CSC418: Computer Graphics
DAVID LEVIN

Today’s Topics

1. Texture mapping
2. More Ray Tracing

Showtime

https://www.youtube.com/watch?v=frLwRLS_ZRO

But First ... Logistical Things

* Assignment 3 available on BBS (coming soon to website)

Topic 1:

Texture Mapping

e Motivation
e Sources of texture
e Texture coordinates

e {Bump, MIP, displacement, environmental}
mapping

Motivation

* Adding lots of detail to our models to realistically depict skin,
grass, bark, stone, etc., would increase rendering times
dramatically, even for hardware-supported projective
methods.

+

Motivation

* Adding lots of detail to our models to realistically depict skin,
grass, bark, stone, etc., would increase rendering times

dramatically, even for hardware-supported projective
methods.

Motivation

Basic idea of texture mapping:

Instead of calculating color,
shade, light, etc. for each pixel
we just paste images to our
objects in order to create the
illusion of realism

Different approaches exist
(e.g. tiling; cf. previous slide)

Motivation

In general, we distinguish between
2D and 3D texture mapping:

2D mapping (aka image textures):

paste an image onto the object

3D mapping (aka solid or volume
textures): create a 3D texture
and "carve’ the object

3D Object

mapping mapping

2D texture +— 3D texture

Topic 1:

Texture Mapping

e Sources of texture

Texture sources: Photographs

1-Felt 2-Polyester 3-Terrycloth 4-Rough Plastic 5-Leather 6-Sandpaper 7-Velvet

8-Pebbles
» R) \.

19-Rug b

23-Lettuce Leaf 24-Rabbit Fur 25-Quarry Tile 26-Loofa

n , B ' : 4
» . . " I .n : w2 :
)} .) ' IS 4 . g
. y " N 4 . . ! 3 v
At : 5 !‘. . ,
e . i e kg 49! 5
» ’- 2 x i : !
[N B) P - B : .
“ . g s - '] g)
’ - *2 < o ¥ N .
2 - b ¥ 4 fy :
T ~ : ’ k [
a2 . 2 .

29-(2 zbomed) 30-(11 zoomed) 31-(12 zoomed) 32-(14 zoomed) 33-Slate_a 34-Slate_ b 35- Pamted Sphere

s
it .
- .
.

X -
.

Texture sources: Solid textures

Texture sources: Procedural

Texture sources: Synthesized

Cwotro et od, S16-G-RrApT OF

Original Synthesized

Topic 1:

Texture Mapping

e Texture coordinates

Texture coordinates

How does one establish correspondence? (UV mapping)

For each triangle in the model
establish a corresponding region
in the phototexture

During rasterization interpolate the
coordinate indices into the texture map

Texture coordinates

Example: use world map and sphere to create a globe

Per conventions we usually assume u,v € [0, 1].

Texture coordinates

r = X.+rcos¢sinb
Yy = Yc+rsingsinb
zZ = Zz.+rcosb

Given a point (x,¥, z) on the surface of the sphere,
we can find 6 and ¢ by

0 = arccos*7* (cf. longitude)
- Y—Yc :
¢ = arctan—2¢ (cf. latitude)

(Note: arccos is the inverse of cos, arctan is the inverse of tan = i—‘;—)

Texture coordinates

For a point (z,y, z) we have

¢ = arccos **<
¢ = arctan L=

:I)—-(I)c

(0,¢) € [0, 7] x [-m,7], and
u, v must range from [0, 1].

Hence, we get:

¢ mod 27
g = 27
-0 5 -
L= T
(Note that this is a simple scaling ¢

transformation in 2D)

Texture coordinates

Example: “Tiling” of 2D textures into a UV -object space

V
A 2D object space (pixels)

2 -

2D texture array (texels)

We'll call the two dimensions to be mapped = and v,
and assume an n; X n, image as texture.

Then every (u,v) needs to be mapped to a color in the image,
l.e. we need a mapping from pixels to texels.

