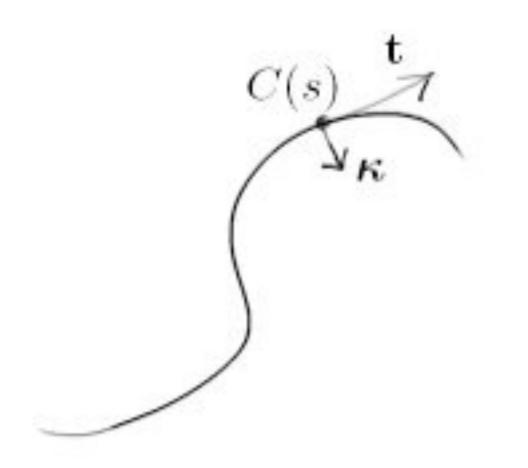
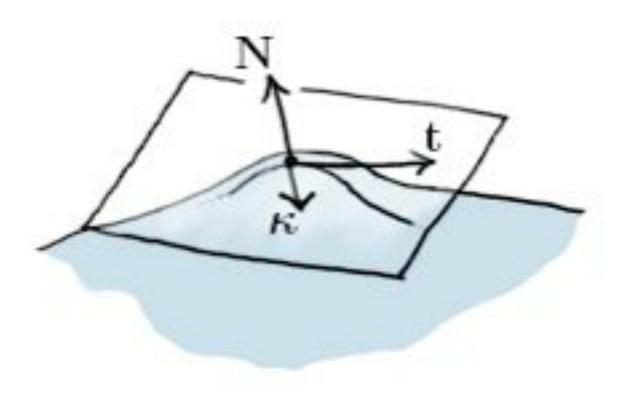
Discrete Differential Geometry

