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Complex polyhedral objects are often con-
structed from simpler polyhedral objects us-
ing constructive solid geometry, booleans,
skinning and shrinkwrap techniques. This
paper presents a new technique for incre-
mentally building complex polyhedral ob-
jects from simpler polyhedral parts. We pro-
vide a procedural implicit function definition
for a region of a polyhedral object that is
star-shaped with respect to a skeletal point,
called a blend center. We extend this defi-
nition to provide a single implicit function
definition for an arbitrary polyhedral object,
where every region is star-shaped with re-
spect to a proximal blend center, chosen from
an arbitrary set of blend centers. This allows
the application of implicit function-based
modeling techniques in constructing transi-
tion surfaces between arbitrary polyhedral
object parts. At the same time the original
detail and character of object parts are pre-
served in regions where they do not blend or
interact with other object parts. A complete
implementation of the concepts presented
shows polyhedral implicit primitives to be an
efficient and general technique for building
complex polyhedral objects from a modular
set of polyhedral object parts.
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Forming an object from parts is a common approach
to managing complexity in the data generation pro-
cess. Boolean/blend operations [15, 24] can be used
to combine object parts1 in a rigid fashion. In con-
structive solid geometry (CSG), the unioning and
differencing of overlapping primitive objects are rep-
resented in a tree structure in which the primitive
objects are leaf nodes and the Boolean operations are
internal nodes [9, 15, 34]. Blend operations [20, 24,
25, 33] define surfaces between intersecting object
parts. These operations are useful for modeling fillets
produced as a side-effect of the manufacturing pro-
cess but are restrictive in the type and relative posi-
tions of blended object parts. Smoothing approaches
based on implicit techniques have also been inves-
tigated [3, 11]. Skinning and shrinkwrap procedures
allow a new continuous surface to envelop, possibly
disjoint, geometric elements. Skinning [14, 16, 32]
usually refers to interpolating a new surface through
a set of disjoint curves; shrinkwrap, similar to convex
hull computation [12] refers to forming a new sur-
face around object parts while imposing some min-
imum curvature constraint. However, local control
of the resulting polygonal complexity is usually lost
because the resolution of the new mesh is globally
defined. The original object part definitions are lost;
shrinkwrap tends to smooth out the entire surface
of the object parts as they create smooth transitions
between elements. This is undesirable in situations
where the object parts have been carefully modeled
to include surface detail. Other approaches to merg-
ing meshes such as zippering [28, 29] show good
results from registering and blending together multi-
ple meshes that are typically obtained from multiple
range scans of an object.
An implicit function formulation for star-shaped
polyhedra based on ray-linear functions is pre-
sented by [1, 2]. The analytic formulation is defined
by set operations [23, 24] and can become com-
plex for large polyhedral models. The formulation
also makes it hard to provide intuitive local con-
trol over the function definition. Converting between
the polyhedral and implicit function formulations is
not straightforward. Another approach to combin-
ing polyhedral and implicit surface methodologies
uses simple analytic implicit functions to approx-
imate and deform an underlying polyhedral mesh,

1 In this paper, object refers to the object being constructed and
object part refers to an element which is used in the construc-
tion process.
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Fig. 1. Blended polyhedral object parts

without changing its topology [27]. Generation of an
implicit function using distance fields for building
offset surfaces can also be found in volume graphics
research [10].
This paper presents an alternative approach to defin-
ing transition surfaces between possibly disjoint ob-
ject parts. This approach is useful in situations such
as Fig. 1, where:
1. A smooth transition surface is desired between

object parts.
2. The object parts may be disjoint and at arbitrary

distances from each other.
3. It is desirable to retain the original polygon defi-

nitions of the object parts whenever possible.
In order to create the smooth transition surface be-
tween separate object parts, we use an isosurface
defined by a summation of implicit functions. Each
implicit function is constructed procedurally, using
a skeletal blend center and the surface boundary of an
object part. The isosurface is defined in such a way
that the original object part polygon mesh represents
the isosurface wherever there is no interaction with
implicit functions from other object parts. Thus, the
original polygon definitions can be retained in areas
of no interaction. The transition surface is generated
in the area of overlap of two or more of the implicit
functions and is defined so as to be tangentially con-
tinuous with the retained polygons.

