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Showtime:




Today’s Topics

2. Review Implicit Curve Representation

3. Transformations in 2D

4. Coordinate-free geometry

5. 3D Objects (curves & surfaces)

6. Transformations in 3D



Questions about the Midterm

If you have a valid, documented reason for missing the midterm
exam, your final exam will be worth 50%



Questions about the Assighment

Please contact the TAs via email at csc418tas@cs.toronto.edu



Topic 2.

2D Curve Representations

e Implicit representation



Implicit Curve Representation: Definition
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Implicit Curve Representation: Definition
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Implicit Curve Representation: Definition

A -?u\vxo—b@\n g&,‘@ \\ \
Mot & 200 ig and

ov\b ‘(g &Y 6 on \ | Cew))
e curve
B(F) :5\ (Xo0)
/ Line. through (80) el Ges)
Colleat Be. melieit § 00) = (4-92) te=X9) = (91-Y0)(x-x5)

equation &f the curve

I X%

Yi-Yo  X)-xo

(bemu»e, XY mnst Sodvsfu;,



Normal Vectors from the Implicit Equation
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Topic 3:

2D Transformations

e Simple Transformations

e Homogeneous coordinates

e Homogeneous 2D transformations

e Affine transformations & restrictions






Transformations

Transformation/Deformation in Graphics:

A function f, mapping points to points.
simple transformations are usually invertible.

xyl" ¢  XYyI1T
f—l

Applications:

e Placing objects in a scene.

* Composing an object from parts.
* Animating objects.

Processing Tree Demo!
https://processing.org/examples/tree.html




Lets start out simple...

Translate a point [xy]" by [t t]:
X' =X+t
y' =y+t,

Rotate a point [x y]T by an angle t:
X" = x cost -y sint
y’ =xsint +y cost

Scale a point [xy]" by a factor [s, s, ]’
X' =XS,
Y =Yys,



Representing 2D transforms as a 2x2 matrix

Rotate a point [x y]" by an anglet:

X" |=|cost -sint X
y’ sint  cost Yy

Scale a point [xy]" by a factor [s, s, ]

TR0



Linear Transformations

A function T : R® — R™ is called a
linear transformation if it satisfies

O T(u+7)=T(w)+ T(v)
for all u,v € R".
Q T (cv) = T (v)
for all ¥ € R™ and all scalars c.

Linear transformations can be
represented by matrices.

Remember how multiplication with a scalar is
defined and that matrix multiplication is

distributive over addition:

A(B+C)=AB+ AC

()

T} | + T

T(u)




Finding matrices

Remember: T’ is a linear transformation if and only if
T(Cl’L_l:—l— 62’17) = ClT(ﬁ) “ CgT(’ff)

Let's look at carthesian coordinates, where each vector w can be
represented as a linear combination of the base vectors by, bs:

=)=+ (o) ()

If we apply a linear transformation 7' to this vector, we get:

()= en (Qp-em () )



Finding matrices

If we apply a linear transformation 7' to this vector, we get:

r(p=me () oo Q) =G eom (D)
-7 (o) ()

Transformation of a point is determined by a transformation of the basis vectors




Finding matrices

That gives us an easy method
to find transformation
matrices.

Example:

Counterclockwise rotation
about an angle ®

cCos¢ —sing
sing cos¢

First base vector b—i
gives the first column:

b =(1.0)

x, =cos® and y, = sin®

Second base vector by
~~> EXErcise



Representing 2D transforms as a 2x2 matrix

Rotate a point [x y]" by an anglet:

X" |=|cost -sint X
y’ sint  cost Yy

Scale a point [xy]" by a factor [s, s, ]
X' |=| s, O X
y’ 0 s, y

Translation ?



Representing 2D transforms as a 2x2 matrix

Rotate a point [x y]" by an anglet:

X" |=]cost -sint X
y’ sint  cost Yy

Scale a point [xy]" by a factor [s, s, ]

TR0

Translate a point [xy]" by [t t ]':
X' =X+t
y =y+t,



Intuition via Shearing

General case for shearing

...1n X-direction:

(0 1) G)=(37)

...1n Y-direction:

(1) ()= ()

I 3 7 T 06 00 ) /SO AU,




Translation via Shearing

Observation:

In 2D, shearing “pushes things
sideways” (in X —direction) in
a “fixed level” (the Y —value).

That “level” is a 1D subspace,
l.e. a line.

WV

Ergo, we are doing a
translation (in 1D) using

7

matrix multiplication (in 2D).



