CSC418: Computer Graphics
DAVID LEVIN



Today’s Topics

1. Texture mapping
2. Ray Tracing



Showtime




But First ... Logistical Things

* You should all have your Assignment 1 and Midterm Grades
* Assignment 2 is due this Friday
* |f you are still having troubles email the TAs
* csc418tas@cs.toronto.edu
e Karan is still away so email me if you have any issues

e diwlevin@cs.toronto.edu (usually requires two emails)




Phong Shading: Comparisons

Phong shading:

1. Interpolate 2, 5
b;. 1;. S;

toget _ at !
2. Computd. 7,8 P
L(b 1, :) ma‘cem‘cxl S P

Hsign-Usim Sean lee, GaTecl

Flat shading Gouraud shading Phong shading



Phong Shading: Comparisons

Phong shading:

1. Interpolate 2, 5
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Comparison to Gouraud shading

+ Smooth intensity variations as in Gouraud
shading

+ Handles specular highlights correctly even for
large triangles (Why?)

- Computationally less efficient (but okay in today's
hardware!) (Must interpolate 3 vectors & evaluate
Phong reflection model at each triangle pixel)



Topic 1:

Texture Mapping

e Motivation
e Sources of texture
e Texture coordinates

e {Bump, MIP, displacement, environmental}
mapping



Motivation

* Adding lots of detail to our models to realistically depict skin,
grass, bark, stone, etc., would increase rendering times
dramatically, even for hardware-supported projective
methods.

+




Motivation

* Adding lots of detail to our models to realistically depict skin,
grass, bark, stone, etc., would increase rendering times

dramatically, even for hardware-supported projective
methods.




Motivation

Basic idea of texture mapping:

Instead of calculating color,
shade, light, etc. for each pixel
we just paste images to our
objects in order to create the
illusion of realism

Different approaches exist
(e.g. tiling; cf. previous slide)




Motivation

In general, we distinguish between
2D and 3D texture mapping:

2D mapping (aka image textures):

paste an image onto the object

3D mapping (aka solid or volume
textures): create a 3D texture
and "carve’ the object

3D Object

mapping mapping

2D texture +— 3D texture






Topic 1:

Texture Mapping

e Sources of texture



Texture sources: Photographs
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Texture sources: Solid textures




Texture sources: Procedural




Texture sources: Synthesized
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Original Synthesized




Topic 1:

Texture Mapping

e Texture coordinates



Texture coordinates

How does one establish correspondence? (UV mapping)

For each triangle in the model
establish a corresponding region
in the phototexture

During rasterization interpolate the
coordinate indices into the texture map



Texture coordinates

Example: use world map and sphere to create a globe

Per conventions we usually assume u,v € [0, 1].



Texture coordinates

r = X.+rcos¢sinb
Yy = Yc+rsingsinb
zZ = Zz.+rcosb

Given a point (x,¥, z) on the surface of the sphere,
we can find 6 and ¢ by

0 = arccos*7*  (cf. longitude)
- Y—Yc :
¢ = arctan—2¢ (cf. latitude)

(Note: arccos is the inverse of cos, arctan is the inverse of tan = i—‘;—)



Texture coordinates

For a point (z,y, z) we have

¢ = arccos **<
¢ = arctan L=

:I)—-(I)c

(0,¢) € [0, 7] x [-m,7], and
u, v must range from [0, 1].

Hence, we get:

¢ mod 27
g = 27
-0 5 -
L= T
(Note that this is a simple scaling ¢

transformation in 2D)




Texture coordinates

Example: “Tiling” of 2D textures into a UV -object space

V
A 2D object space (pixels)

2 -

2D texture array (texels)

We'll call the two dimensions to be mapped = and v,
and assume an n; X n, image as texture.

Then every (u,v) needs to be mapped to a color in the image,
l.e. we need a mapping from pixels to texels.



Texture coordinates

V
A 2D object space (pixels
2D texture array (texels) i JEctEpace pc)
2
\
\
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A standard way is to first
remove the integer portion of u and v,

so that (u,v) lies in the unit square.



Texture coordinates

V
A 2D object space (pixels
2D texture array (texels) i ) pace (pixels)
2
\
(U:\V)‘>
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n, color,, , 1 — »
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This results in a simple mapping from 0 < u,v <1 to the size of
the texture array, i.e. ng X ny.

i = ung and j = vny

Yet, for the array lookup, we need integer values.



Texture coordinates

Vv
A 2D object space (pixels
2D texture array (texels) o ) Bace (P
2
'\
W>
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The texel (%, 7) in the ny X n, image for (u,v) can be determined
using the floor function |x| which returns the highest integer value
< 4.

i = |ung| and j = |vny|



Texture coordinates

c(u,v) = ¢;j with ¢ = |ung| and j = |vn,]

This is a version of nearest-neighbor interpolation, where we take
the color of the nearest neighbor.