While we refer to the representation of our object
parts throughout the paper as being polyhedral (com-
prised of planar polygons), it is important to note that
the implicit function formulations of Sects. 3 and 5
are directly applicable to any object part for which
a ray–surface intersection can be determined. Thus,
the implicit modeling techniques presented are appli-
cable to a much wider class of objects. The surface
construction approach of Sect. 4 and some of the im-
plementation details of Sect. 6, however, are specifi-
cally intended for polyhedral objects.
The rest of the paper is organized as follows. In
Sect. 2, we review the basics of surfaces defined by
implicit functions. In Sect. 3 we introduce a poly-
hedron-based implicit function. These implicit func-
tions can be combined and blended using standard
implicit modeling and animation techniques to form
transition surfaces between various polyhedral ob-
ject parts. Section 4 discusses how transition sur-
faces are constructed from the blended polyhedral
implicit functions by stitching tesselated portions
of a blended implicit surface seamlessly to retained
pieces of the component polyhedral object parts.
Section 5 discusses local spatial control over the def-
inition of a polyhedral implicit function, allowing the
same polyhedral object part to combine differently
with other object parts when building complex ob-
jects. Section 6 presents implementation details and
results. Conclusions are given in Sect. 7.

2 Implicit surface primitives

Implicit surfaces [6, 8, 22, 35] are defined by all
points which satisfy some implicit function F(P)=0.
A useful set of implicit surfaces can be generated as
a combination of algebraic functions each of which
is defined over a finite volume. For summed alge-
braic functions, F(P) = ∑

Fi(P) = T , where i runs
over a set of primitive algebraic functions Fi and T
is a threshold value in [0, 1]. A popular class of such
functions use the distance from a central skeletal el-
ement to define an offset surface [4, 5, 35]. An offset
surface is defined by a skeletal element, S, and a ra-
dius of influence, R. We will refer to the space within
a radius R of the skeletal element as the area of in-
fluence. The implicit function, F, is typically based
on a scalar function f : R+ → [0, 1] referred to as
a density function. Normally, f is at least C1 and
monotonically decreasing, with f(0) = 1, f(x) = 0
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Fig. 2. Implicit primitive shapes

for x ≥ 1 and f ′(0) = 0, f ′(1) = 0.2 Either the den-
sity function f or the threshold value T can be
modified to control the amount of blending between
overlapping implicitly defined surfaces. The slope of
the density function at the threshold value dictates
the smoothness of the blend. For the example density
function of Fig. 2, threshold values closer to 0.5 de-
fine a smoother blending surface than do threshold
values closer to 0.0 or 1.0.
For a point P in space, a metric r with respect to the
skeleton S is computed. If r is smaller than the cutoff
value R, then F(P) = f(r/R). For points P with met-
rics greater than R (outside the realm of influence of
the primitive), F(P) = 0.
In the case of offset surfaces or distance surfaces, the
metric r is merely the minimum Euclidean distance
from P to S. Using PS to refer to a point on S which
minimizes Euclidean distance to P, g(P) = ‖P −
PS‖/R is referred to as the distance function of P for
the primitive

F(P) = f(g(P)). (1)

When such a primitive is viewed in isolation, differ-
ent values of the threshold T will give surfaces of
different radii offset from S.
The simplest implicit modeling primitive is a sphere
(often called a metaball or a blob), which is an off-
set surface around a central point S. Other distance-
based implicit functions are also commonly used
(see Fig. 2). Any central skeletal element can be used
in this formulation for which there is a well-defined

2 In our implementation we use a family of C1 functions
f(x) = (x2 −1)2(ax2 +1) for x ∈ [0, 1], f(x) = 0 for x > 1, de-
fined using a parameter a ∈ R, a 
= 0.

distance metric. In particular, a polyhedron may be
used. For a convex polyhedron in isolation, values
of the threshold will result in isosurfaces which are
scaled, rounded versions of the polyhedron. Figure 2
shows other examples of offset surfaces.