Texture coordinates

V
A 2D object space (pixels
2D texture array (texels) i JEctEpace pc)
2
\
\
(uo V) >
.... 2
n, coIorM i e — =1 -
0.2 0.2 02 0.2
0 H
Ny 0 1 2 3

A standard way is to first
remove the integer portion of u and v,

so that (u,v) lies in the unit square.

Texture coordinates

V
A 2D object space (pixels
2D texture array (texels) i) pace (pixels)
2
\
(U:\V)‘>
FHTSI - 5 "
n, color,, , 1 — »
0.2 0.2 0-;2 0.2 U
0 : o
n, 0 1 : :

This results in a simple mapping from 0 < u,v <1 to the size of
the texture array, i.e. ng X ny.

i = ung and j = vny

Yet, for the array lookup, we need integer values.

Texture coordinates

Vv
A 2D object space (pixels
2D texture array (texels) o) Bace (P
2
'\
W>
|] | {1 fne e i /) 2
nY 1 T /
color, J.)/O(|]
. i 5
0 0.2 0.2 02 0.2)
n, 0 1 2 3

The texel (%, 7) in the ny X n, image for (u,v) can be determined
using the floor function |x| which returns the highest integer value
< 4.

i = |ung| and j = |vny|

Texture coordinates

c(u,v) = ¢;j with ¢ = |ung| and j = |vn,]

This is a version of nearest-neighbor interpolation, where we take
the color of the nearest neighbor.

Floor function Nearest neighbor mapping

Cij

Cij Cit1j

Texture coordinates

For smoother effects we may use bilinear interpolation:

e(w,v) =
(1—u")(1—v")eij+u' (1=v") e (1), + (1=)V ¢i1) +0'V ey 1) 41

with
u' = ung — |ung| and
v = vny — |vny|

Bilinear interpolation

Cij+ . | Cisjar

Notice that all weights are between 0
and 1 and add up to 1:

‘ 1—-u)1—=2")+4(1-2")+
u T i 1—u) +u'v' =1

Topic 1:

Texture Mapping

e {Bump, MIP, displacement, environmental}
mapping

Mipmapping

aliasing

MIP-Mapping: Basic Idea

Given a polygon, use the texture image, where the projected
polygon best matches the size of the polygon on screen.

Mipmapping

Solutions: MIP maps

@ Pre-calculated, optimized
collections of images based
on the original texture

@ Dynamically chosen based on
depth of object (relative to
viewer)

@ Supported by todays
hardware and APls

Mipmapping

128 x 128

Environment mapping

. why not use this to make objects
appear to reflect their surroundings
specularly?

|ldea: place a cube around the object,
and project the environment of the
object onto the planes of the cube in
a preprocessing stage; this is our
texture map.

During rendering, we compute a
reflection vector, and use that to
look-up texture values from the cubic
texture map.

Environment mapping

Environment mapping

Skybox

Reflected
Ray

Normal

Remember Phong shading: “perfect” reflection if

angle between eye vector € and 77 = angle between 7i and reflection vector 7

Environment mapping

Image from slides by

Bump mapping

o W ol

Real Bump Fake Bump

One of the reasons why we apply
texture mapping:

Real surfaces are hardly flat but
often rough and bumpy. These
bumps cause (slightly) different

RRERREERR n

ALy

Bump mapping

Instead of mapping an image or noise
onto an object, we can also apply a
bump map, which is a 2D or 3D
array of vectors. These vectors are
added to the normals at the points
for which we do shading calculations.

VI T AN TS

The effect of bump mapping is an
apparent change of the geometry of
the object.

Bump mapping

Major problems with bump mapping: silhouettes and shadows

2D Image Bump Mapping Using a 24-bit Bitmap

Displacement mapping

To overcome this shortcoming, we
can use a displacement map. This is
also a 2D or 3D array of vectors, but

here the points to be shaded are
actually displaced.