Floor function Nearest neighbor mapping

Cij

Cij Cit1j



Texture coordinates

For smoother effects we may use bilinear interpolation:

e(w,v) =
(1—u")(1—v")eij+u' (1=v") e (1), + (1= )V ¢i1) +0'V ey 1) 41

with
u' = ung — |ung| and
v = vny — |vny|

Bilinear interpolation

Cij+ . | Cisjar

Notice that all weights are between 0
and 1 and add up to 1:

‘ 1—-u)1—=2")+4(1-2")+
u T i 1—u ) +u'v' =1




Topic 1:

Texture Mapping

e {Bump, MIP, displacement, environmental}
mapping



Mipmapping

aliasing




MIP-Mapping: Basic Idea

Given a polygon, use the texture image, where the projected
polygon best matches the size of the polygon on screen.



Mipmapping

Solutions: MIP maps

@ Pre-calculated, optimized
collections of images based
on the original texture

@ Dynamically chosen based on
depth of object (relative to
viewer)

@ Supported by todays
hardware and APls




Mipmapping

128 x 128



Environment mapping

. why not use this to make objects
appear to reflect their surroundings
specularly?

|ldea: place a cube around the object,
and project the environment of the
object onto the planes of the cube in
a preprocessing stage; this is our
texture map.

During rendering, we compute a
reflection vector, and use that to
look-up texture values from the cubic
texture map.



Environment mapping




Environment mapping

Skybox

Reflected
Ray

Normal

Remember Phong shading: “perfect” reflection if

angle between eye vector € and 77 = angle between 7i and reflection vector 7



Environment mapping

Image from slides by



Bump mapping

o W ol

Real Bump Fake Bump

One of the reasons why we apply
texture mapping:

Real surfaces are hardly flat but
often rough and bumpy. These
bumps cause (slightly) different
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ALy




Bump mapping

Instead of mapping an image or noise
onto an object, we can also apply a
bump map, which is a 2D or 3D
array of vectors. These vectors are
added to the normals at the points
for which we do shading calculations.

VI T AN TS

The effect of bump mapping is an
apparent change of the geometry of
the object.



Bump mapping

Major problems with bump mapping: silhouettes and shadows




2D Image Bump Mapping Using a 24-bit Bitmap




Displacement mapping

To overcome this shortcoming, we
can use a displacement map. This is
also a 2D or 3D array of vectors, but

here the points to be shaded are
actually displaced.

Normally, the objects are refined
using the displacement map, giving
an increase in storage requirements.




Displacement mapping




Topic 2:

Basic Ray Tracing

e Introduction to ray tracing * Computing normals
Evaluating shading model

e Computing rays . Spawning rays
* Computing intersections e Incorporating transmission
e ray-triangle  refraction
e ray-spawning & refraction
e ray-polygon
® ray-quadric

e the scene signature



Local vs. Global lllumination

Local lllumination Models
e.g. Phong

 Model source from a light reflected once off a surface
towards the eye

* Indirect light is included with an ad hoc “ambient” term
which is normally constant across the scene

Global lllumination Models
e.g. ray tracing or radiosity (both are incomplete)
* Try to measure light propagation in the scene

* Model interaction between objects and other objects,
objects and their environment



All surfaces are not created equal

Specular surfaces
e e.g. mirrors, glass balls

e An idealized model provides ‘perfect’ reflection

Incident ray is reflected back as a ray in a single
direction

Diffuse surfaces
e e.g. flat paint, chalk
e Lambertian surfaces

e Incident light is scattered equally in all directions

General reflectance model: BRDF




Categories of light transport

Specular-Specular
Specular-Diffuse

Diffuse-Diffuse
Diffuse-Specular



Ray Tracing

Traces path of specularly reflected or transmitted
(refracted) rays through environment

Rays are infinitely thin

Don’t disperse

Signature: shiny objects exhibiting sharp, multiple
reflections

Transport E - S—=S-S-D-L.



Ray Tracing

Unifies in one framework
e Hidden surface removal
e Shadow computation
e Reflection of light
e Refraction of light

e Global specular interaction









Rasterization vs. Ray Tracing

. ™S
Rasterization:
-project geometry onto image.
-pixel color computed by local illumination
(direct lighting).
N

Ray-Tracing:

-project image pixels (backwards) onto scene.
-pixel color determined based on direct light
as well indirectly by recursively following
promising lights path of the ray.