3 Polyhedral implicit surface
primitives

All of the implicit formulations mentioned so far
are based on forming a surface which is a certain
constant distance from a central element. For the
purposes of forming transition surfaces between ob-
ject parts which smoothly blend into the object parts
surface, we need to define the implicit function so
that, in isolation, the implicit surface coincides with
the original object part surface. One way to do this
would be to consider the polyhedron as the central el-
ement and set the threshold value to 1.0. However,
this would not allow us the flexibility of adjusting
the threshold value to control the blending proper-
ties of overlapping implicit functions. In addition,
because we often wish to blend multiple object parts
together, we would like to be able to locally control
the blending properties of the density functions; this
is problematic if we still want first-order continuity
with the object part surface using this approach.
For these reasons, we provide a fundamentally dif-
ferent implicit function formulation from the poly-
hedral offset surface primitive described in Sect. 2.
Rather than use the polyhedron as a skeletal shape
from which a distance surface is defined as in (1), we
introduce a user-defined skeletal point C (referred
to as a blend center) within the polyhedron and use
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Fig. 3. Polyhedral implicit surface primitive

the surface of the polyhedron to modulate a distance
function from C. We define a new star-shaped dis-
tance function g(P) as

g(P) = ‖P −C‖
‖Polypoint(P, C)−C‖ . (2)

Here Polypoint(P, C) is the point of intersection of
the ray CP (emanating from C and passing through
P) with the surface of the polyhedron (see Fig. 3).
We now define the polyhedral implicit function F(P)
to be

F(P) = f( f −1(T )∗ g(P)). (3)

For a point P on the surface of the polyhedron,
P = Polypoint(P, C) and thus F(P) = f( f −1(T )∗
1) = T , where f −1(T ) is essentially a constant scale
factor that ensures F(P) < T outside the polyhe-
dron and F(P) > T inside it. The implicit surface
produced by the polyhedron-based implicit function
is thus exactly the original polyhedron representing
the object part for any threshold value T . For points
outside the polyhedron the function value decreases
monotonically in value as we move along any ray ra-
diating from C until a point B where

‖B −C‖ = ‖Polypoint(B, C)−C‖/ f −1(T )

beyond which the function F evaluates to 0. As
Fig. 3 shows, the set of these bounding points B
forms a bounding polyhedron that is congruent to the
original polyhedron, uniformly scaled by 1/ f −1(T )
about C. The function for points inside the original
polyhedron evaluates to values greater than T , con-
verging to a value of one at C. The actual values of T
and the shape of f are parameters that provide a user
with control over the blending of object parts.

The above functional description is based on the
star-shaped assumption that the function Polypoint is
well defined. For any point P the intersection of ray
CP with the polyhedron exists and is unique. This
imposes restrictions on the polyhedron, the skeletal
point C and their placement relative to each other.
We show in Sect. 5 that this restriction is not pro-
hibitive and is averted by the introduction of multiple
user-defined blend centers within the polyhedron.
It is also worth noting that it is straightforward to
extend the function definition in (2) to use a more
complex skeletal shape S as a blend center. The func-
tion Polypoint(P, S) is then the point of intersec-
tion of the ray PSP (emanating from PS and passing
through P) with the surface of the polyhedron. PS
is the unique point on S which minimizes Euclidean
distance to P. The requirement of uniqueness of PS
restricts acceptable shapes S to a small but very use-
ful set of elements like line segments or polygons.

