Interpolating Curves

e Intro to curve interpolation & approximation
e Polynomial interpolation
e Bézier curves



Showtime:




Logistics

* Assignment 2 is available
* For assignment questions use the bulletin board or email:

e csc4l18tas@cs.toronto.edu

* |'ll be away next week, Prof. Singh will be giving the lecture on
Wednesday

 Reminder: Midterm held during tutorial time on Monday,
Feb. 12

* Covers material from all lectures up to and including this one



Interpolating Curves

e Intro to curve interpolation & approximation
e Polynomial interpolation
e Bézier curves



Applications




Applications

* Specify smooth camera path in scene along spline curve
* Curved smooth bodies and shells (planes, boats, etc)

e Animation curves



Applications
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History

« Used to create smoothly varying
curves
« Variations in curve achieved by the

use of weights (like control points)

Used by engineers in ship building and airplane
design before computers were around



Interactive Design of Curves

Goal: Expand the capabilities of shapes beyond lines and conics,
simple analytic functions and to allow design constraints.

Design Issues:

e Continuity (smoothness)
e Control (local vs. global)
* Interpolation vs. approximation of constraints
 Other geometric properties

(planarity, tangent/curvature control)
» Efficient analytic representation



C" continuity

Definition: a function is called C"if it’s nth order derivative is
continuous everywhere
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Local vs. Global Control

* Local control changes curve only locally while maintaining

some constraints

 Modifying point on curve affects local part of curve or

entire curve



Interpolation vs Approximation

Interpolating splines: pass through all the
data points (control points). Example:
Hermite splines




Interpolation vs. Approximation

Curve approximates but does not go
through all of the control points.

*

—



Geometric continuity at a joint of two curves

Geometric Continuity
G,: curves are joined

G,: first derivatives are proportional at the join point
The curve tangents thus have the same direction,
but not necessarily the same magnitude.

i.e., C,'(1) = (a,b,c) and C,'(0) = (k*a, k*b, k*c).

G,: constant curvature at the join



Example: Linear Interpolation

 The simplest possible interpolation technique
* Create a piecewise linear curve that connects the
control points




Linear Interpolation

 The simplest possible interpolation technique

* Create a piecewise linear curve that connects the
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C" continuity

Definition: a function is called C"if it’s nth order derivative is
continuous everywhere
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General Problem Statement

e Given N control points, P;,i=0..n-1,t € [0, 1] (by
convention)
* Define a curve c(t) that interpolates / approximates them

 Compute its derivatives (and tangents, normals etc)



Polynomial Interpolation

e Given N control points, P;, i =0...n-1, t = [0, 1] (by
convention)

e Define (N-1)-order polynomial x(t), y(t) such that
X(i/(N-1)) = xi, y(i/(N-1) =yifori=0, ..., N-1
 Compute its derivatives (and tangents, normals etc)
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Basic Equations
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Computing Coeffs
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What if < 4 Control Points?
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What if > 4 Control Points?
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Degree-N Poly Interpolation

* To interpolate N points perfectly with a single
polynomial, we need a polynomial of degree
N-1

i.e. moving one control point changes the interpolation of all
points, often in unexpected, unintuitive and undesirable ways
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Degree-N Poly Interpolation

* To interpolate N points perfectly with a single
polynomial, we need a polynomial of degree
N-1

i.e. moving one control point changes the interpolation of all
points, often in unexpected, unintuitive and undesirable ways




Runge’s Phenomenon

The higher-order the polynomial, the more oscillation you get at
the boundaries when using equidistant control points

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

~0415 05 0.0 0.5 1.0



Instead we use “Splines”

Curve is defined by piecewise polynomials
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Example: Linear Interpolation

 The simplest possible interpolation technique
* Create a piecewise linear curve that connects the
control points




Instead we use “Splines”

Curve is defined by piecewise polynomials
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Hermite Splines

* Cubic polynomials specified by end point positons and end
point tangents (4 pieces of information)




Evaluating Derivatives
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Designing Polynomial Curves from constraints

p(t) = TA, where T is powers of t. for a cubic T=[t3 t? t11].

Written with geometric constraints p(t) = TMG, where M is the

Basis matrix of a design curve and G the specific design
constraints.

An example of constraints for a cubic Hermite for eg. are
end points and end tangents. i.e. P;,R; at t=0 and P,,R, at t=1.
Plugging these constraints into p(t) = TA we get.

p(0) =P, =
p(l)=P,=
p'(0)=R,
p'(1)=R,

B
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Bézier Curves

* Polynomial curves defined via endpoints and derivative
constraints
* Derivative constraints defined implicitly through extra

control points (that are not interpolated)
* They are approximating curves, not interpolating curves
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Bézier Curves: Main ldea

Polynomial and its derivatives expressed as a cascade of linear

interpolations
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Bézier Curves: Control Polygon

A Bézier curve is completely determined by its control polygon

We manipulate the curve by manipulating its polygon
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Bézier Curve as a Polynomial
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Derivatives of the Bézier Curve
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Endpoints and Tangent Constraints
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Generalization to N+1 points

Expression in compact form: <CH) = z P 8 D)
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Bézier and Control Points

Expression in compact form: Ch) = Z'ﬁ\ @,“: )
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Bézier Curves: Useful Properties

Expression in coanact form: == = —- -
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. Cownfro
control points by T polygon *
P, -P—s
« No line will intersect the curve at more A

points than the control polygon

e curve cannot exhibit “excessive
fluctuations”
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Bézier Curves: Useful Properties

Expression in compact form:
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Bézier Curves: Pros and Cons

e Intuitive control for N £ 3
 Derivatives easy to compute
« Nice properties (affine invariance, diminishing variation)

« Scheme is still global (curve is function of all control points)



Reminders




Bezier Basis Matrix

A cubic Bezier can be defined with four points where:
P,,R, att=0and P,,R, at t=1 for a Hermite.
R, =3(P,-P,) and R, = 3(P,-P;).

We can thus compute the Bezier Basis Matrix by finding the
matrix that transforms [P, P, P, P, ]" into [P, P, R, R,]"i.e.

B H=[1000]

0001]
-3300]
00-3 3]

M bezier— M hermite * B_H



Bezier Basis Functions

(-1 3-31]
1 3-6 30
-3300]
(1 000]

The columns of the Basis Matrix form Basis Functions such that:
p(t)=f (t)P, + f,(t)P, + f5(t)P5 + f, ()P,

From the matrix:

filt) = (") #(1-t)0) st

These are also called Bernstein polynomials.



Basis Functions

Basis functions can be thought of as interpolating functions.
Note: actual interpolation of any point only happens if its Basis
function is 1 and all others are zero at some t.

Often Basis functions for design curves sum to 1 for all t.

This gives the curve some nice properties like affine invariance
and the convex hull property when the function are additionally
non-negative.