for triangle meshes JAB 2013

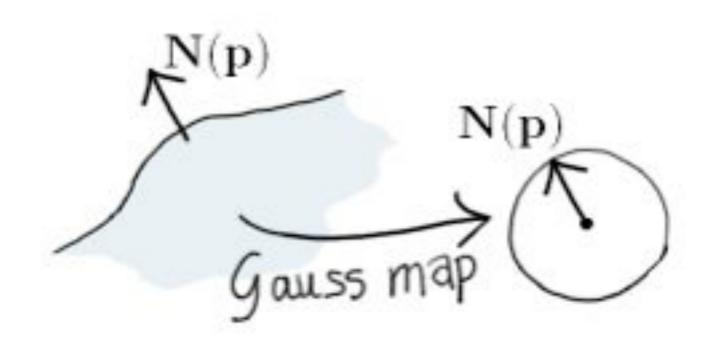
Consider a plane curve



and a surface



... and the Gauss Map



Now, take a mesh

tangent plane discontinuous at vertices

Planar almost everywhere

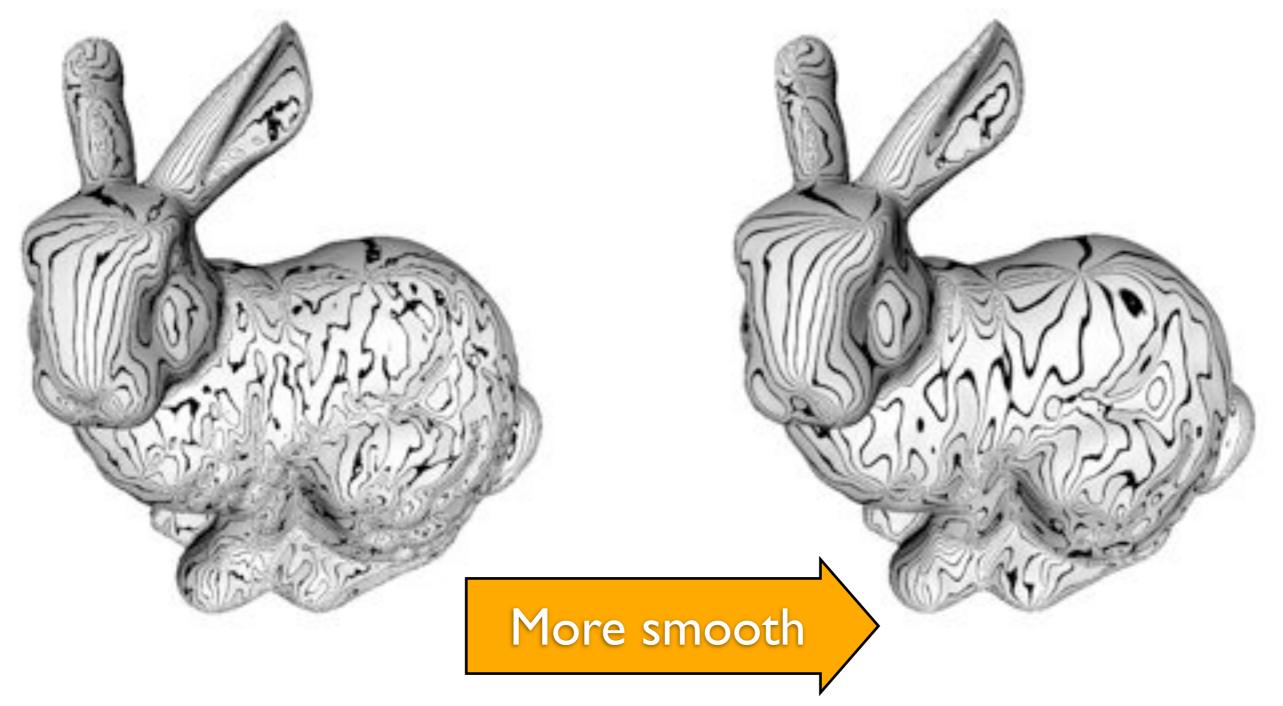
and edges

Making sense of curvature on a mesh

- At any point on a mesh, normal curvature in any direction is either infinite or 0
- However, we can fit a smooth surface to the mesh
- We can replace edges and corners with blends.
- We want curvature integrated over a region

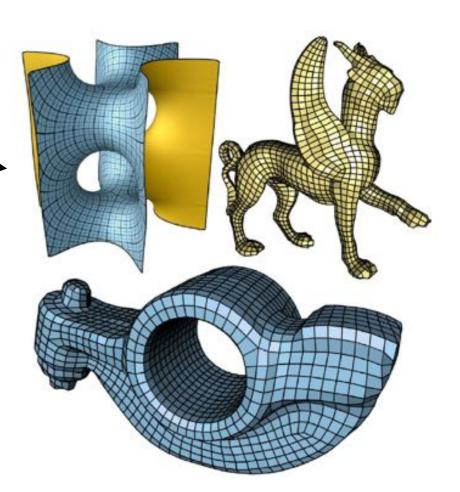
Seeing Curvature

• Actually ... use reflection lines



Why compute curvature?

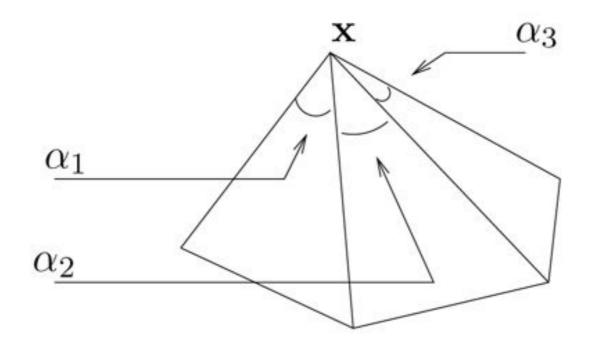
- non-photorealistic rendering
- remeshing ______
- improving geometry



Computing the Normal

The angle weighted normal,

$$\mathbf{n}_{\alpha} = \frac{\sum_{i} \alpha_{i} \mathbf{n}_{i}}{||\sum_{i} \alpha_{i} \mathbf{n}_{i}||}$$



Computing Normal Curvature

- We need the shape operator:
 - Maps tangent plane directions to normal derivative
 - Derivative of the Gauss map
 - We need: Smooth quadratic patch fitted to surface

	N	t	
NK	(p) Gauss r	N(p))

Fitting a Patch $f(u,v)=\frac{1}{2}(au^2+2buv+cv^2)$

- For each vertex
- Compute frame (N,T_1,T_2)
- Project I-ring vertices: $(u_j,v_j)=\mathbf{T}^T(\mathbf{p}_j-\mathbf{p}_i)$
- Get height values: $h_j = \mathbf{N} \cdot (\mathbf{p}_j \mathbf{p}_j)$
- Now fit (on next slide)