Projective methods

A popular method for
generating images from a
3D-model is projection, e.g.:

@ 3D triangles project
to 2D triangles

@ Project vertices
e Fill/shade 2D triangle

AENSEENEEENE

Notice:
Ray tracing = pixel-based,
proj. methods = object-based



Ray tracing / ray casting

For photo-realistic rendering,
usually ray tracing algorithms
are used: for every pixel

@ Compute ray from
viewpoint through pixel
center

@ Determine intersection
point with first object hit
by ray

e Calculate shading for the
pixel (possibly with
recursion)

NENNNNNREEEN
A b Y Y Y Y
DTN NS
SNNANNENNEEN
ENNERNESNEEN
SNNENSNENEEN
g ) oyl !.'.




Ray tracing / ray casting

@ Global lllumination

slow

e Traditionally (very)

NENNNENENANN
NNENNNNENEEEN,

@ Recent developments:
real-time ray tracing



Ray tracing / ray casting

Why ray tracing is important
(even if you are just interested
in real-time rendering):

@ Recent developments:
real-time ray tracing, path
tracing, etc.

@ Important in games for
interaction

@ Important computer
graphics technique (also:
shares many techniques
with other approaches)

(XL LT )] ]

N
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Ray tracing




Ray tracing




Ray tracing




Ray tracing




Ray tracing




Projective methods vs. ray tracing

Projective methods & Ray tracing

.. share lots of techniques,
e.g., shading models,
calculation of intersections, etc.
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.. but also have major differences,
e.g., projection and hidden
surface removal come “for free”
in ray tracing
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And most importantly ... A



Projective methods vs. ray tracing

Projective methods:

Object-order rendering, i.e.
@ For each object ...

@ ...find and update all pixels that it
influences and draw them accordingly

Ray tracing:
Image-order rendering, i.e.

@ For each pixel ...

@ ...find all objects that influence it
and update it accordingly




A basic ray tracing algorithm

FOR each pixel DO

@ compute viewing ray
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@ set pixel color to value

computed from hit point,

light, and n



Lines and rays

We need to “shoot” a ray
@ from the view point €

@ through a pixel §
on the screen

@ towards the scene/objects

Hmm, that should be easy with . ..



Lines and rays

...a parametric line equation:

(t) = &+ 45— &

where

@ ¢ is a point on the line
(aka its support vector)

@ S — € is a vector on the line
(aka its direction vector)




Lines and rays

With this, our ray ...
@ starts at € (¢ = 0),

@ goes throught s (¢t =1),

@ and “shoots’ towards the
scene/objects (t > 1)

Hmm, calculation would become much
easier if we would have ...



Coordinate system

...a camera coordinate system:
That's easy! Using

@ our camera position €

@ our viewing direction —w

@ and a view up vector ¢

we get
@ Uu=—wXt
@ I=—wWX1u

T



Coordinate system

...a camera coordinate system:
That's easy! Using

@ our camera position €

@ our viewing direction —w

@ and a view up vector ¢

we get
@ Uu=—wXxt
@ I=—wXu

' HEERP:



Coordinate system

...a camera coordinate system:

That's easy! Using

@ our camera position €

@ our viewing direction —w

@ and a view up vector ¢

we get
@ U=—wXt
@ VU=—-wWX1uU



Coordinate system

Notice that we chose —w as viewing
direction and not w, in order to get a
right handed coordinate system.

111



Coordinate system

Normalizing, i.e.
o w/|
o u/||d
o ¥/||d]

gives us our coordinate system.

IaEEED|




Viewing window

With this new coordinate system we can
easily define our viewing window:

@ left side: u =1

@ right side: u=r

@ top: v=t

@ bottom: v =0

Plus the viewing plane at a distance d
from the eye/camera:

@ distance: —w =d



Viewing window

Assuming our window has n; x n,
pixels, expressing a pixel position (%, 7)
on the viewing window in our new
coordinate system (u,v) can be done
with a simple window transformation
from ny X ny to (r—1) x (t —b):

u=I1+(r—10)(0GE+0.5)/n,
v=>b+ (t —b)(j+0.5)/n,

[ g

s



Viewing window

Example for u: Transformation from

[ = =500, r =500 to n, =100

5 . r-1=1000 "

=4 Fu=-250 =L
-500 '
(r-0) (i+0.5)
u= I+
nX
L {15
oo ®
n, =100

Note: we add +0.5 to i because ]
we are dealing with pixel centers.




Viewing rays

For perspective views, viewing rays
@ have the same origin €

@ but different direction

If d denotes the origin's distance to the
plane, and u, v are calculated as before,
we can write the direction as

® ui + vv — du.

