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Instructions
▪ There will be questions on these slides.  Please have a clean piece of paper 
to write your answers.  Write your name on the top right corner for our 
record.  At the end of lecture, we will collect these pieces of paper for your 
participation grade. Scribes should get ready to scribe.
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Announcements
▪ Scribes please

▪ Write names on white board to remember

▪ Homework 8 Graphs is Due Thur
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Last Time…
▪ Take 5 min to write down a the 
following:

▪ Perform Kruskal’s w/ disjoint sets

▪ If two sets have the same rank, the 
node with the former alphabetical 
character comes first.  A <- B F

E

B

D

CA

2

3

1
4

7

8

10

11

FEB DCA
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Fibonacci
▪ Fibonacci is a recursive equation in the form of:

▪ Fib(n) = Fib(n-1) + Fib(n-2)

Fib(0) = 0

Fib(1) = 1

▪ The code would look something like this:

▪ int Fib(n):

if (n == 0) return 0;

if (n == 1) return 1;

ans = Fib(n-1) + Fib(n-2)

return ans
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Fibonacci Recursive
▪ Fib(5);

Fib(5)

Fib(4)

Fib(3)

Fib(2)

Fib(1) Fib(0)

Fib(1)

Fib(3)

Fib(2)

Fib(1) Fib(0)

Fib(1)Fib(2)

Fib(1) Fib(0)
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Fibonacci Recursive
▪ Fib(5);

▪ There are multiple, 
repeated calculations.

▪ Excessive time to solve 
this.

Fib(5)

Fib(4)

Fib(3)

Fib(2)

Fib(1) Fib(0)

Fib(1)

Fib(3)

Fib(2)

Fib(1) Fib(0)

Fib(1)Fib(2)

Fib(1) Fib(0)

O(2n)
Tighter bound of ~BigTheta(1.6n)
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• What if we saved
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Dynamic Programming
▪ A method of problem solving by breaking down complex problems into 
smaller sub-problems.

▪ Dynamic Programming has two parts:

▪ Optimal Substructure – DP is usually applied to optimization problems: problems 
requiring some minimum or maximum value.  The optimal solution to a problem 
contains the optimal solution to subproblems.

▪ Overlapping Sub-problems – Sub-problems are revisited repeatedly when solving 
the problem.
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Dynamic Programming
▪ There are two types of Dynamic Programming:

▪ Top-down – Solve from the largest problem to smaller problems.  Along the way, if 
a sub-problem has not been solved, then continue solving the sub-problem with 
deeper sub-sub-problems.  Once a sub-problem has been solved, memoize or 
save the value in some table.  When attempting to solve a sub-problem, check to 
see if the solution has been memoized.

▪ Saving the solution to a sub-problem is called memoization.*

▪ Bottom-up – Start with the smaller problems and solve increasingly larger 
problems.  The results of smaller problems are saved in a table to compute a 
larger sub-problem.

*Memoization = taking a memo
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Top-Down Fibonacci
TDFib(n):

memo[0 … n] = -1

memo[0] = 0

memo[1] = 1

return TDFibRecurse(n, memo)

TDFibRecurse(n, memo[]):

if (memo[n] != -1) return memo[n]

nm1 = TDFibRecurse(n-1, memo[])

nm2 = TDFibRecurse(n-2, memo[])

memo[n] = nm1 + nm2

return memo[n]

Trace through the code on paper for TopDownFib(5)
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Top-Down Fibonacci
TDFib(n):

memo[0 … n] = -1

memo[0] = 0

memo[1] = 1

return TDFibRecurse(n, memo)

TDFibRecurse(n, memo[]):

if (memo[n] != -1) return memo[n]

nm1 = TDFibRecurse(n-1, memo[])

nm2 = TDFibRecurse(n-2, memo[])

memo[n] = nm1 + nm2

return memo[n]
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Top-Down Fibonacci
TDFib(n):

memo[0 … n] = -1

memo[0] = 0

memo[1] = 1

return TDFibRecurse(n, memo)

TDFibRecurse(n, memo[]):

if (memo[n] != -1) return memo[n]

nm1 = TDFibRecurse(n-1, memo[])

nm2 = TDFibRecurse(n-2, memo[])

memo[n] = nm1 + nm2

return memo[n]
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Fib(5)

Fib(4)



Top-Down Fibonacci
TDFib(n):

memo[0 … n] = -1

memo[0] = 0

memo[1] = 1

return TDFibRecurse(n, memo)

TDFibRecurse(n, memo[]):

if (memo[n] != -1) return memo[n]

nm1 = TDFibRecurse(n-1, memo[])

nm2 = TDFibRecurse(n-2, memo[])

memo[n] = nm1 + nm2

return memo[n]
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Fib(5)

Fib(4)

Fib(3)



