
Graphs 2
Joonho Kim

Instructions
▪ There will be questions on these slides. Please have a clean piece of paper
to write your answers. Write your name on the top right corner for our
record. At the end of lecture, we will collect these pieces of paper for your
participation grade. Scribes should get ready to scribe.

2

Announcements
▪ 5 scribes please

▪ Write names on white board to remember

▪ Homework 8 Graphs is Due next Thu

3

Last Time…
▪ Take 5 min to write down a the
following:

▪ For the Graph:

▪ Perform Depth First Search

▪ Perform Breadth First Search

▪ If a Vertex has multiple neighbors, add
the Neighbors to your Queue/Stack in
alphabetical order.

B

E

F

C

A

D

Start

Last Time…
▪ Take 5 min to write down a the
following:

▪ For the Graph:

▪ Perform Depth First Search

▪ Perform Breadth First Search

▪ If a Vertex has multiple neighbors, add
the Neighbors to your Queue/Stack in
alphabetical order.

▪ DFS: A, D, F, E, C, B

▪ BFS: A, B, D, C, F, E

B

E

F

C

A

D

Start

Shortest Path
▪ Let’s say I start at A and I want to go
to G. The edge weights represent
walking distance on that edge.

▪ What is the fastest way to get from A
to G? What is the shortest path
from A to G?

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path
▪ Let’s say I start at A and I want to go
to G. The edge weights represent
walking distance on that edge.

▪ What is the fastest way to get from A
to G? What is the shortest path
from A to G?

▪ Performing DFS and BFS will not give
me the shortest path.

▪ These don’t account for edge
weights.

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy
▪ To get from A to G, we’ll have to
travel through other vertices.

▪ Let’s try to find the shortest path
from A to the other vertices as well.
This will help us get to G.

▪ The orange cloud represents the
shortest path from A to any vertex.

▪ From our orange cloud, we will find
all vertices we can reach.

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Vertex Path Dist

A A 0

B INF

C INF

D INF

E INF

F INF

G INF

Shortest Path Strategy

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Vertex Path Dist

A A 0

B INF

C INF

D INF

E INF

F INF

G INF

From A, I can go to:

▪ A in a distance of 0

I will solidify that as the
shortest path from A to A.

Shortest Path Strategy

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Vertex Path Dist

A A 0

B INF

C INF

D INF

E INF

F INF

G INF

From A, I can go to:

▪ B in a distance of 5

▪ C in a distance of 17

Shortest Path Strategy

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Vertex Path Dist

A A 0

B A, B 5

C A, C 17

D INF

E INF

F INF

G INF

From A, I can go to:

▪ B in a distance of 5

▪ C in a distance of 17

Let’s update our distances to
B and C in our table.

Shortest Path Strategy

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Vertex Path Dist

A A 0

B A, B 5

C A, C 17

D INF

E INF

F INF

G INF

From A, I can go to:

▪ B in a distance of 5

▪ C in a distance of 17

Let’s update our distances to
B and C in our table.

Out of the vertices we can
reach, expand to the vertex
with shortest distance. B

Shortest Path Strategy

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Vertex Path Dist

A A 0

B A, B 5

C A, C 17

D INF

E INF

F INF

G INF

From A, I can go to:

▪ B in a distance of 5

▪ C in a distance of 17

Let’s update our distances to
B and C in our table.

Out of the vertices we can
reach, expand to the vertex
with shortest distance. B

Shortest Path Strategy

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Vertex Path Dist

A A 0

B A, B 5

C A, C 17

D INF

E INF

F INF

G INF

We have now solidified the
shortest path from A to B is
[A, B] with a distance of 5.

Shortest Path Strategy

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Vertex Path Dist

A A 0

B A, B 5

C A, C 17

D INF

E INF

F INF

G INF

We have now solidified the
shortest path from A to B is
[A, B] with a distance of 5.