Our viewing ray becomes

@ pla) =€+ a(utd + vv — dw)



Viewing rays

For orthographic views, viewing rays
@ have the same direction —w
@ but different origin

We get the origin with the previously
introduced mapping from (i, j) to (u,v):

and can write it as €+ uiu + vv.
Our viewing ray becomes

@ pla) =€+ uu + vv — aw



Viewing rays compared

Viewing rays for perspective views
@ pla) =€+ a(utd + vv — dw)
with
@ support vector €

@ direction vector ui + v — dw

Viewing rays for orthographic views
@ pla) =€+ ut + vv — aw
with
@ support vector € + ui + vv

@ direction vector —w




A basic ray tracing algorithm

FOR each pixel DO
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Ray-object intersection (implicit surface)

In general, the intersection points of

+ td and

€

—

(t)

@ an implicit surface f(p) =0

@ arayp

can be calculated by

(LTI LTI LTI N

f(p(t)) =0
f@+td) =0



Spheres

The implicit equation for a sphere
with center ¢ = (x¢, Y¢, 2¢) and
radius R is

(m—wc)2+(y—yc)2+(z—zc)2"—R2 =0

or in vector form

(F-28)-(F-28—R*=0




Intersections between rays and spheres

Intersection points have to fullfil

e the ray equation
pt) =e+td
@ the sphere equation

(z —2c)? + (¥ — ye)?
+(z—2)?—R%?=0

Hence, we get
E@+td—@)-(E+td—& —R2=0

which is the same as
(d-d)t*+2d-(E—&)t+(é—&)-(€—&)—R? =0



Intersections between rays and spheres

(d-d)t?+2d-(€—&)t+(e—&)-(E—&)—R2 =0
is a quadratic equation in t, i.e.
At?+ Bt+C =0

that can be solved by
—B * V/B2—4AC
2A

l12 =

and can have 0, 1, or 2 solutions.



Intersections between rays and planes

Given a ray in parametric form, i.e.
plt) =€+ td

and a plane in its implicit form, i.e.
(P—p1)-w=0

we can calculate the intersection
point by putting the ray equation

into the plane equation and solving
for t, i.e.

.

_ (pi—e)n
lre= d-it




Ray-object intersection (parametric surface)

Given a ray in parametric form, i.e.
plt) =€+ td

and a surface in its parametric form,
l.e.

f(u,v)

we can calculate the intersection
point(s) by

€+ td = f(u,v)



Ray-object intersection (parametric surface)

Notice that

represents 3 equations
with 3 unknowns (¢, u, v),
l.e. a linear equation system.



Ray-triangle intersection

This comes in very handy for
ray-triangle intersections:

e We first calculate the
intersection point of the ray
with the plane defined by the

triangle.

@ Then we check if this point is
within the triangle or not.

!




Plane specification

Recall that the plane V' through the
points @, b, and ¢ can be written as

p(B,7) = @+ B(b— @) + (G- a)




Ray-plane specification

Again, intersection points must fullfil
the plane and the ray equation.

Hence, we get

E+td=d+pBb—a)+~(E—a

That give us ...




Ray-plane specification

... the following three equations

Te +lxg Tq + IB(mb . ma) T '7($c - ma)

Ye +1Ys = Yo+ IB(yb = ya) o 7(yc = ya)
Ze + 124 Za T ,B(zb = za) = 2 7(zc = za)

which can be rewritten as

(o — xp) B + (Xq — Tc)y + x4t
(Ya = 96)B+ (Yo — Ye)Y +Yat = Ya — Ve

|
8
S
8
®

(za — 20)B+ (26 — 2e)Y + 24t = 24— 2e

or as i L i i
Lg —Tp Tq — Te X4 IB Lqg — Te
Ya —Yb Ya — Yec Yd Yl = | Ya— Ye

| 26— 2b Za— 2% 24| |t] | Zg — Ze |




Ray-plane specification

If we write

ma—xb
Ya — Yb
Zaq — Rp

then we see that

Lg — Te Td IB
Ya — Ye Yd Wl =
Za —Zc 24| |t]
,B- -xa xe-
A Tl = LYa— He
t | Zg — Ze |
-,B- —ma xe-
vl = A7 | Yo — e
A | Zg — Ze |

Lg — Te
Ya — Ye
Za — %e




Rays: parametric representation

We can use t to calculate the
intersection point p{(t)

(or 3,7 to calculate p(3,7)).

But first, we can use 3 and «y to
verify if it is inside of the triangle
or not:

e >0
@ vy>0
e f+4<1

because we can interpret these as
barycentric coordinates.



Computing Ray-Poly Intersections: Step b
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Computing Ray-Poly Intersections: Step b
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Computing Ray-Quadric Intersections
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Computing Ray-Quadric Intersections
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Computing Ray-Quadric Intersections: 3 Cases
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Ray-Quadric Intersections: Sub-cases for A>0
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Intersecting Rays & Composite Objects

* Intersect ray with component objects
* Process the intersections ordered by depth

to return intersection pairs with the object. q’




Ray Intersection: Efficiency Considerations

Speed-up the intersection process.
* Ignore object that clearly don’t intersect.
* Use proxy geometry.
e Subdivide and structure space hierarchically.
* Project volume onto image to ignore entire

Sets of rays. -