4 Surface construction

We will now show how the polyhedral implicit sur-
face primitives are used to construct a blend sur-
face between two object parts. The polyhedral object
parts must be locally star-shaped with respect to their
respective blend center only in the region involved
in the construction of the blend surface. The next
section will then introduce the use of multiple blend
centers to allow for multiple blend surfaces among
an arbitrary number of object parts.
The construction of tesselated polygon surfaces
from general implicit functions has been well ad-
dressed [7, 18, 26, 35]. These surface construction
techniques can be directly applied to the described
polyhedral implicit functions.
We briefly review the surface construction process
in the case of standard implicit functions. The sur-
face is constructed by sampling space defined by a
3D regular array of vertices, aligned with the prin-
ciple axes, positioned so as to envelop the area of
interest. Edges connect adjacent vertices in each of
the three principle directions. Cells are defined by
eight adjacent vertices and the twelve edges which
connect them; adjacent cells share four vertices and
four edges. The implicit function is evaluated at each
vertex of the array. For each edge of the array which
has one array vertex inside the isosurface (evaluating
to greater than T ) and one array vertex outside the
isosurface (evaluating to less than T ), the position of
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a vertex on the isosurface is either interpolated or nu-
merically calculated by repeated evaluations of the
implicit function to be the point along the edge where
the function evaluates to T . For each cell of the ar-
ray, one or more polygons are formed by connecting
these isosurface vertices in appropriate order [7, 26].
The resulting polyhedral structure built from these
polygons and isosurface vertices represents the tes-
selated isosurface. A number of fitness criteria of the
generated polygons help determine the resolution of
sampling or level of subdivision in the case of adap-
tive algorithms. Additionally, tesselation algorithms
can be classified as surface-tracking or convergence-
based [21]. The former grows the surface around
a partial tesselation and thus requires a seed point on
the isosurface from which to propagate. The latter is
a more robust but exhaustive approach in determin-
ing the isosurface within the grid of interest.
The polyhedron-based implicit functions described
in Sect. 3 have several desirable properties that may
be exploited by a tesselation mechanism.

1. Any polygon or polygon fragment of an ob-
ject part, which is outside the region of influ-
ence of other implicit functions, precisely repre-
sents a section of the isosurface. It can thus be
copied directly to the definition of the object be-
ing formed. The contrast can be clearly seen in
the blending of two spherical polyhedral implicit
primitives in Fig. 4. The entire implicit surface is
tesselated on the left in Fig. 4 as opposed to a par-
tial tesselation, stitched to clipped and retained
fragments of the original polyhedra, on the right.
This allows surface detail present in an object part
which is not involved in the formation of tran-
sition surfaces to remain unchanged in the final
object.

2. The transition surface is tangentially continu-
ous to the surfaces of interacting object parts at
the boundaries of the overlap of their implicit
functions. The object parts thus provide surface
tracking algorithms with a number of seeds from
where to propagate the surface construction.

3. An appropriate sampling rate or cell size for
the tesselation algorithm can also be determined
from the length of edges of the object parts at the
boundaries of overlap of their implicit functions.

The standard surface construction algorithm for im-
plicit surfaces is modified to take advantage of the
fact that segments of object parts which are out-
side any other implicit function are retained in the

4

5

Fig. 4. Blending spherical polyhedra (without and with
clipping)
Fig. 5. Overlap box computation

final object definition. Consider the case in which
only two object parts are involved (the case in which
more than two object parts are involved is a sim-
ple extension of this scenario). The procedure first
finds regions where primitives interact by form-
ing an overlap box which is the intersection of the
bounding boxes of the bounding polyhedra of the
object parts (see Fig. 5). If desired, a tighter over-
lap box can be calculated as the bounding box of
the intersection object of the bounding polyhedra
of the object parts. For each object part, the por-
tion of its surface outside the overlap box does
not interact with the other object part’s implicit
function.
Each object part is clipped to the overlap box and the
surface outside is retained as part of the final object.
The polygonal approximation to the isosurface in-
side the box (the transition surface) is then produced
using a standard surface construction technique men-
tioned above. Figure 6 shows the idea using two sim-
ple object parts. Finally, the polyhedral surface gen-
erated inside the overlap box as in Fig. 6 needs to be
stitched to the clipped and retained polyhedral frag-
ments outside the overlap box.
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8