Now that we’ve expanded to
B, we can visit B’s neighbors
{C, D, F}

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Vertex Path Dist

A A 0

B A, B 5

C A, C 17

D INF

E INF

F INF

G INF

From A, I can go to:

▪ C in a distance of 17

▪ C in a distance of 5 + 10

▪ D in a distance of 5 + 19

▪ F in a distance of 5 + 13

The last 3 distances are from
path [A, B].

Shortest Path Strategy

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Vertex Path Dist

A A 0

B A, B 5

C A, C 17

D INF

E INF

F INF

G INF

From A, I can go to:

▪ C in a distance of 17

▪ C in a distance of 5 + 10

▪ D in a distance of 5 + 19

▪ F in a distance of 5 + 13

The last 3 distances are from
path [A, B].

Let’s update our table with
these new distances and
paths.

Shortest Path Strategy

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Vertex Path Dist

A A 0

B A, B 5

C A, C 17

D INF

E INF

F INF

G INF

From A, I can go to:

▪ C in a distance of 17

▪ C in a distance of 5 + 10

▪ D in a distance of 5 + 19

▪ F in a distance of 5 + 13

The last 3 distances are from
path [A, B].

Let’s update our table with
these new distances and
paths.

Shortest Path Strategy

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E INF

F A, B, F 18

G INF

From A, I can go to:

▪ C in a distance of 17

▪ C in a distance of 5 + 10

▪ D in a distance of 5 + 19

▪ F in a distance of 5 + 13

The last 3 distances are from
path [A, B].

Let’s update our table with
these new distances and
paths.

Shortest Path Strategy

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

From A, I can go to:

▪ C in a distance of 17

▪ C in a distance of 5 + 10

▪ D in a distance of 5 + 19

▪ F in a distance of 5 + 13

The last 3 distances are from
path [A, B].

Let’s update our table with
these new distances and
paths.

We’ve found a shorter path to
C through the path to B!

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E INF

F A, B, F 18

G INF

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E INF

F A, B, F 18

G INF

Now out of these paths, let’s
expand our cloud to the
vertex with shortest distance.
C

Shortest Path Strategy

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Now out of these paths, let’s
expand our cloud to the
vertex with shortest distance.
C

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E INF

F A, B, F 18

G INF

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Now out of these paths, let’s
expand our cloud to the
vertex with shortest distance.
C

Now we’ve solidified the
shortest path from A to C as
[A, B, C] with a distance of
15.

We use that path rather than
path [A, C] which is a
distance of 17.

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E INF

F A, B, F 18

G INF

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

So right now our strategy is:

1. Calculate distances to
vertices reachable from
our cloud.

2. Update these potential
shortest paths in our
table.

3. Expand our cloud to the
vertex not in our cloud
with shortest distance.

Anything within the cloud is
the shortest path from A to
that vertex.

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E INF

F A, B, F 18

G INF

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

From A, I can go to:

▪ D in a distance of 5 + 19

▪ F in a distance of 5 + 13

▪ E in a distance of 15 + 6

Let’s update our table with
these new distances and
paths.

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E INF

F A, B, F 18

G INF

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E A, B, C, E 21

F A, B, F 18

G INF

From A, I can go to:

▪ D in a distance of 5 + 19

▪ F in a distance of 5 + 13

▪ E in a distance of 15 + 6

Let’s update our table with
these new distances and
paths.

Shortest Path Strategy

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E A, B, C, E 21

F A, B, F 18

G INF

Now out of these paths, let’s
expand our cloud to the
vertex with shortest distance.
F

Shortest Path Strategy

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E A, B, C, E 21

F A, B, F 18

G INF

Now out of these paths, let’s
expand our cloud to the
vertex with shortest distance.
F

Shortest Path Strategy

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E A, B, C, E 21

F A, B, F 18

G INF

Now out of these paths, let’s
expand our cloud to the
vertex with shortest distance.
F

Now we’ve solidified the
shortest path from A to F as
[A, B, F] with a distance of
18.