Top-Down Fibonacci
TDFib(n):

memo[0 … n] = -1

memo[0] = 0

memo[1] = 1

return TDFibRecurse(n, memo)

TDFibRecurse(n, memo[]):

if (memo[n] != -1) return memo[n]

nm1 = TDFibRecurse(n-1, memo[])

nm2 = TDFibRecurse(n-2, memo[])

memo[n] = nm1 + nm2

return memo[n]
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Top-Down Fibonacci
TDFib(n):
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return memo[n]
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Top-Down Fibonacci
TDFib(n):

memo[0 … n] = -1

memo[0] = 0

memo[1] = 1

return TDFibRecurse(n, memo)

TDFibRecurse(n, memo[]):
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return memo[n]
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Fib(1) Fib(0)



Top-Down Fibonacci
TDFib(n):

memo[0 … n] = -1

memo[0] = 0

memo[1] = 1

return TDFibRecurse(n, memo)

TDFibRecurse(n, memo[]):

if (memo[n] != -1) return memo[n]

nm1 = TDFibRecurse(n-1, memo[])

nm2 = TDFibRecurse(n-2, memo[])

memo[n] = nm1 + nm2

return memo[n]

Fib(2) is calculated and memoized
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Top-Down Fibonacci
TDFib(n):

memo[0 … n] = -1

memo[0] = 0

memo[1] = 1

return TDFibRecurse(n, memo)

TDFibRecurse(n, memo[]):

if (memo[n] != -1) return memo[n]

nm1 = TDFibRecurse(n-1, memo[])

nm2 = TDFibRecurse(n-2, memo[])

memo[n] = nm1 + nm2

return memo[n]
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Top-Down Fibonacci
TDFib(n):

memo[0 … n] = -1

memo[0] = 0

memo[1] = 1

return TDFibRecurse(n, memo)

TDFibRecurse(n, memo[]):

if (memo[n] != -1) return memo[n]

nm1 = TDFibRecurse(n-1, memo[])

nm2 = TDFibRecurse(n-2, memo[])

memo[n] = nm1 + nm2

return memo[n]

Fib(3) is calculated and memoized.
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Top-Down Fibonacci
TDFib(n):

memo[0 … n] = -1

memo[0] = 0

memo[1] = 1

return TDFibRecurse(n, memo)

TDFibRecurse(n, memo[]):

if (memo[n] != -1) return memo[n]

nm1 = TDFibRecurse(n-1, memo[])

nm2 = TDFibRecurse(n-2, memo[])

memo[n] = nm1 + nm2

return memo[n]
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Top-Down Fibonacci
TDFib(n):

memo[0 … n] = -1

memo[0] = 0

memo[1] = 1

return TDFibRecurse(n, memo)

TDFibRecurse(n, memo[]):

if (memo[n] != -1) return memo[n]

nm1 = TDFibRecurse(n-1, memo[])

nm2 = TDFibRecurse(n-2, memo[])

memo[n] = nm1 + nm2

return memo[n]

Fib(2) was already calculated and 
memoized earlier, so we don’t need to 
recompute Fib(2)
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Fib(4)

Fib(3)

Fib(2)

Fib(1) Fib(0)

Fib(1)

Fib(2)



Top-Down Fibonacci
TDFib(n):

memo[0 … n] = -1

memo[0] = 0

memo[1] = 1

return TDFibRecurse(n, memo)

TDFibRecurse(n, memo[]):

if (memo[n] != -1) return memo[n]

nm1 = TDFibRecurse(n-1, memo[])

nm2 = TDFibRecurse(n-2, memo[])

memo[n] = nm1 + nm2

return memo[n]

Fib(4) is calculated and memoized.
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Top-Down Fibonacci
TDFib(n):

memo[0 … n] = -1

memo[0] = 0

memo[1] = 1

return TDFibRecurse(n, memo)

TDFibRecurse(n, memo[]):

if (memo[n] != -1) return memo[n]

nm1 = TDFibRecurse(n-1, memo[])

nm2 = TDFibRecurse(n-2, memo[])

memo[n] = nm1 + nm2

return memo[n]
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Top-Down Fibonacci
TDFib(n):

memo[0 … n] = -1

memo[0] = 0

memo[1] = 1

return TDFibRecurse(n, memo)

TDFibRecurse(n, memo[]):

if (memo[n] != -1) return memo[n]

nm1 = TDFibRecurse(n-1, memo[])

nm2 = TDFibRecurse(n-2, memo[])

memo[n] = nm1 + nm2

return memo[n]

Fib(3) was already calculated and memoized, 
so we don’t need to re-compute Fib(3).
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Top-Down Fibonacci
TDFib(n):

memo[0 … n] = -1

memo[0] = 0

memo[1] = 1

return TDFibRecurse(n, memo)

