef-
fective against boxers who are not particularly good
at conserving there energy. After tiring themselves
out in perhaps several rounds, a grinder would finish
off such a boxer. Punchers, on the other hand, rely
on their power to throw big punches. While this
approach may be careless, when boxers like Mike
Tyson in his early career use this style, it can take
only one good hit to end a match. The boxing style
is well rounded, something of a middle ground be-
tween grinders and punchers.

References

[1] Bruce Blumberg, Marc Downie, Yuri Ivanov,
Matt Berlin, Michael Patrick Johnson, and Bill
Tomlinson. Integrated learning for interactive
synthetic characters. In Proceedings of the 29th
annual conference on Computer graphics and in-
teractive techniques, pages 417–426. ACM Press,
2002.

[2] Petros Faloutsos, Michiel van de Panne, and
Demetri Terzopoulos. Composable controllers for
physics-based character animation. In Proceed-
ings of the 28th annual conference on Computer
graphics and interactive techniques, pages 251–
260. ACM Press, 2001.

[3] John Funge, Xiaoyuan Tu, and Demetri Ter-
zopoulos. Cognitive modeling: knowledge, rea-
soning and planning for intelligent characters.
In Proceedings of the 26th annual conference on

Computer graphics and interactive techniques,
pages 29–38. ACM Press/Addison-Wesley Pub-
lishing Co., 1999.

[4] Radek Grzeszczuk, Demetri Terzopoulos, and
Geoffrey Hinton. Neuroanimator: fast neural
network emulation and control of physics-based
models. In Proceedings of the 25th annual confer-
ence on Computer graphics and interactive tech-
niques, pages 9–20. ACM Press, 1998.

[5] Lucas Kovar, Michael Gleicher, and Frédéric
Pighin. Motion graphs. In Proceedings of the 29th
annual conference on Computer graphics and in-
teractive techniques, pages 473–482. ACM Press,
2002.

[6] Colin McMillan. Boxing: Blow by blow,
2004. http://news.bbc.co.uk/sport2/hi/

boxing/3372009.stm.

[7] Karl Sims. Evolving virtual creatures. In Pro-
ceedings of the 21st annual conference on Com-
puter graphics and interactive techniques, pages
15–22. ACM Press, 1994.

[8] Xiaoyuan Tu and Demetri Terzopoulos. Artificial
fishes: physics, locomotion, perception, behav-
ior. In Proceedings of the 21st annual conference
on Computer graphics and interactive techniques,
pages 43–50. ACM Press, 1994.

[9] Victor B. Zordan and Jessica K. Hodgins. Mo-
tion capture-driven simulations that hit and re-
act. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer
animation, pages 89–96. ACM Press, 2002.