Shortest Path Strategy

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

From A, I can go to:

▪ D in a distance of 5 + 19

▪ E in a distance of 15 + 6

▪ D in a distance of 18 + 8

▪ G in a distance of 18 + 21

The last two paths are using
vertex F.

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E A, B, C, E 21

F A, B, F 18

G INF

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

From A, I can go to:

▪ D in a distance of 5 + 19

▪ E in a distance of 15 + 6

▪ D in a distance of 18 + 8

▪ G in a distance of 18 + 21

The last two paths are using
vertex F.

Let’s update our table with
these new distances and
paths.

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E A, B, C, E 21

F A, B, F 18

G INF

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

From A, I can go to:

▪ D in a distance of 5 + 19

▪ E in a distance of 15 + 6

▪ D in a distance of 18 + 8

▪ G in a distance of 18 + 21

The last two paths are using
vertex F.

Let’s update our table with
these new distances and
paths.

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E A, B, C, E 21

F A, B, F 18

G A, B, F, G 39

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

From A, I can go to:

▪ D in a distance of 5 + 19

▪ E in a distance of 15 + 6

▪ D in a distance of 18 + 8

▪ G in a distance of 18 + 21

The last two paths are using
vertex F.

Let’s update our table with
these new distances and
paths.

G is now reachable, but it’s
not guaranteed this current
path [A, B, F, G] is the
shortest.

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E A, B, C, E 21

F A, B, F 18

G A, B, F, G 39

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Now out of these paths, let’s
expand our cloud to the
vertex with shortest distance.
E

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E A, B, C, E 21

F A, B, F 18

G A, B, F, G 39

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Now out of these paths, let’s
expand our cloud to the
vertex with shortest distance.
E

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E A, B, C, E 21

F A, B, F 18

G A, B, F, G 39

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Now out of these paths, let’s
expand our cloud to the
vertex with shortest distance.
E

Now we’ve solidified the
shortest path from A to E as
[A, B, C, E] with a distance of
21.

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E A, B, C, E 21

F A, B, F 18

G A, B, F, G 39

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

From A, I can go to:

▪ D in a distance of 5 + 19

▪ D in a distance of 18 + 8

▪ D in a distance of 21 + 1

▪ G in a distance of 18 + 21

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E A, B, C, E 21

F A, B, F 18

G A, B, F, G 39

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

From A, I can go to:

▪ D in a distance of 5 + 19

▪ D in a distance of 18 + 8

▪ D in a distance of 21 + 1

▪ G in a distance of 18 + 21

We now have 3 possible
paths to D: [A, B, D], [A, B, F,
D], and [A, B, C, E, D]

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E A, B, C, E 21

F A, B, F 18

G A, B, F, G 39

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

From A, I can go to:

▪ D in a distance of 5 + 19

▪ D in a distance of 18 + 8

▪ D in a distance of 21 + 1

▪ G in a distance of 18 + 21

We now have 3 possible
paths to D: [A, B, D], [A, B, F,
D], and [A, B, C, E, D]

Let’s update our table with
these new distances and
paths.

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E A, B, C, E 21

F A, B, F 18

G A, B, F, G 39

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

From A, I can go to:

▪ D in a distance of 5 + 19

▪ D in a distance of 18 + 8

▪ D in a distance of 21 + 1

▪ G in a distance of 18 + 21

We now have 3 possible
paths to D: [A, B, D], [A, B, F,
D], and [A, B, C, E, D]

Let’s update our table with
these new distances and
paths.

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, C, E, D 22

E A, B, C, E 21

F A, B, F 18

G A, B, F, G 39

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Now out of these paths, let’s
expand our cloud to the
vertex with shortest distance.
D

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, C, E, D 22

E A, B, C, E 21

F A, B, F 18

G A, B, F, G 39

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Now out of these paths, let’s
expand our cloud to the
vertex with shortest distance.
D

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, C, E, D 22

E A, B, C, E 21

F A, B, F 18

G A, B, F, G 39

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Now out of these paths, let’s
expand our cloud to the
vertex with shortest distance.
D

Now we’ve solidified the
shortest path from A to D as
[A, B, C, E, D] with a distance
of 22.