	NN	
Ta	AT2 TTI	
K	(v; iv) h	

Fitting a patch

Coefficients of f: a, b, and c are found by solving:

in the least squares sense

$$\begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \frac{u_j^2}{2} & u_j v_j & \frac{v_j^2}{2} \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} \cdot \\ h_j \\ \cdot \\ \cdot \end{bmatrix}$$

Shape Operator

• Now, the shape operator is

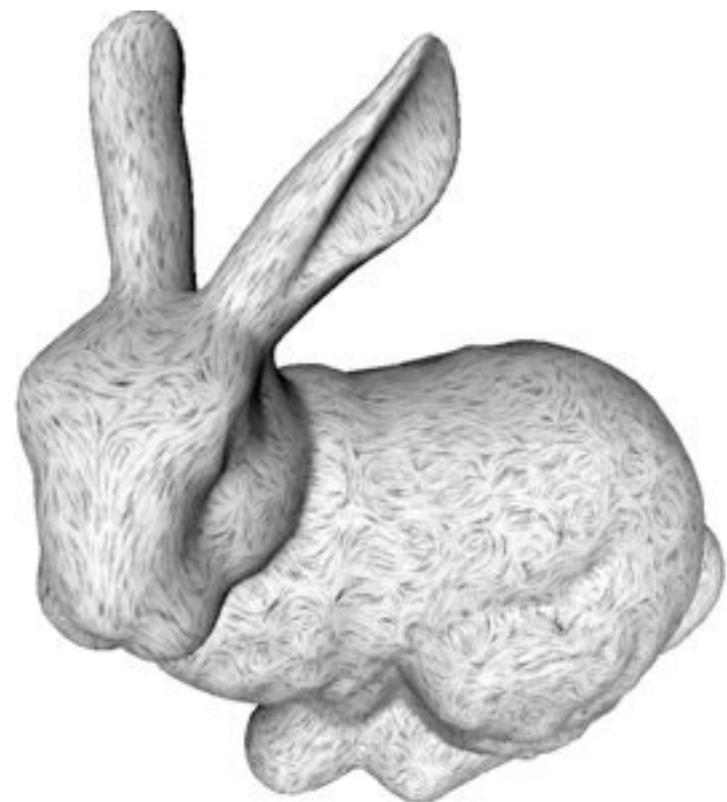
$$\mathbf{S} = - \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

- since $f_u(0,0) = f_v(0,0) = 0$
- and *a*,*b* and *c* are 2. order derivatives of $f(u,v) = 0.5 (au^2 + buv + cv^2)$

Principal Curvature

- Directions of min and max principal curvature v_{min} and v_{max} are eigenvectors of
 S
 - *κ*_{min} and *κ*_{max} are the eigenvalues of **S**

Curvature Lines



Ridge Detection

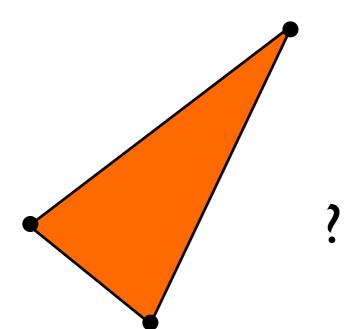
- curvature extrema along max curvature direction
- Surprisingly hard to compute in a stable way

Gaussian and Mean Curvature

• The Gaussian curvature $K = \kappa_{\min} \kappa_{\max}$ Gauss Map area to surf area • The mean curvature $H = \kappa_{\min} + \kappa_{\max}$ Length of area gradient at a point Both of these have far more meaningful definitions

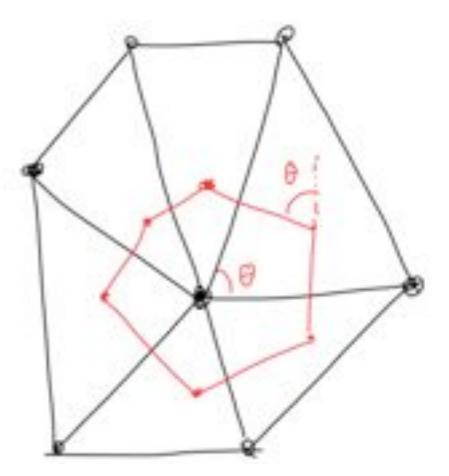
Euler-Poincare

• Remember the Euler-Poincare formula $\#V - \#E + \#F = \chi$



Gauss-Bonnet $\int_{\mathbf{P}} \mathbf{K} \, \mathrm{d}\mathbf{A} + \int_{\mathbf{C}} \kappa_g \, \mathrm{d}\mathbf{S} + \sum \phi_i = 2\pi \chi(\mathbf{R})$

 Thus, given a path around the vertex (with zero geodesic, we can compute ...



