
Interpolating	Curves

• Intro	to	curve	interpolation	&	approximation	
• Polynomial	interpolation	
• Bézier curves



Showtime:	



Logistics
• Assignment	2	is	available
• For	assignment	questions	use	the	bulletin	board	or	email:	
• csc418tas@cs.toronto.edu

• I’ll	be	away	next	week,	Prof.	Singh	will	be	giving	the	lecture	on	
Wednesday

• Reminder:	Midterm	held	during	tutorial	time	on	Monday,	
Feb.	12

• Covers	material	from	all	lectures	up	to	and	including	this	one
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Applications

• Specify	smooth	camera	path	in	scene	along	spline	curve

• Curved	smooth	bodies	and	shells	(planes,	boats,	etc)

• Animation	curves



Applications



History

Used	by	engineers	in	ship	building	and airplane	
design	before	computers	were around

• Used	to	create	smoothly	varying	

curves

• Variations	in	curve	achieved	by	the	

use	of	weights	(like	control	points)



Interactive	Design	of	Curves

Goal:	Expand	the	capabilities	of	shapes	beyond	lines	and	conics,
simple	analytic	functions	and	to	allow	design	constraints.

Design	Issues:

• Continuity	(smoothness)
• Control	(local	vs.	global)
• Interpolation	vs.	approximation	of	constraints
• Other	geometric	properties	

(planarity,	tangent/curvature	control)
• Efficient	analytic	representation



Cn continuity

Definition:	a	function	is	called	Cn if	it’s	nth order	derivative	is
continuous	everywhere



Local	vs.	Global	Control

• Local	control	changes	curve	only	locally	while	maintaining	

some	constraints

• Modifying	point	on	curve	affects	local	part	of	curve	or	

entire	curve



Interpolation vs	Approximation
Interpolating	splines:	pass	through	all	the	

data	points	(control	points).	Example:	
Hermite	splines



Interpolation	vs.	Approximation
Curve	approximates	but	does	not	go	

through	all	of	the	control	points.

Comes	close	to	them.



Geometric	continuity	at	a	joint	of	two	curves

Geometric	Continuity
G0:	curves	are	joined

G1:	first	derivatives	are	proportional	at	the	join	point
The	curve	tangents	thus	have	the	same	direction,	
but	not	necessarily	the	same	magnitude.
i.e.,	C1'(1)	=	(a,b,c)	and	C2'(0)	=	(k*a,	k*b,	k*c).

G2:	constant	curvature	at	the	join



Example:	Linear	Interpolation

• The	simplest	possible	interpolation	technique
• Create	a	piecewise	linear	curve	that	connects	the	

control	points



Linear	Interpolation

• The	simplest	possible	interpolation	technique

• Create	a	piecewise	linear	curve	that	connects	the	

control	points



Cn continuity

Definition:	a	function	is	called	Cn if	it’s	nth order	derivative	is
continuous	everywhere



General	Problem	Statement

• Given	N	control	points,	Pi,	i	=	0…n	- 1,	t	∈ [0,	1]	(by	

convention)

• Define	a	curve	c(t)	that	interpolates	/	approximates	them

• Compute	its	derivatives	(and	tangents,	normals	etc)



Polynomial	Interpolation

• Given	N	control	points,	Pi,	i	=	0…n-1,	t	∈ [0,	1]	(by	

convention)

• Define	(N-1)-order	polynomial	x(t),	y(t)	such	that	

x(i/(N-1)) =	xi, y(i/(N-1)	=	yi for	i	=	0,	…,	N-1

• Compute	its	derivatives	(and	tangents,	normals	etc)



Basic	Equations

Equations	for	one	control	point: Equations	in	matrix	form:



Computing	Coeffs

Equations	in	matrix	form:



What	if	<	4	Control	Points?



What	if	>	4	Control	Points?

Equations	in	matrix	form:



Degree-N	Poly	Interpolation
• To	interpolate	N	points	perfectly	with	a	single	
polynomial,	we	need	a	polynomial	of	degree	
N-1

Major	drawback:	it	is	a	global	interpolation	scheme

i.e.	moving	one	control	point	changes	the	interpolation	of	all	
points,	often	in	unexpected,	unintuitive	and	undesirable	ways
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Runge’s Phenomenon
The	higher-order	the	polynomial,	the	more	oscillation	you	get	at	

the	boundaries	when	using	equidistant	control	points



Instead	we	use	“Splines”
Curve	is	defined	by	piecewise	polynomials	



Example:	Linear	Interpolation

• The	simplest	possible	interpolation	technique
• Create	a	piecewise	linear	curve	that	connects	the	

control	points



Instead	we	use	“Splines”
Curve	is	defined	by	piecewise	polynomials	



Hermite Splines
• Cubic	polynomials	specified	by	end	point	positons	and	end	

point	tangents	(4	pieces	of	information)



Evaluating	Derivatives



Designing	Polynomial	Curves	from	constraints

p(t)	=	TA	,	where	T	is	powers	of	t.	for	a	cubic	T=[t3		t2		t1	1].