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, C, E, D 22

E A, B, C, E 21

F A, B, F 18

G A, B, F, G 39

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

From A, I can go to:

▪ G in a distance of 18 + 21

▪ G in a distance of 22 + 14

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, C, E, D 22

E A, B, C, E 21

F A, B, F 18

G A, B, F, G 39

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

From A, I can go to:

▪ G in a distance of 18 + 21

▪ G in a distance of 22 + 14

Let’s update our table with
these new distances and
paths.

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, C, E, D 22

E A, B, C, E 21

F A, B, F 18

G A, B, F, G 39

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

From A, I can go to:

▪ G in a distance of 18 + 21

▪ G in a distance of 22 + 14

Let’s update our table with
these new distances and
paths.

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, C, E, D 22

E A, B, C, E 21

F A, B, F 18

G A, B, C, E, D, G 36

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

From A, I can go to:

▪ G in a distance of 18 + 21

▪ G in a distance of 22 + 14

Let’s update our table with
these new distances and
paths.

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, C, E, D 22

E A, B, C, E 21

F A, B, F 18

G A, B, C, E, D, G 36

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Now out of these paths, let’s
expand our cloud to the
vertex with shortest distance.
G

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, C, E, D 22

E A, B, C, E 21

F A, B, F 18

G A, B, C, E, D, G 36

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Now out of these paths, let’s
expand our cloud to the
vertex with shortest distance.
G

Now we’ve solidified the
shortest path from A to G as
[A, B, C, E, D, G] with a
distance of 36.

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, C, E, D 22

E A, B, C, E 21

F A, B, F 18

G A, B, C, E, D, G 36

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Observations:

▪ Starting at A, the shortest
paths we solidified were
from vertices immediately
available from the cloud.

▪ The shortest path A to G
involved the shortest path
from A to vertices in
between A and G.

▪ We calculated the shortest
path to these in-between
vertices first.

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, C, E, D 22

E A, B, C, E 21

F A, B, F 18

G A, B, C, E, D, G 36

Dijkstra’s Shortest Path Algorithm
▪ What we did is called Dijkstra’s Shortest Path Algorithm

▪ Dijkstra’s algorithm will calculate the shortest path distnace from a start
vertex to every other vertex in a graph.

▪ In our case, we had a specific goal vertex: G.

▪ Dijkstra’s performs as a greedy algorithm.

▪ Given calculated distances to vertices, we expanded our cloud to the vertex with
shortest distance. We then used these shortest distances to get to our goal.

▪ Graph Assumptions:

▪ Graph is connected.

▪ Edge Weights are non-negative.

Dijkstra’s w/ General Graph Search
GraphSearch(start, goal)

Set visited

Structure s

s.add(start)

while (s not empty)

curr = s.remove()

if (curr is visited)

continue

visited.add(curr)

evaluate(curr) // do something if curr is the goal

for Vertex u in neighbors(curr)

s.add(u)

Dijkstra’s w/ General Graph Search
Dijkstra(start, goal)

Map<Vertex, Integer> paths // Map of Vertex and Distance

initialize(paths) // All V have a distance of INF except start

PriorityQueue s // Stores tuples (Vertex, Distance)

// Removes tuples by smallest distance

s.add((start, 0)) // (Vertex, Distance)

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // do something if curr is the goal

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF) // Checks to see if vertex is visited

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A INF

B INF

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

PQ: (A, 0)

Curr:

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A INF

B INF

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

PQ:

Curr: (A, 0)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A INF

B INF

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

PQ:

Curr: (A, 0)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B INF

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

PQ:

Curr: (A, 0)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B INF

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

PQ:

Curr: (A, 0)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B INF

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

PQ: (B, 5), (C, 17)

Curr: (A, 0)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B INF

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

PQ: (C, 17)

Curr: (B, 5)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

PQ: (C, 17)