Fig. 6. Surface construction by clipping and tesselation
Fig. 7. Polygon clipping to the overlap box
Fig. 8. Segmentation of intersection edge by mesh faces

4.1 Stitching together inside and outside
surfaces

Special consideration must be given to polygons in-
tersecting the boundary of the overlap box in order
to connect the tesselated surface inside to the clipped
and retained polygon fragments outside. Such poly-
gons are intersected with the overlap box in or-
der to determine the part of the polygon to be re-
tained. New intersection edges are formed between
the polygon and a face of the overlap box as a re-
sult of the clipping procedure (see Fig. 7). These
edges are used to stitch together the tesselated sur-
face inside and retained polygon fragments outside,
as follows.
Each intersection edge lies on one of the six bound-
ary faces of the overlap box. The array of cells used
for tesselating the inside of the overlap box forms

a regular 2D mesh on each of the six boundary faces
of the overlap box, as can be seen in Fig. 8. Let
e = (u, v) be an intersection edge between points
u, v. Each intersection edge e is segmented into a se-
quence of edges u, p1, . . . , pn, v by intersecting it
with the mesh edges at points p1, . . . , pn, in the
boundary face containing the edge (see Fig. 8). Each
internal edge segment (pi, pi+1) in the sequence is
used as an edge in the polygon generated by the sur-
face construction algorithm for the cell it intersects.
We now attend to the end points u, v of the intersec-
tion edge. In the fortunate case that an end point lies
precisely on an edge of the mesh, we treat its cor-
responding segmented edge like any other internal
edge segment. Typically, however, it is likely to lie
within some face of the mesh. Let an end point u be
adjacent to intersection edges e, e′. Suppose the edge
e is segmented from end point u to be u, p1, p2, . . .
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Fig. 9. Edge beveling

and e′ is segmented u, p′
1, p′

2, . . . . As Fig. 9 shows,
the surface construction algorithm for this cell will
cut the corner forming edge p1, p′

1. This is likely to
leave a surface discontinuity and a triangular crack
p1, u, p′

1 in the plane of the boundary face. Sim-
ply filling the crack with a triangle between points
p1, u, p′

1 would still leave a surface discontinuity.
We propose three ways to handle this scenario. The
first is to alter the regular spacing of the cells by
moving a mesh edge so that u lies on it. This will
result in the corner being represented by the sur-
face construction algorithm. However, this method
requires additional bookkeeping for each such end
point and global changes in cell spacing, which can
increase the resolution and complexity of the tesse-
lation procedure. The second solution is to replace
the edge p1, p′

1 in the internally constructed sur-
face with the edge sequence p1, u, p′

1. A third so-
lution is to alter the outside by throwing away the
end point u altogether and generating a bevel tri-
angle to cut the corner on the polyhedron outside
the overlap box to match the surface constructed in-
side (see Figs. 9, 11a). While both the second and
third solutions are acceptable, we prefer the third
since it allows us to easily interface our approach
with existing surface construction implementations
without modifying their algorithms [21]. If u ′ is the
vertex adjacent to u in the retained polygon frag-
ment, the edge (u ′, u) is replaced by the bevel trian-
gle u ′, p1, p′

1 (Fig. 9).
The intersection edge vertices u, v in the clipped and
retained polygon fragment should be replaced by the
segmented vertex sequence u, p1, . . . , pn, v, taking
care to omit the end points u, v if and only if they

were discarded as a result of the beveling process de-
scribed above.