Homogeneous coordinates

In 3D, shearing also “pushes
things sideways” (in X — and
Y —direction) in a “fixed level”
(the Z—value).

That “level” is a 2D subspace,
l.e. a plane.

Ergo, we are doing a
translation (in 2D) using
matrix multiplication (in 3D).



Points as Homogeneous 2D Point Coords

p=x[100]"+y[010]"

+[001]T

[01]° basis vectors




Homogeneous coordinates in 2D: basic idea

We see: by adding a 3rd dimension to our 2D space, we can use
matrix multiplication to create the following vectors:

15 r <+ Xy
Mlyl=ly + w
[ [

That's exactly what we want (for the first 2 coordinates). But:
How should the matrix M look like?

How about the two constants x;, ;7
And how are we dealing with this 3rd coordinate [?



Homogeneous coordinates in 2D: points

Translations in 2D can be represented as shearing in 3D by looking
at the plane z = 1.

By representing all our 2D points (z,y) by 3D vectors (z,y,1), we

can translate them about (z¢,y:) using the following 3D shearing
matrix:

1 0 @& x T + x¢
0 1 w yl|l=1|y+u
g g A i i |



Representing 2D transforms as a 3x3 matrix

Translate a point [xy]" by [t t]:

Rotate a point [x y]" by an anglet:

x’ |=]cost -sint O X
y’ sint cost O ||y
1 0 0 1 1

Scale a point [xy]" by a factor [s, s, ]’

HiEh

< X



Cartesian <~ Homogeneous 2D Points

Cartesian [x y]" => Homogeneous [x y 1]T

Homogeneous [x y w]T => Cartesian [x/w y/w 1]T

Homogeneous points are equal if they represent the same
Cartesian point. Foreg. [4-62]T=[-69-3] .



Geometric Intuition

(x%y’,1)

(x’,y’,0)

(0*x’,0*y",0)

(w*x', w*y’,w)



Points at == in Homogeneous Coordinates

[x y w] T with w=0 represent points at infinity, though with
direction [x y] T and thus provide a natural representation for
vectors, distinct from points in Homogeneous coordinates.



Line Equations in Homogeneous Coordinates

A line given by the equation
ax+by+c=0

can be represented in Homogeneous coordinates as:
|=[a b c], making the line equation

l.p=[a b c][xy 1] T=0.



The Line Passing Through 2 Points

For a line | that passes through two points p,, p;
we have |.p,=1.p, = 0.

In other words we can write | using a cross product
as:

I=py X p;

P1

Po



Point of intersection of 2 lines

For a point that is the intersection of two lines |, |,
we have p.l,=p.l; = 0.

In other words we can write p using a cross product as:
p=1, X1,

What happens when the lines are parallel?



A Line through 2 Points

For a line going through two points we have p,, p;

we have p,.l = p,.1 = 0.

Po

P1



Properties of 2D transforms

...these 3x3 transforms have a variety of properties.
most generally they map lines to lines. Such invertible
Linear transforms are also called Homographies.

...a more restricted set of transformations also preserve
parallelism in lines. These are called Affine transforms.

..transforms that further preserve the angle between
lines are called Conformal.

...transforms that additionally preserve the lengths of
line segments are called Rigid.

Where do translate, rotate and scale fit into these?



Properties of 2D transforms

Homography, Linear (preserve lines)

Affine (preserve parallelism)
shear, scale

Conformal (preserve angles)
uniform scale

Rigid (preserve lengths)
rotate, translate




Homography: mapping four points

How does the mapping of 4 points uniquely define the 3x3 Homography matrix?



Homography: preserving lines

Show that if points p lie on some line |,
then their transformed points p’ also lie on some line I



Homography: preserving lines

Show that if points p lie on some line |,
then their transformed points p’ also lie on some line I

Proof:
We are given that I.p = 0 and p’=Hp. Since H is invertible, p=H1p’".
Thus I.(H1p’)=0 => (IH1).p’=0, or p’ lies on a line I’= [HL.

QED



Affine: preserving parallel lines

What restriction does the Affine property impose on H?

If two lines are parallel their intersection point at infinity,
is of the form [x y O]".

If these lines map to lines that are still parallel, then [x y 0]"
transformed must continue to map to a point at infinity or [x" y’ 0]"

i.e. X"y’ 0]" = ¥ *1[xyo0]"

*
* * 3k
?

??



Affine: preserving parallel lines

What restriction does the Affine property impose on H?

If two lines are parallel their intersection point at infinity,
is of the form [x y O]".