Curr: (B, 5)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

PQ: (C, 15) (C, 17), (F, 18), (D, 24)

Curr: (B, 5)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (C, 15)

PQ: (C, 17), (F, 18), (D, 24)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (C, 15)

PQ: (C, 17), (F, 18), (D, 24)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (C, 15)

PQ: (C, 17), (F, 18), (E, 21), (D, 24)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (C, 17)

PQ: (F, 18), (E, 21), (D, 24)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (C, 17)

PQ: (F, 18), (E, 21), (D, 24)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (F, 18)

PQ: (E, 21), (D, 24)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E INF

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (F, 18)

PQ: (E, 21), (D, 24)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E INF

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (F, 18)

PQ: (E, 21), (D, 24), (D, 26), (G, 39)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E INF

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (E, 21)

PQ: (D, 24), (D, 26), (G, 39)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (E, 21)

PQ: (D, 24), (D, 26), (G, 39)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (E, 21)

PQ: (D, 22), (D, 24), (D, 26), (G, 39)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (D, 22)

PQ: (D, 24), (D, 26), (G, 39)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D 22

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (D, 22)

PQ: (D, 24), (D, 26), (G, 39)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D 22

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (D, 22)

PQ: (D, 24), (D, 26), (G, 36), (G, 39)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D 22

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (D, 24)

PQ: (D, 26), (G, 36), (G, 39)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D 22

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (D, 24)

PQ: (D, 26), (G, 36), (G, 39)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D 22

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (D, 26)

PQ: (G, 36), (G, 39)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D 22

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (D, 26)

PQ: (G, 36), (G, 39)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D 22

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (G, 36)

PQ: (G, 39)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D 22

E 21

F 18

G 36

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (G, 36)

PQ: (G, 39)

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D 22

E 21

F 18

G 36

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr) // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))

Dijkstra’s and Negative Edge Weights
▪ Dijkstra’s is a greedy algorithm. When it
calculates a new distance to a vertex,
Dijkstra’s assumes that distance is the shortest
distance to that vertex.

▪ When we introduce negative edge weights, this
greedy heuristic does not hold. An encounter
with a negative edge weight can provide us a
shorter distance to a vertex than previously
calculated. However, Dijkstra does not revisit
these calculated distances.

▪ In this graph, Dijkstra would calculate the
shortest distance to C as 3. Running more
iterations will reveal that the shortest distance
is actually 1, but Dijkstra will keep C : 3.

A

B C

35

-4

Dijkstra Analysis
▪ Dijkstra runs in O((|V| + |E|) log(|V|)). If we use a min-heap for our
priority queue, calling PQ.remove_min() will yield O(log(|V|)).

▪ If we visit each vertex and edge at most once, we will call PQ.remove_min() O(|V|
+ |E|) times

Practice
▪ For the graph:

▪ Find the shortest path from A to all vertices A

B

C

D

E

2

1

7

3

1

3

Vertex Dist

A INF

B INF

C INF

D INF

E INF

Practice
▪ For the graph:

▪ Find the shortest path from A to all vertices A

B

C

D

E

2

1

7

3

1

3

Vertex Dist

A 0

B 3

C 2

D 3

E 6

Connecting the Campus
▪ Our campus to the right has the
following buildings and sidewalks.

▪ Let’s say Bud Peterson implemented
budget cuts to side walks, so we
need to pick sidewalks to keep.

▪ We want the least set of sidewalks
that will still connect the campus.

▪ Every building has a path to every
other building.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Connecting the Campus
▪ Our campus to the right has the
following buildings and sidewalks.

▪ Let’s say Bud Peterson implemented
budget cuts to side walks, so we
need to pick sidewalks to keep.

▪ We want the least set of sidewalks
that will still connect the campus.

▪ Every building has a path to every
other building.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Connecting the Campus
▪ Our campus to the right has the
following buildings and sidewalks.

▪ Let’s say Bud Peterson implemented
budget cuts to side walks, so we
need to pick sidewalks to keep.