4.2 Clipping sliver polygons

There is still one issue to be resolved with respect to
this approach. We have not yet considered the pos-
sibility that both end points of an intersection edge
may lie entirely within a single mesh face. This can
occur with sliver polygons or sharp corners inter-
secting an overlap box. In our implementation we
recommend using the length of the shortest intersec-
tion edge as the cell size for the tesselation algorithm.
This greatly reduces the occurrence of an intersec-
tion edge being contained entirely within a single
mesh face. We do, however, address this problem for
the sake of completeness and the ability to use our
approach with larger cell sizes.
Once again we propose a few approaches. As in the
previous subsection, we can rearrange the spacing
of the cell grid so that the end points of such inter-
section edges lie on some mesh edge. If the num-
ber of problem intersections is large, a more brute-
force solution is to use a higher-resolution grid in
the surface construction process. Alternatively, as
a generalization of the bevel approach, we traverse
adjacent intersection edges until some intersection
edge crosses the given mesh cell boundary in ei-
ther direction. We thus traverse a sequence of ver-
tices . . . , p, u1, . . . , un, p′, . . . , where points p, p′
intersect the mesh face boundary and u1, . . . , un is
a sequence of intersection edge end points all ly-
ing within a single mesh face. There will be a se-
quence of vertices u ′

1, . . . , u ′
m that are adjacent to

u1, . . . , un in the clipped and retained polygon frag-
ments corresponding to the intersection edge se-
quence formed by u1, . . . , un. As was the case with
the bevel approach, we discard the entire sequence
of end points u1, . . . , un and reconnect the sequence
of vertices u ′

1, . . . , u ′
m to p, p′ in a fashion sim-

ilar to generating a loft surface between two se-
quences of points (the second sequence only com-
prising the points p, p′). As a final alternative, just
as in Sect. 4.1, we can replace the edge p, p′ used in
the internal surface construction process with the se-
quence p, u1, . . . , un, p′. Clearly, if the sequence of
intersection edges makes a closed loop within a sin-
gle mesh face (see Fig. 10) or if the number of end
points discarded is large, the cell grid resolution is in-
adequate to capture the detail being represented and
should be increased.
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11a 11b 11c

Fig. 10. Overly coarse grid resolution
Fig. 11. Polyhedral implicit surface construction

5 Multiple blend centers

We now extend the implicit function of (3) to incor-
porate multiple blend centers. Multiple blend centers
are introduced for two main reasons.

• For the implicit function in Sect. 3 to be well de-
fined everywhere in space, the polyhedron must
be star-shaped with respect to the given blend
center. This is a major restriction on the poly-
hedral shapes allowed. By introducing multiple
blend centers the polyhedron only needs to be

star-shaped with respect to a given blend center
in a localized region proximal to it. An implicit
function for arbitrary polyhedra by using a suffi-
cient number of appropriately placed blend cen-
ters can thus be defined.

• When blending an object part with several other
object parts, we would like local control of the
blending by allowing multiple central skeletal
points and corresponding density functions to be
defined. This can provide intuitive local control
over blending in different regions of the same ob-
ject part (see Fig. 12).
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Fig. 12. Multiple blend centers with locally controlled blending

Let C1, . . . , Cn be a set of skeletal centers with
corresponding density functions f1, . . . , fn . Given
a query point P, the closest skeletal center in the
set for which the Polypoint function is well defined
is used to define the implicit function at P. We
can thus provide an implicit function definition any-
where in an arbitrary polyhedron, by introducing ad-
ditional skeletal centers proximal to regions where
the Polypoint function is ill defined.
Figure 12 shows a torus blended with four different
objects, each using a different central point and den-
sity function. Notice the various amounts of hard and
soft blending taking place on the same object. Local
control is also illustrated by a softer blend at the fore-
finger than at the thumb in Fig. 15.
Defining the implicit function value at a point, based
on an arbitrarily picked Euclidean closest blend cen-
ter, introduces discontinuities in the implicit function
around Voronoi boundaries of the set of blend cen-
ters. The function defined by any blend center eval-
uates to T for all points on the polyhedron. At other
points in space, however, the function value as de-
fined by different blend centers is likely to vary, caus-
ing discontinuities in the function value of points
around Voronoi boundaries.
Function evaluation across a Voronoi boundary is
made continuous by weight-averaging the values of
functions as defined by a subset of the blend cen-

ters. Blend centers whose distance to a point is within
some tolerance tol of the closest blend center dis-
tance to the point contribute to the weight-averaging
of the implicit function value. The approach is de-
tailed as follows:

1. Let Ci be a blend center with the shortest Eu-
clidean distance to P.

2. Let

∀k ∈ 1, . . . , n (dk = ‖Ck − P‖−‖Ci − P‖).
3. Define a smoothing tolerance tol, which will con-

trol the smooth interpolation of function values
across Voronoi boundaries.

