CSC418/2504 Computer Graphics Winter 2018: Assignment 2

15% of course grade
Due 11:59PM on February 26, 2018

Part B (60 marks)

In this assignment you will be writing several different shaders in a C-like language known as the OpenGL
Shading Language, or GLSL for short. A shader is program that decides the colour of each pixel rendered
for an object.

Your Programming Task. Your task is to implement the following shaders. Each type of shader will
be discussed in either class or tutorial to provide you with what you need to start. Figure 1 shows how the
results should look like.

a)

b)

[10 marks] Ambient, diffuse, and specular lighting using the Gouraud shading model.
shaders/gouraud vert.glsl, shaders/gouraud_frag.glsl

[10 marks] Ambient, diffuse, and specular lighting using the Phong shading model.
shaders/phong vert.glsl, shaders/phong frag.glsl

[10 marks] Ambient, diffuse, and specular lighting using the cel shading model. Cel shading is not a
well-defined term by itself, and may refer to various kinds of shading techniques emulating cartoons.
You’ll implement the most basic form of cel shading by giving a posterized look to the object.
shaders/cel_vert.glsl, shaders/cel frag.glsl

[10 marks] UV texture mapping. With a given texture image and a model with defined texture
coordinates, you need to write the shaders to display a textured model. Note that the provided texture
will only look reasonable on the sphere model.

shaders/texture_vert.glsl, shaders/texture_frag.glsl

[10 marks] Halftone shading. The halftone technique simulates continuous tone using a grid of dots
that vary in size to depict different tones.
shaders/halftone vert.glsl, shaders/halftone frag.glsl

[10 marks] X-Ray shading. The opacity of the rendered fragment decreases as you move further away
from the edge of the object’s silhouette, producing results that look like X-Ray images.
shaders/xray_vert.glsl, shaders/xray_ frag.glsl

Bonus [10 marks] For bonus points, you have to implement one of the following shading/mapping
techniques. Points will be awarded on the basis of technical competence, creativity, ingenuity, and
aesthetic appeal of the result.

— Cook-Torrance reflectance model. The Phong model covered in class is not the only reflection
model employed in computer graphics. The Cook-Torrance model is another common example.

— Hatching. Hatching is commonly used in pencil, charcoal, and pen and ink sketches to create
tonal and shading effects. In your shader program, you can approximate tone by varying the
density of linear hatching and/or the number of lines used for crosshatching. You can also try
hatching in general contours, instead of straight lines.



— Painterly rendering. Implement a painterly rendering technique of your choice. You can try to
mimic impressionist brush strokes, water colours, knife painting techniques, coloured pencils, etc.

shaders/bonus_vert.glsl, shaders/bonus_frag.glsl

Helper Code. You are provided with an environment for developing shaders that runs in a modern web
browser. Start by opening up a terminal window, and navigating to the folder A2. Then, type out the
following command

$ python server2.py

assuming the default python installation is python2 (this is true for CDF machines), or

$ python server3.py

if the default python on your machine is python3.

In any modern browser, then navigate to http://localhost:8000. You should see text boxes displaying
the code of the currently selected shader, a viewer window, and UI tools to select the shader, material colours,
light position, and the displayed shape (see Figure 2). The instructions are guaranteed to work on CDF
machines. However, having Python and a modern browser (latest Chrome, Firefox, Edge, etc.) installed are
the only requirements if you choose to run it on your own machine.

(a) Gouraud shading b) Phong shading ) Cel shading

) Halftone shading ) X-ray shading

(g) Bonus shaders: Cook-Torrance model and cross-hatching

Figure 1: Sample results for the programming tasks. Note that your bonus shaders may look wildly different
from the examples shown here and may still be deemed correct if you follow a reasonable algorithm.


http://localhost:8000

= [m} X
WebGL - Phong Shading X |+

@ localhost8000 @ Q search w“B ¥ A 9 & =

Vertex Shader
Vertex shader code is displayed here.

A

Fragment Shader
Fragment shader code is displayed here.

{Phong shading “[knot ]| Reload Shader Code
Ambient !
reflection 1.0 Amb|enf Light position:
color: -
(ka):
Diffuse §
reflection 1.0 D(I;f(f)lllsf 1 x 1
(kd): :
Specular
reflection 1.0 Speular v 1
Color: -
(ks):
Shininess: 80 Background 7z 4

Color: B

Based on a http://multivis.net/lecture/phong.html | WebGL applet by Prof. Thorsten Thormahlen. Modified by Johannes Kehrer for educational purpose.

Figure 2: Snapshot of the display window.

Note for Windows: The same commands will work for command prompt or PowerShell on Windows
computers. Make sure that you’ve added the python installation folder to the system PATH.

You may edit the shaders by modifying the source code found in the shaders/ directory. After you've
made a change to a shader file, press the Reload Shader Code button to load and run the new code.

Note: You should not modify any of the provided code other than the files in the shaders/ directory.

Turning in your Solution to Parts A and B. Your PDF file for part A and your submission for part
B should go inside the same folder named A2 in a tgz file. All your code should remain in the directory
A2/shaders. Note that this file should not be thought of as a substitute for putting detailed comments in
your code. Your code should be well commented if you want to receive full (or even partial) credit for it.

To pack and submit your solution, execute the following commands from the directory containing your
code (i.e., A2/shaders).

$cd ../../

$ tar cvfz a2-solution.tgz A2

Submit your assignment using the submission script on the course website.