Normally, the objects are refined
using the displacement map, giving
an increase in storage requirements.

Displacement mapping

Bounce Maps

BOUNCE BOUNCE

Topic 2:

Basic Ray Tracing

e Introduction to ray tracing * Computing normals
Evaluating shading model

e Computing rays . Spawning rays
* Computing intersections e Incorporating transmission
e ray-triangle refraction
e ray-spawning & refraction
e ray-polygon
® ray-quadric

e the scene signature

A basic ray tracing algorithm

FOR each pixel DO

@ compute viewing ray

R
2
o i
~ «
» B
($) (o)
()} =
B=3
0 o
o ¥
«
ﬂ 4
3 s H
o 0w
O N
< 7))
S35
T L
= o)
.1vam
- Q0
o

@ set pixel color to value

computed from hit point,

light, and n

Shading model

Remember our shading model:

¢ = ¢r(cq + cgmax(0,n - 1))
+Cl(f; - 1)P

with
@ Ambient shading
@ Lambertian shading
@ Phong shading

and Gouraud interpolation.

Topic 3:

Less Basic Ray Tracing

e |ncorporating transmission
e refraction

e ray-spawning & refraction

refraction

C
.m
o+

o

Q
9

Q

| -

local illumination

Modeling Reflection: Transmission

"\Q{— l‘ﬁ}vl' SO('U‘CQ,
MCIAQ,V\J(' Ilghr
w\o\kem‘ al . :
ﬁ:lzsmigsion
CL'?/"/‘ enters one Po,m{‘
T ardl exits grother)
l Nonsm s S1om -
. Caused Lig Mal—ema\g ‘ero‘% AN v\o)(f @,\@c[-lj_
opaqune

.ERQW\P|@§ ‘mclquL j(asc/ wjrer anal vaslusq,n{—

walerials such as chkm

Physics of Refraction
El\\«jsi_cii the Speed @39 light olepends
Ow J(\ﬁe' W\O&XYCP\Q\ Jr\/w‘oui]\,\ \m\/\i@\/\ \\‘ *\Q,— IISH‘ Source.

trovels (Qv\o\ e wv@‘@/\g”\ one
\.‘g\/ﬁ, but we v\ \\%V\OV‘Q, ‘\'\r\OM\—)

e c(eh{' Ilﬂhl-

Speed C, l/\/l WL{P&CQ

Sw& Cy

(our-)

(g\qss)

(‘Zgg?mc\“\o“ C\oev\ Amﬁ oe mg\?') ocewr pohon | g\r\\‘ CrOSse g

an imterface betuween two wedia wit difRerent speesls
OQ M%VF

Physics of Refraction

' raho cmlled‘lJv\U‘cM\'V\t aal
Snells \QW N Vi o refroction Q |'3H >ource
S\V\%\ B :'l Cl \\.
=\ ;
SimD2 L2 neident hght
b
(a\r') sPeed e, L/\/ {,\PO.CQ
(g\ass) SWO\ Cy

Rebraction (oen Alv\j of tays) occurs wohen \; gt Crosses

an imterface betuween two wedia wit difRerent speesls
OQ M%VF

Geometry of Refraction

[ne\ls law
SW\%\) C
SimOL Ca
(our-) l/\/m%{r@we
(g\qss) +
"\Q,— ll\ch' Source.
©, (; C2<C, ligWr lbenos Hounrel he normal

|
\g) Co>e, light lbends auoaj Loon hoemal

Geometry of Refraction: Transmission Vector

[ne\ls law —\Q'— |r3H' Source.
SW\%\) C
gi'v\ﬁl— Cz_ W‘CIAQ,V\{' Iljhr
-
(a\r.) S sPeed c\ :/\/WJ‘{J‘PO.CQ
(g\qss) SWO\ Cy
N
d
@ \V\Cic;\e)\/\‘\‘ P&ﬁ) O‘udfgow V‘O\«@{ 8 V\OewaQ Qlu\)aﬂg

\\e Oow ‘\‘\/‘L SOne

.A

01'\5

one =

X cosY, - o0, J?)

