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Consider a plane curve



and a surface



... and the Gauss Map



Now, take a mesh

Planar almost 
everywhere

tangent plane 
discontinuous at 

vertices

and edges



Making sense of 
curvature on a mesh

• At any point on a mesh, normal curvature in any 
direction is either infinite or 0

• However, we can fit a smooth surface to the mesh

• We can replace edges and corners with blends.

• We want curvature integrated over a region



Seeing Curvature
• Actually ... use reflection lines

More smooth



Why compute 
curvature?

• Analysis

• non-photorealistic rendering

• remeshing

• improving geometry

Parameterization and Remeshing
Result of the QuadCover algorithm [Klberer, Nieser,
Polthier]

Hathing

Hatching along lines of curvature [Praun et al.]



Computing the NormalThe Angle Weighted Normal

The angle weighted normal,

n↵ =

P
i ↵ini

||
P

i ↵ini ||



Computing Normal 
Curvature

• We need the shape 
operator:

• Maps tangent plane 
directions to normal 
derivative

• Derivative of the 
Gauss map

• We need: Smooth 
quadratic patch fitted 
to surface



The Shape Operator (osculating paraboloid)

Estimate a smooth function whence curvature is readily
computed:

f (u, v) =
1
2
(au2 + 2buv + cv2) (5)

For each vertex
I Compute the normal and a frame T
I Project one-ring neighbours using

(uj , vj) = TT (pj � pi)

I Get height values using
hj = N · (pj � pi)

I Fit f as shown in the following

Fitting a Patch

• For each vertex

• Compute frame (N,T1,T2)

• Project 1-ring vertices: 
(uj,vj)=TT(pj −pi) 

• Get height values: hj =N·(pj −pi) 

• Now fit (on next slide)



Fitting a patch

Coefficients of f: a, b, and c 
are found by solving:

in the least squares sense

The Shape Operator (osculating paraboloid)

Coefficients of f found by solving
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The Shape Operator (osculating paraboloid)

Finally,

S = �


a b
b c

�
(7)

and the principal directions and curvatures are easily
computed by eigenvalue decomposition

Shape Operator

• Now, the shape operator is

• since fu(0,0) = fv(0,0) = 0

• and a,b and c are 2. order derivatives of 
f(u,v)= 0.5 (au2 + buv + cv2)



Principal Curvature

• Directions of min and max principal 
curvature vmin and vmax  are eigenvectors of 
S

• !min and !max are the 
eigenvalues of S



Curvature Lines



Ridge Detection

• curvature extrema along 
max curvature direction 

• Surprisingly hard to 
compute in a stable way



Gaussian and Mean 
Curvature

• The Gaussian curvature 
K = !min !max

• The mean curvature
 H = !min + !max

• Both of these have far 
more meaningful 
definitions

Gauss Map area to surf area

Length of area gradient at a point 



Euler-Poincare

• Remember the Euler-Poincare formula
#V - #E + #F = "

?



Gauss-Bonnet

• Thus, given a path around 
the vertex (with zero 
geodesic, we can compute ...

Gaussian Curvature (alt)

Gauss Bonnet Theorem states that
Z

R
K dA +

Z

C
g ds +

X
�i = 2⇡�(R), (3)

where �(R) = #Faces �#Edges +#Vertices in an
arbitrary triangulation of R. Thus, if we can find a curve
with zero geodesic curvature around a vertex, then we
obtain the same

K (pi) =
2⇡ �

P
j ✓j

1
3

P
pi2tj

Aj



Gaussian Curvature

Gaussian Curvature (alt)

Gauss Bonnet Theorem states that
Z

R
K dA +

Z

C
g ds +

X
�i = 2⇡�(R), (3)

where �(R) = #Faces �#Edges +#Vertices in an
arbitrary triangulation of R. Thus, if we can find a curve
with zero geodesic curvature around a vertex, then we
obtain the same

K (pi) =
2⇡ �

P
j ✓j

1
3

P
pi2tj

Aj

• Note, we could also start from a definition 
of Gaussian curvature:

Gaussian Curvature

K = lim
AS!0

AG

AS
(1)

Any loop around a single vertex maps to a spherical
polygon whose area is

AG(pi) = 2⇡ �
X

j

✓j

where ✓j is the angle of a face at pi . Now,

K (pi) =
AG(pi)

AS(pi)
=

2⇡ �
P

j ✓j
1
3

P
pi2tj

Aj
(2)

Again, a spatial average.



Gaussian Curvature



Integral of Gaussian 
Curvature

• For a closed surface, it is really easy:

The Integral Gaussian Curvature

Since the Gaussian curvature at a vertex is 2⇡ �
P

j ✓j , we
can compute the integral Gaussian curvature of a
triangulated surface precisely:

Z

S
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VX
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Mean Curvature on an 
edgeThe Mean Curvature of Edges

If we replace an edge e of dihedral angle � with a blend
Z

B
H =

1
2
(0 +

1
r
)(r�kek) = 1

2
�kek

independent of radius r !!



Integral Abs Mean 
Curvature

• The IAMC is

The Integral Absolute Mean Curvature

The integral absolute mean curvature

Z

S
|H| = 1

2

|E|X

i=1

|�i |keik . (4)

This measure is easily minimized using edge swaps.



Minimizing IAMC
The Integral Absolute Mean Curvature

Minimizing (4)



Return to the Normal

• A surface is minimal it its area is minimal 
given its boundary

• If so, H = 0

• Thus H relates to the area gradient. In fact

The Mean Curvature Normal

A surface is minimal if its area is minimal given its
boundary. For such a surface H is zero. Consequently, H
must be related to the area gradient, and

2H = lim
A!0

rA
A



Mean Curvature 
NormalThe Mean Curvature Normal

in a mesh, use the 1-ring area, A1�ring
i =

P
pi2tj

Atj

Thus:

H(pi) =
1
2
rA1�ring

i

A1�ring
i

=
1

4A1�ring
i

X

pj2Ni

(cot↵ij +cot�ij)(pi �pj) ,

A spatial average, but where do the cots come from?



Triangle Area GradientThe Mean Curvature Normal

The gradient of the vertex area is equal to the sum:

rA1�ring
i =

X

pi2tj

rAtj (pi)

where Atj (pi) =
kb⇥ak

2 and the terms are as shown:



Rewriting.............The Mean Curvature Normal
The gradient can be found by inspection, and we obtain

rAtj (pi) =
(b ⇥ a)⇥ b
2kb ⇥ ak

=
(btb)a � (bta)b

2kb ⇥ ak

=
(btb)a � (bta)a + (bta)a � (bta)b

2kb ⇥ ak

=
�(ctb)a

2kc ⇥�bk +
(bta)c

2kb ⇥ ak

=
(ct�b)a

2kc ⇥�bk +
(bta)c

2kb ⇥ ak

=
1
2
(a cot � + c cot↵)



Mean Curvature



The Laplace-Beltrami 
Operator

• The mean curvature normal is also defined 
as the LBO
 
applied to the vertex positions

• Not so mysterious 

�f = r ·rf
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