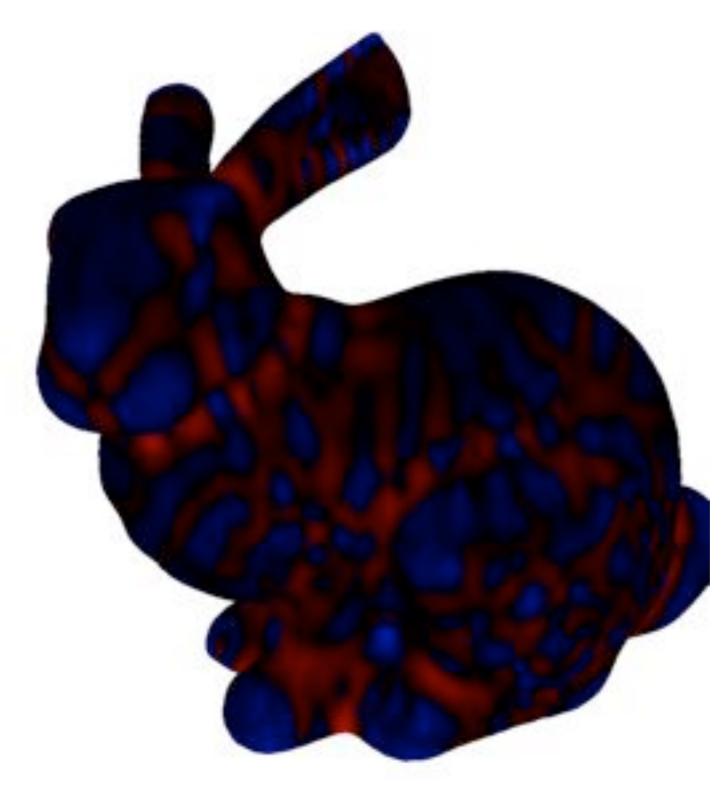
Gaussian Curvature

$$K(\mathbf{p}_i) = \frac{2\pi - \sum_j \theta_j}{\frac{1}{3} \sum_{\mathbf{p}_i \in t_j} A_j}$$

Note, we could also start from a definition of Gaussian curvature:

$$K = \lim_{A_S \to 0} \frac{A_G}{A_S}$$

Gaussian Curvature



Integral of Gaussian Curvature

• For a closed surface, it is really easy:

$$\int_{\mathcal{S}} \mathbf{K} = \sum_{i=1}^{\mathcal{V}} \left[2\pi - \sum_{j} \theta_{j} \right]$$

Mean Curvature on an edge \mathbf{e}_{ij}

If we replace an edge **e** of dihedral angle β with a blend

$$\int_B H = \frac{1}{2}(0 + \frac{1}{r})(r\beta \|\mathbf{e}\|) = \frac{1}{2}\beta \|\mathbf{e}\|$$

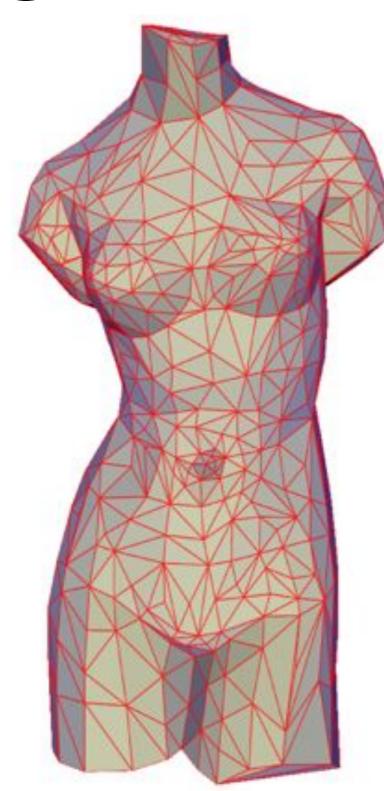
independent of radius *r* !!