TDFibRecurse(n, memo[]):

if (memo[n] != -1) return memo[n]

nm1 = TDFibRecurse(n-1, memo[])

nm2 = TDFibRecurse(n-2, memo[])

memo[n] = nm1 + nm2

return memo[n]
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Top-Down Fibonacci
TDFib(n):

memo[0 … n] = -1

memo[0] = 0

memo[1] = 1

return TDFibRecurse(n, memo)

TDFibRecurse(n, memo[]):

if (memo[n] != -1) return memo[n]

nm1 = TDFibRecurse(n-1, memo[])

nm2 = TDFibRecurse(n-2, memo[])

memo[n] = nm1 + nm2

return memo[n]

We now compute Fib(5).
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Recursive vs. Top-Down Fib
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Fib(1) Fib(0)

Fib(5)
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Fib(3)

Fib(2)

Fib(1) Fib(0)

Fib(1)

Fib(2)
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Bottom-Up Fibonacci
BUFib(n):

if (n == 0) return 0

if (n == 1) return 1

save[0 … n]

save[0] = 0

save[1] = 1

for i = [2 … n]:

save[i] = save[i-1] + save[i-2]

return save[n]

In this approach, we start with the smallest fib numbers first and solve for 
following fib numbers in ascending order.
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i 0 1 2 3 4 5 6 7 8

Fib(i) 0 1 2 3 5 8 13 21 34



Wand Cutting (NOT ON EXAM)
▪ Back in the day, Georgia Tech offered a degree called Wizardy and Magic.  
However, due to budget cuts, the track has been closed and you decide to 
switch to CS.  Along the way, you decide a way to earn some extra cash is to 
sell your wand.

▪ While sitting in CS 1332, you find out your instructor is buying old wands 
either cut up or whole.  He shows you the prices of sections of wand you 
can sell.

▪ Given your wand of length n, what’s the most money you can make from 
cutting up your wand?
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Length (in) 1 2 3 4 5 6 7 8 9 10

Price $ 1 5 8 9 10 17 17 20 24 30



Wand Cutting
▪ Say n = 4, there are multiple ways to cut the wand.

▪ Sell as (4) inch $9

▪ Sell as (2, 2) inch: $5 + $5 = $10

▪ Sell as (1, 1, 2) inch: $1 + $1 + $5 = $7

▪ Since you’re a CS major, you decide to write a program to figure out how 
much you can make.
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Length (in) 1 2 3 4 5 6 7 8 9 10

Price $ 1 5 8 9 10 17 17 20 24 30
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Length (in) 1 2 3 4 5 6 7 8 9 10

Price $ 1 5 8 9 10 17 17 20 24 30

Wand Cutting Options



Wand Cutting Code
▪ We need to explore every combination of cuts to see what’s the best.

WandCut(prices, n):

if (n == 0)

return 0

maxProfit = -1

for i = [1 … n]:

maxProfit = max(maxProfit, prices[i] + WandCut(prices, n–i))

return maxProfit
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Length (in) 1 2 3 4 5 6 7 8 9 10

Price $ 1 5 8 9 10 17 17 20 24 30



Wand Cutting Tree
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Length (in) 1 2 3 4 5 6 7 8 9 10

Price $ 1 5 8 9 10 17 17 20 24 30

Wand-Cut(4)

Wand-Cut(3) Wand-Cut(1) Wand-Cut(0)

Wand-Cut(2) Wand-Cut(1) Wand-Cut(0)

Wand-Cut(1) Wand-Cut(0)

Wand-Cut(0)

Wand-Cut(0)

Wand-Cut(2)

Wand-Cut(1) Wand-Cut(0)

Wand-Cut(0)

Wand-Cut(0)



Wand Cutting Code
▪ We need to explore every combination of cuts to see what’s the best.

WandCut(prices, n):

if (n == 0)

return 0

maxProfit = -1

for i = [1 … n]:

maxProfit = max(maxProfit, prices[i] + WandCut(prices, n–i))

return maxProfit

▪ This algorithm runs in O(2n).  For a wand of length n, you have n-1 possible 
cuts: don’t cut (0) or cut (1).