4. Let

∀k ∈ 1, . . . , n (wk = f(dk/tol)),

where f is a sigmoid density function as defined
in Sect. 2.

5. F(P) is then obtained as a weighted average

F(P) =
n∑

k=1

wk ∗ Fk(P)/

n∑
k=1

wk,

where Fk(P) is the function definition with re-
spect to the blend center Ck. We assume here that
Fk(P) is well defined for all non-zero wk, imply-
ing that regions of the polyhedron in the vicin-
ity of a Voronoi boundary must be star-shaped
with respect to all the blend centers that define
the boundary. Violation of this assumption can be
fixed in practice by introducing additional blend
centers or reducing the value of tol.

6 Implementation

The procedure outlined above has been implemented
within the Maya modeling and animation system.
Maya has a dependency graph architecture that lends
itself automatically to the modular combination and
filtering of polyhedral and other implicit function
primitives intuitively by a user. A blend center is lo-
cated at the local origin of the object by default in our
implementation. A user can then reposition or add
new blend centers to the set of blend centers. This
implementation can conceivably be extended to us-
ing topologically more complex blend centers like
line segments or the medial axis of objects as part of
our implicit function formulation.
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Table 1. Polygonization timings (seconds) and statistics

Figure # primitives (n) # total # candidate # polygons # polygons preprocessing, polygonization
polygons (n) polygons (n) retained (n) generated(n) clipping time time

11a 2 206 98 189 536 0.11 0.24
11b 3 2484 503 2159 1841 0.25 0.36
11c 3 1062 288 774 243 0.24 0.29

The overall surface construction algorithm for the
figures shown in the paper takes 0.5 s on average
on an SGI O2 machine. More detailed times can be
found in Table 1.
Surface construction is implemented as described in
Sect. 4.

1. Overlap boxes are computed as the intersection
of the bounding boxes of the bounding polyhedra
corresponding to the object parts being blended.

2. The polyhedral object parts are clipped against
the overlap boxes, regions outside the box re-
tained and intersection edges computed.

3. The cell size for the tesselation is set to the larger
of a user-defined minimum and the length of the
shortest intersection edge. It may also be adjusted
by the user.

4. The intersection edges are segmented once the
cell size is determined using a simple Bresenham-
like traversal of mesh faces.

5. The end points of the intersection edges are in-
spected and discarded as described if necessary.
The clipped polygons are then correctly gener-
ated and bevel or loft triangles created where nec-
essary.

6. The cells corresponding to the segmented inter-
section edges now form a number of seed cells
for a fixed resolution surface tracker as described
in [7].

A seamless integration of the clipped and polygo-
nized structure can be clearly seen in Fig. 11a, where
a cuboid blends with a spherical polyhedron. The
beveling of edges to prevent cracks has been accen-
tuated to be clearly visible. Figure 11b shows the
polygonization of the skull in Fig. 13. Figure 11c
shows the polygonization of the arm from Fig. 16.
As shown in these figures, the clipped polygons at
the boundaries of overlap boxes may have a large
number of vertices along intersection edges. These
polygons may need to be triangulated to render prop-
erly on some graphics systems.

Fig. 13. Blended polyhedral implicit primitives

Function evaluation for a polyhedral implicit prim-
itive may seem at first to be an expensive operation
involving a ray–polyhedron intersection. For a point
P, let the ray CP intersect a polygon PolyP of the
polyhedral implicit primitive. Using the properties of
similar triangles, observe that

‖P −C‖
‖Polypoint(P, C)−C‖ = (P −C)� NPolyP

RPolyP

,

where � indicates the dot product of two vectors,
NPolyP is the normal vector to the plane of PolyP
and RPolyP the normal distance from C to the plane
of PolyP. Both NPolyP and RPolyP may be easily
precomputed for every polygon of the polyhedron.
Equation (3) now becomes
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14