Written	with	geometric	constraints	p(t)	=	TMG,	where	M	is	the
Basis	matrix	of	a	design	curve	and	G	the	specific	design
constraints.

An	example	of	constraints	for	a	cubic	Hermite for	eg.	are
end	points	and	end	tangents.	i.e.	P1,R1 at	t=0	and	P4,R4 at	t=1.
Plugging	these	constraints	into	p(t)	=	TA	we	get.

B
p(0)	=	P1 =	[	0	0	0	1	]	Ah
p(1)	=	P4 =	[	1	1	1	1	]	Ah
p'(0)=	R1 =	[	0	0	1	0	]	Ah =>						G=BA,	A=MG	=>	M=B-1
p'(1)=	R4 =	[	3	2	1	0	]	Ah



Bézier	Curves
Properties:
• Polynomial	curves	defined	via	endpoints	and	derivative	

constraints
• Derivative	constraints	defined	implicitly through	extra	

control	points	(that	are	not	interpolated)
• They	are	approximating curves,	not	interpolating	curves



Bézier	Curves:	Main	Idea
Polynomial	and	its	derivatives	expressed	as	a	cascade	of	linear	
interpolations



Bézier	Curves:	Control	Polygon
A	Bézier	curve	is	completely	determined	by	its	control	polygon

We	manipulate	the	curve	by	manipulating	its	polygon



Bézier	Curve	as	a	Polynomial



Derivatives	of	the	Bézier	Curve



Endpoints	and	Tangent	Constraints

General	Behaviour
• 1st and	3rd control	points	
define	the	endpoints.

• 2nd control	point	defines	the	
tangent	vector	at	the	
endpoints.



Generalization	to	N+1	points

Example	for	4	control	
points	and	3	cascades

Expression	in	compact	form:

Curve	defined	by	N	linear	interpolation	
cascades	(De	Casteljau's	algorithm):



Bézier	and	Control	Points
Expression	in	compact	form:



Bézier	Curves:	Useful	Properties
Expression	in	compact	form:

1.Affine	Invariance
• Transforming	a	Bézier	curve	by	an	affine	
transform	T	is	equivalent	to	transforming	its	
control	points	by	T

2.Diminishing	Variation
•No	line	will	intersect	the	curve	at	more	
points	than	the	control	polygon
• curve	cannot	exhibit	“excessive	
fluctuations”

3.Linear	Precision
• If	control	poly	approximates	a	line,	so	will	
the	curve



Bézier	Curves:	Useful	Properties
Expression	in	compact	form:

4.	Tangents	at	endpoints	are	along	the	1st	
and	last	edges	of	control	polygon:



Bézier	Curves:	Pros	and	Cons

Advantages:
• Intuitive	control	for	N	≤	3
•Derivatives	easy	to	compute
•Nice	properties	(affine	invariance,	diminishing	variation)

Disadvantages:
• Scheme	is	still	global	(curve	is	function	of	all	control	points)



Reminders



Bezier	Basis	Matrix

A	cubic	Bezier	can	be	defined	with	four	points	where:
P1,R1 at	t=0	and	P4,R4 at	t=1	for	a	Hermite.
R1	= 3(P2-P1)	and	R4	=	3(P4-P3).

We	can	thus	compute	the	Bezier	Basis	Matrix	by	finding	the	
matrix	that	transforms	 [P1 P2 P3 P4 ]T into	[P1 P4 R1 R4 ] T i.e.

B_H	=[	1	0	0	0	]
[	0	0	0	1]
[-3	3	0	0]
[	0	0	-3	3]

Mbezier=Mhermite * B_H



Bezier	Basis	Functions

[	-1	 3	-3	1	]
[		3	-6	 3	0	]	
[	-3	 3		0	0	]	
[		1		0		0	0	]

The	columns	of	the	Basis	Matrix	form	Basis	Functions	such	that:
p(t)=	f1(t)P1	+	f2(t)P2	+	f3(t)P3	+	f4(t)P4.

From	the	matrix:

fi(t)	=	(n)	*(1-t)(n-i) *tii				

These	are	also	called	Bernstein	polynomials.



Basis	Functions

Basis	functions	can	be	thought	of	as	interpolating	functions.
Note:	actual	interpolation	of	any	point	only	happens	if	its	Basis
function	is	1	and	all	others	are	zero	at	some	t.

Often	Basis	functions	for	design	curves	sum	to	1	for	all	t.
This	gives	the	curve	some	nice	properties	like	affine	invariance
and	the	convex	hull	property	when	the	function	are	additionally
non-negative.	