▪ This is the same as the number of binary combinations of n-1 bits.
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Length (in) 1 2 3 4 5 6 7 8 9 10

Price $ 1 5 8 9 10 17 17 20 24 30



Wand Cutting Tree
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Length (in) 1 2 3 4 5 6 7 8 9 10

Price $ 1 5 8 9 10 17 17 20 24 30

Wand-Cut(4)

Wand-Cut(3) Wand-Cut(1) Wand-Cut(0)

Wand-Cut(2) Wand-Cut(1) Wand-Cut(0)

Wand-Cut(1) Wand-Cut(0)

Wand-Cut(0)

Wand-Cut(0)

Wand-Cut(2)

Wand-Cut(1) Wand-Cut(0)

Wand-Cut(0)

Wand-Cut(0)



Wand Cutting Tree
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Length (in) 1 2 3 4 5 6 7 8 9 10

Price $ 1 5 8 9 10 17 17 20 24 30

Wand-Cut(4)

Wand-Cut(3) Wand-Cut(1) Wand-Cut(0)

Wand-Cut(2) Wand-Cut(1) Wand-Cut(0)

Wand-Cut(1) Wand-Cut(0)

Wand-Cut(0)

Wand-Cut(0)

Wand-Cut(2)

Wand-Cut(1) Wand-Cut(0)

Wand-Cut(0)

Wand-Cut(0)

Multiple calculations of the same input.  
This is redundant calculations.
Why not calculate one input only once?



Dynamic Programming
▪ A method of problem solving by breaking down complex problems into 
smaller sub-problems.

▪ Dynamic Programming has two parts:

▪ Optimal Substructure – DP is usually applied to optimization problems: problems 
requiring some minimum or maximum value.  The optimal solution to a problem 
contains the optimal solution to subproblems.

▪ Overlapping Sub-problems – Sub-problems are revisited repeatedly when solving 
the problem.
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Dynamic Programming
▪ There are two types of Dynamic Programming:

▪ Top-down – Solve from the largest problem to smaller problems.  Along the way, if 
a sub-problem has not been solved, then continue solving the sub-problem with 
deeper sub-sub-problems.  Once a sub-problem has been solved, memoize or 
save the value in some table.  When attempting to solve a sub-problem, check to 
see if the solution has been memoized.

▪ Saving the solution to a sub-problem is called memoization.*

▪ Bottom-up – Start with the smaller problems and solve increasingly larger 
problems.  The results of smaller problems are saved in a table to compute a 
larger sub-problem.

*Memoization = taking a memo
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Top-Down Wand Cutting
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Length (in) 1 2 3 4 5 6 7 8 9 10

Price $ 1 5 8 9 10 17 17 20 24 30

▪ Top-Down wand cutting is very similar to our recursive WandCut(n), except 
whenever we find the value of WandCut(i), where i : [0 … n], we’ll save 
WandCut(i) in a table.

▪ Whenever we encounter WandCut(i) again in our recursion, we can pull the value 
from the table immediately instead of calculating WandCut(i) again.

▪ With this idea, we will calculate WandCut(i) only once.



Top-Down Wand Cutting
WandCut(prices, n):

mem[0 … n] = array  // Array for memoization

for i = [0 … n]:    // Initialize our mem[]

mem[i] = -1

return TDWandCut(prices, n, mem)  // Recursive Call w/ mem

TDWandCut(prices, n, mem[])

if (mem[n] != -1): return mem[n]  // Check for calculated value first

if n == 0:

p = 0

else:

p = -1

for i = [1 … n]:

p = max(p, prices[i] + TDWandCut(prices, n–i, mem))

mem[n] = p    // Save calculated value in array.

return mem[n]
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Length (in) 1 2 3 4 5 6 7 8 9 10

Price $ 1 5 8 9 10 17 17 20 24 30



Top Down Wand Cutting Tree
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Length (in) 1 2 3 4 5 6 7 8 9 10

Price $ 1 5 8 9 10 17 17 20 24 30

Wand-Cut(4)

Wand-Cut(3) Wand-Cut(1) Wand-Cut(0)

Wand-Cut(2) Wand-Cut(1) Wand-Cut(0)

Wand-Cut(1) Wand-Cut(0)

Wand-Cut(0)

Wand-Cut(0)

Wand-Cut(2)

Wand-Cut(1) Wand-Cut(0)

Wand-Cut(0)

Wand-Cut(0)

Because of memoization, we never have to calculate Wand-
Cut(2) again.  Imagine if we called Wand-Cut(10), we’d save a 
lot of time.



Bottom-Up Wand Cutting
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Length (in) 1 2 3 4 5 6 7 8 9 10

Price $ 1 5 8 9 10 17 17 20 24 30

▪ Bottom-Up wand cutting will start with calculating WandCut(0), WandCut(1), 
WandCut(2), and up till WandCut(n).

▪ By starting with 0, 1, 2, 3 … n, WandCut(i), where i : {0 … n}, we have already 
calculated WandCut(i-0), WandCut(i-1), … , WandCut(i-i).



Bottom-Up Wand Cutting
BUWandCut(prices, n):

save[0 … n] = array

save[0] = 0

for j = [1 … n]:

p = -1

for i = [1 … j]:

p = max(p, prices[i] + save[j – i]

save[j] = p

return r[n]
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Length (in) 1 2 3 4 5 6 7 8 9 10

Price $ 1 5 8 9 10 17 17 20 24 30

save[4]

save[3]

save[2]

save[1]

save[0]
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