15

Fig. 14. Blended polyhedral implicit primitives
Fig. 15. Mutiple blend centers at fingers of hand

F(P) = f

(
f −1(T )(P −C)� NPolyP

RPolyP

)
,

making function evaluation at a point P a simple
matter of determining the polygon of intersection
PolyP for any given point P. To facilitate this we
preprocess space around C, firing a spherical distri-
bution of rays to determine the intersecting polygon
for the ray. If the sampling resolution is fine enough,
then, given any point P, we can look up the intersect-
ing polygon efficiently in the distribution table using

the spherical coordinates of P −C. In our implemen-
tation we bilinearly interpolate the function value at
a point P, obtained using the intersecting polygons
precomputed for the four ray samples that bracket
P −C. While this can be an approximation to the for-
mulation of Sect. 3, it is efficient and proves to work
well in practice.
As can be seen in Figs. 13 and 15, polyhedral at-
tributes such as normal vectors or texture parameters
translate directly from the polyhedron to the implicit
primitive. Figure 14 shows two highly detailed poly-
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16 17

18

Fig. 16.ArmanimatedusingCSGblending:1
Fig. 17.ArmanimatedusingCSGblending:2
Fig. 18.Shape transformation

hedral models being blended at the heel while pre-
serving the original detail everywhere else.
Figures 16 and 17 show the application of multiple
blend centers to character animation. The arm is mod-
eled as two limbs blended together with an analytic
spherical primitive. The limbs are laser-scanned poly-
hedra. The arm is shown outstretched as well as bent,

wherecollision–deformationinteraction[13]between
thepolyhedralprimitivescausestheformationofapre-
cise crease, while the primitives remain smoothly
blendedtogetherduetotheanalyticsphere.
Figure 18 illustrates a shape transformation. The pil-
lar and wooden block are two superposed polyhe-
dral objects whose implicit primitive functions are
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weighted and added together. The isosurface rep-
resenting the combined function provides a shape
transformation on interpolation of the weights. The
transformation of various color and texture attributes
is also illustrated.

7 Conclusion

A simple and effective technique for constructing
tangentially continuous transition surfaces between
disjoint object parts has been presented. A technique
has been shown in which a tangentially continuous
transition surface is constructed between blended ob-
ject parts. The object parts may be disjoint and at
arbitrary distances from each other and the original
polygon definitions of the object parts are retained
whenever possible.
The transition surface is defined as an implicit sur-
face and issues related to the construction of a polyg-
onal approximation to the surface have been ad-
dressed. These include:

• Forming a continuous surface in the area where
the transition surface blends into the original
polygonal surface

• Beveling the object part to provide a more esthet-
ically pleasing transition to the transition surface

• Handling multiple blends on a single object part

As can be seen from the images, polyhedral primi-
tives generally behave well and in a similar manner
to their analytic counterparts. This gives the user an
intuitive notion of the results while modeling. The
tesselation efficiency obtained from the implemen-
tation is reasonable and implicit function evaluation
time comparable with that of an analytically defined
primitive. The resolution of transition areas is con-
trolled independently of the object part’s resolution.
If the overlap boxes of multiple transition areas are
disjoint then their respective resolutions can be con-
trolled independently. The tesselation algorithm has
been implemented and successfully used to build
a variety of objects from various parts. In particular,
the technique was used for an application in which
segments of the human figure were digitized sepa-
rately and then combined to form a single polygonal
mesh.
The applicability of our implicit function formula-
tion in Sects. 3 and 5 to general object representa-
tions for which ray–surface intersections may be de-
termined makes for a much tighter coupling between

boundary representation and implicit function-based
modeling and animation techniques. This should
open up new avenues for research on hybrid tech-
niques that utilize the complementary advantages of
the two representations. Future directions for work
on polyhedral object parts include the precise eval-
uation of the function efficiently and extending the
surface construction algorithm to handle adaptive
tesselation techniques.
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