If these lines map to lines that are still parallel, then [x y 0]"
transformed must continue to map to a point at infinity or [x" y’ 0]"

i.e. X"y’ 0]" = [ A J

00 1

t||[xyO0]"

In Cartesian co-ordinates Affine transforms can be written as:

p'=Ap+t



Affine Transformations: Composition
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Affine properties: inverse

The inverse of an Affine transform is Affine.
- Prove it!



Affine Transformations: Inverse
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Recall: Finding matrices

If we apply a linear transformation 7' to this vector, we get:

r(p=me () oo Q) =G eom (D)
-7 (o) ()

Transformation of a point is determined by a transformation of the basis vectors




Affine transform: geometric interpretation

A change of basis vectors and translation of the origin

al

point p in the local coordinates of a reference frame defined by <al,a2,t> is

Sl

0O 0 1




Composing Transformations

Any sequence of linear transforms can be collapsed into a single
3x3 matrix by concatenating the transforms in the sequence.

In general transforms DO NOT commute, however certain combinations
of transformations are commutative...

try out various combinations of translate, rotate, scale.



Rotation about a fixed point

The typical rotation matrix, rotates points about the origin.
How do you rotate about specific point g

T,RT,



Topic 4:

Coordinate-Free Geometry
(CFG)

e A brief introduction & basic ideas



Doing Geometry Without Coordinates
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CFG: Key Objects é%a their Homogeneous Repr.
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CFG: Basic Geometric Operations
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More CFG Ops: Linear Vector Combination
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More CFG Ops: Affine Point Combination
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More CFG Ops: Operations w/ Scalar Result
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Lecture 3 Starts Here




Showtime




SIGGRAPH Submissions

Designing Volumetric Truss Structures for Computational Fabrication

Submission #0131



Autodef: Nonlinear Subspace Simulation
for Large Deformation Elastodynamics

ID 0363

A LAY

Wy,
;.
;
)




Error-Bounded Online Compression
of Rigid Body Simulations

Submission ID: 369
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Questions about the Midterm

If you have a valid, documented reason for missing the midterm
exam, your final exam will be worth 50%

Midterm will be in tutorials so if you are in my tutorial that
means Monday, February 12



Questions about the Assighment

Please contact the TAs via email at csc418tas@cs.toronto.edu

Assignment 2 is not due during reading week. It will be due the
Monday after reading week February 26",



Topic 5:

3D Objects

e General curves & surfaces in 3D
e Normal vectors, surface curves & tangent planes
e |mplicit surface representations

e Example surfaces:
surfaces of revolution, bilinear patches, quadrics



Reminder: Curves in 2D
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Curves in 3D
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Surfaces in 3D
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Surface Example: Planes in 3D
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Topic 5:

3D Objects

e Normal vectors, surface curves & tangent planes



Tangent / Normal vectors of 2D curves

Explicit: y=f(x). Tangent is dy/dx.

Parametric: x=f (t) Tangent is (dx/dt, dy/dt)
y=f,(t)

Implicit: f(x,y) =0 Normal is gradient(f).

direction of max. change

Given a tangent or normal vector in 2D how do we
compute the other?

What about in 3D?



Normal vector of a plane

p(s,t)=q + as +tb



Normal vector of a plane

n=aXb



Normal vector of a parametric surface




Tangent vectors of a parametric surface
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Normal vector of a parametric surface
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Topic 5:

3D Objects

e |mplicit surface representations



Implicit function of a plane

f(p) = (p-q).n=0



Implicit function: level sets




Representing Surfaces by an Implicit Function
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Example: The Implicit Function of a Plane
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Surface Normals from the Implicit Function
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Surface Normals from the Implicit Function
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Topic 5:

3D Objects

e Example surfaces:
surfaces of revolution, bilinear patches, quadrics



3D parametric surfaces

Extrude
Revolve
Loft

Square



Surfaces of Revolution: Basic Construction
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Example: The Cylinder
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Example: Implicit Function of the Cylinder
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Example: Ihe lorus as a Surrace or

Pleshion: how do we
A express ‘e ‘torus os a

) SUMace O‘Q “C&D\mjf'\ov\?

Lo TTe——__
<’b’_/? T Ans - Jcoms S gomw\ L\ét

‘\OJtaH’Y\ o €\ (\Qle

a\oud 2-0X1s

—.
/ (x (a), %(2}) -
“ (rm& o rsmO+ b>

)%
Pa Yo 4 e_/l(yi C \(\'Q\D M&e\/\{‘&‘h A

£69) = (xR, x5S, 20))




3D parametric surfaces: Coons interpolation
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