S ——

gme\\s \Qw ‘\(:\)/_ ’l\(j"\!' Sourte

SW\% v G
| SinDr Ca - e dent l';jhl‘
— M #
(our-) Fy G Speed C, /\/' M-crpace
(Q\qss) ,v’/‘:; 5]’&0‘* Co

Assumption: Refracted ray lies in the same plane as the incident ray

— — —
§=381 T8

—

SJ_ Perpendicular component
—

&

‘ Parallel component

<)

(:
S| =8—(s-n)n AT s oS ad
| + V| lr_",er.l‘

sin o, = —H | ‘
. C1, -
15yl = =1ty

<)

N~
!
|
|
—
|
YN
Q‘Q
— | DO
N
DO
VR
[—
|
@
@)
@p)
(\V)
O
[—
N—"
S|

F=7 4
c2

S — cosfy —cosfy |
cl cl

o~
|
l

Q1: Define all the terms in this equation ?
Q2: Which terms are known and unknown during ray tracing ?
Q3: How do you compute the unknown terms ?

Geometry of Refraction: The Critical Angle

Z2nells law
SW\%\) C
SimDr Ca
! wher
(Our') : SPCCd Co 1,/\/ < Pa.ce
(glass) oF Speed ¢,
o

@ \g) C2>C, H/\em S A C\!‘i‘\’\'CaL’Q_V\gLQ_ Q\ZDU{

whic MO travgpnissiown OCCUNS (’—b Inowve

bl mbkernal v&QleohoV\B

Total Internal Reflection

2nells law
S\V\%\) C,
SimO2 Ca
:: lh"‘{[‘
(our-) |__] — SPCCd Co :/\/ Pace
(g\qss) = Sw& C,
9«
o

@ b@&‘N\M% ‘U"Q/ CO”\‘\‘\‘CO\\ O\V\S\QSQ{\OW ?Y\@\\g (QMJ)
cos, \, (&)S\q «

ol C\\Clr\‘cal av\gle/ %1-3_ = %W\%\ o

Total Internal Reflection

2ne\ls law
SW\%\) C
SimDr ‘ Ca
() YN s, e
(glass) /{.\:{\Sl’“"\ T
w tokal internol

“Q«Q\wﬁ on rou&

(e vo brosm ig%\'om)

@ Qpr %. >9* / %l S \AV\c(Q,gq,\w\

Geometry of Refraction: Normal Incidence

2ells law
S\’V\% \ _ Cl "\Q,— |I'8‘\+ Source.
giv\%‘l— Ca ‘V‘Clclehj(' Iljh[‘
M a2
ke
(OL\F‘) S‘Peed C, :/\/ < Pace
(g\qss) =, SWO\ Cy
d

\Q 9\——0 , WO \oev\o\lm% oCceUrS

g \ov\%...__s) J{——C(ﬁ%; - cofds J?)

\

Topic 12:

Less Basic Ray Tracing

e |ncorporating transmission

e ray-spawning & refraction

Ray Spawning

diffuse

opaque S R mirror

mirror

© www.scratchapixel.com
https://www.scratchapixel.com/lessons/3d-basic-
rendering/ray-tracing-overview/light-transport-ray-tracing-
whitted

Ray Spawning: The Ray Tree

Primary ray
Depth O

Depth 1

Depth 2

Depth 3

@ www.scratchapixel.com

No reflection

Single reflection

Double reflection

Topic 12:

Less Basic Ray Tracing

e |ncorporating transmission

e |mprovements

Ray Tracing Improvements: Caustics

Ray Tracing Improvements: Caustics

Reverse Direction Ray Tracing

e Trace from the light to the surfaces and then from
the eye to the surfaces

e “shower” scene with light and then collect it

e “Where does light go?” vs “Where does light come
from?”

e Good for caustics

e Transport E-S—-S-S-D-S-S-S-L

X e
’G‘ -~ .Y 3 e
* < R “

Ray Tracing Improvements: Image Quality

Cone tracing
e Models some dispersion effects
Distributed Ray Tracing
e Super sample each ray
e Blurred reflections, refractions
e Soft shadows
e Depth of field
e Motion blur
Stochastic Ray Tracing

How many rays do you need?