Integral Abs Mean Curvature

• The IAMC is

$$\int_{\mathcal{S}} |H| = \frac{1}{2} \sum_{i=1}^{|\mathcal{E}|} |\beta_i| \|\mathbf{e}_i\| .$$

Minimizing IAMC



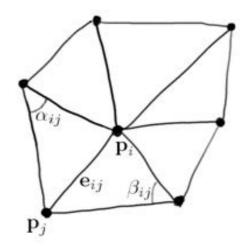
Return to the Normal

- A surface is minimal it its area is minimal given its boundary
- If so, H = 0
- Thus H relates to the area gradient. In fact

$$2\mathbf{H} = \lim_{A \to 0} \frac{\nabla A}{A}$$

Mean Curvature Normal

in a mesh, use the 1-ring area, $A_i^{1-\text{ring}} = \sum_{\mathbf{p}_i \in t_i} A_{t_i}$



Thus:

$$\mathbf{H}(\mathbf{p}_i) = \frac{1}{2} \frac{\nabla A_i^{1-\mathrm{ring}}}{A_i^{1-\mathrm{ring}}} = \frac{1}{4A_i^{1-\mathrm{ring}}} \sum_{\mathbf{p}_j \in \mathcal{N}_i} (\cot \alpha_{ij} + \cot \beta_{ij}) (\mathbf{p}_i - \mathbf{p}_j) ,$$

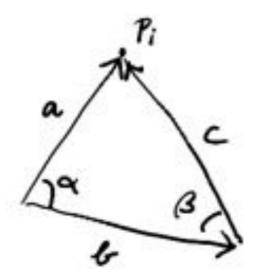
A spatial average, but where do the cots come from?

Triangle Area Gradient

The gradient of the vertex area is equal to the sum:

$$abla A_i^{1-\mathrm{ring}} = \sum_{\mathbf{p}_i \in t_j}
abla A_{t_j}(\mathbf{p}_i)$$

where $A_{t_i}(\mathbf{p}_i) = \frac{\|\mathbf{b} \times \mathbf{a}\|}{2}$ and the terms are as shown:



$$\begin{aligned} \nabla A_{t_j}(\mathbf{p}_i) &= \frac{(\mathbf{b} \times \mathbf{a}) \times \mathbf{b}}{2 \| \mathbf{b} \times \mathbf{a} \|} \\ &= \frac{(\mathbf{b}^t \mathbf{b}) \mathbf{a} - (\mathbf{b}^t \mathbf{a}) \mathbf{b}}{2 \| \mathbf{b} \times \mathbf{a} \|} \\ &= \frac{(\mathbf{b}^t \mathbf{b}) \mathbf{a} - (\mathbf{b}^t \mathbf{a}) \mathbf{a} + (\mathbf{b}^t \mathbf{a}) \mathbf{a} - (\mathbf{b}^t \mathbf{a}) \mathbf{b}}{2 \| \mathbf{b} \times \mathbf{a} \|} \\ &= \frac{-(\mathbf{c}^t \mathbf{b}) \mathbf{a}}{2 \| \mathbf{b} \times \mathbf{a} \|} \\ &= \frac{-(\mathbf{c}^t \mathbf{b}) \mathbf{a}}{2 \| \mathbf{c} \times -\mathbf{b} \|} + \frac{(\mathbf{b}^t \mathbf{a}) \mathbf{c}}{2 \| \mathbf{b} \times \mathbf{a} \|} \\ &= \frac{(\mathbf{c}^t - \mathbf{b}) \mathbf{a}}{2 \| \mathbf{c} \times -\mathbf{b} \|} + \frac{(\mathbf{b}^t \mathbf{a}) \mathbf{c}}{2 \| \mathbf{b} \times \mathbf{a} \|} \\ &= \frac{1}{2} (\mathbf{a} \cot \beta + \mathbf{c} \cot \alpha) \end{aligned}$$

Mean Curvature

The Laplace-Beltrami Operator

• The mean curvature normal is also defined as the LBO

 $\Delta f = \nabla \cdot \nabla f$ applied to the vertex positions

• Not so mysterious

Litterature

Guide to Computational Geometry Processing, Bærentzen, J. Andreas ; Gravesen, Jens ; Anton, François ; Aanæs, Henrik, Springer 2012

Discrete Differential-Geometry Operators for Triangulated 2-

<u>Manifolds</u> Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr, VisMath 2002.

Software: <u>GEL</u>