1 ray/light 10 ray/light 20 ray/light 50 ray/light

Images taken from http://web.cs.wpi.edu/~matt/courses/cs563/talks/dist_ray/dist.html

Antialiasing — Supersampling

jaggies w/ antialiasing

point light

area light

Radiosity

* Diffuse interaction within a closed environment
* Theoretically sound

 View independent

* No specular interactions

* Color bleeding visual effects

* Transport E-D-D-D-1L

Topic 13:

Instancing

Copying and transforming objects

Instancing is an elegant
technique to place various .

transformed copies of an

object in a scene.
. . e /0
Expl.: circle — elipse

b oy

1. scale

2. rotate 3. move

Copying and transforming objects

Instancing is an elegant
technique to place various
transformed copies of an
object in a scene.

Expl.: circle — elipse

CHa=

1. scale

G- &

2. rotate 3. move

I & circle
S~ ellipse

o (= non-uniformly
ranslating, scaled circle)

scaling

* M, 0 scaling, rotating,

translating

O‘/A@O

Copying and transforming objects

Instead of making actual
copies, we simply store a
reference to a base object,
together with a transformation
matrix.

That can save us lots of
storage.

Hmm, but how do we compute
the intersection of a ray with a
randomly rotated elipse?

o «m=s

s /0

M;0
&

Ray-instance intersection

Assume an object O that is used
to create an object MO via
instancing.

Ray-instance intersection

Now, we want to create the <.l
intersection of MO with the ray
7(t), which in turn is defined by

the line

i(t)=¢e+td.

Ray-instance intersection

Fortunately, such

complicated intersection tests
(e.g. ray/ellipsoid) can often be
replaced by much simpler tests

(e.g. ray/sphere).

Ray-instance intersection

To determine the intersections p;
of a ray 7 with the instance MO,
we first compute the intersections
p; of the inverse transformed ray
M 17 and the original object O.

Ray-instance intersection

The points p; are then simply
Mp} or [{t])

because the linear transformation
preserves relative distances along
the line.

Ray-instance intersection

Two pitfalls:

@ The direction vector of the
ray should not be normalized

@ Surface normals transform
differently!

— use (M~1)T instead of M
for normals

Transforming normal vectors

Unfortunately, normal vectors are not
always transformed properly.

E.g. look at shearing, where tangent
vectors are correctly transformed but
normal vectors not.

To transform a normal vector 12
correctly under a given linear

transformation A, we have to apply
the matrix (A=1)7. Why?

normal vector i

tangent vector 7

Transforming normal vectors

We know that tangent vectors are tranformed correctly: At = t4.

But this is not necessarily true for normal vectors: A7n # nj.

Goal: find matrix N4 that transforms 7 correctly, i.e. Nan = ny
where n is the correct normal vector of the transformed surface.

Because our original normal vector 7! is perpendicular to the

original tangent vector £, we know that:
it =i,

This is the same as
At =10

which is is the same as
alA=1At =0

Transforming normal vectors

Because At = t4 is our correctly transformed tangent vector,
we have
AT A3 =0

Because their scaler product is 0, 77 A~! must be orthogonal to it.

So, the vector we are looking for must be
ﬁ% =qal AL,
Because of how matrix multiplication is defined,
this is a transposed vector. But we can rewrite this to

iy = (ATA~HT.
And if you remember that (AB)T = BT AT, we get
nN = (A_l)T’I_?f