▪ We want the least set of sidewalks
that will still connect the campus.

▪ Every building has a path to every
other building.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Spanning Tree
▪ In an undirected graph, a spanning
tree is the set of edges that connect
every vertex with the least number of
edges.

▪ There for, the number of edges in a
spanning tree is equal to |V|-1.

▪ Spanning tree’s cannot have cycles.

▪ If there exists a cycle in a spanning
tree, then we can remove one edge in
the cycle and still maintain
connectivity.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Connecting the Campus (minimum)
▪ In this campus there are multiple
spanning trees, but with budget cuts,
we want to keep sidewalks with the
least amount of distance.

▪ (distance = $$)

▪ In this graph, what is the spanning
tree of sidewalks with the least
cost?

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Connecting the Campus (minimum)
▪ In this campus there are multiple
spanning trees, but with budget cuts,
we want to keep sidewalks with the
least amount of distance.

▪ (distance = $$)

▪ In this graph, what is the spanning
tree of sidewalks with the least
cost?

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Minimum Spanning Tree
▪ The Minimum spanning tree of a
graph is a spanning tree of a
weighted graph with minimum total
edge weight.

▪ This MST has a edge weight of 42.

▪ MST’s are useful for:

▪ Transportation networks (subways)

▪ Network Cabling

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Minimum Spanning Tree
▪ The Minimum spanning tree of a
graph is a spanning tree of a
weighted graph with minimum total
edge weight.

▪ This MST has a edge weight of 42.

▪ MST’s are useful for:

▪ Transportation networks (subways)

▪ Network Cabling

▪ How did you find the MST of this
graph?

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm
▪ Finds the MST of a weighted graph.

▪ To Perform by hand and diagram

1. Start with the smallest edge and
add it to your spanning tree.

2. If the edge creates a cycle within
your spanning tree, skip it.

3. Repeat this until all of your vertices
are connected.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Example

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Example

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Example

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Example

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Example

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Example

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Example

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Example

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Example

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Example

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Example

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Example

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Example

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Example

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Example

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Example

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Implementation
1. To Perform Algorithmically:

1. Add all your edges into a Priority
Queue.

2. Pull our edges 1 by 1 and add them
to your spanning tree.

3. Stop when all vertices are included
in your spanning tree.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Implementation
1. To Perform Algorithmically:

1. Add all your edges into a Priority
Queue.

2. Pull our edges 1 by 1 and add them
to your spanning tree.

3. Stop when all vertices are included
in your spanning tree.

▪ When should you add an edge to
your spanning tree?

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Vertex Sets
▪ When we add edge 1 and 4, we
end up with two separate set of
vertices.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Vertex Sets
▪ When we add edge 1 and 4, we
end up with two separate set of
vertices.

▪ In fact, every vertex is in it’s own
set of vertices.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Vertex Sets
▪ When we add edge 1 and 4, we
end up with two separate set of
vertices.

▪ In fact, every vertex is in it’s own
set of vertices.

▪ If we add edge 5, we connect two
separate sets of vertices.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Vertex Sets
▪ When we add edge 1 and 4, we
end up with two separate set of
vertices.

▪ In fact, every vertex is in it’s own
set of vertices.

▪ If we add edge 5, we connect two
separate sets of vertices.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Vertex Sets
▪ When we add edge 1 and 4, we
end up with two separate set of
vertices.

▪ In fact, every vertex is in it’s own
set of vertices.

▪ If we add edge 5, we connect two
separate sets of vertices.

▪ Adding edge 6 also connects two
separate sets of vertices.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Vertex Sets
▪ When we add edge 1 and 4, we
end up with two separate set of
vertices.

▪ In fact, every vertex is in it’s own
set of vertices.

▪ If we add edge 5, we connect two
separate sets of vertices.

▪ Adding edge 6 also connects two
separate sets of vertices.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Vertex Sets
▪ When we try to add edge 7, we
attempt to connect two vertices
from the same set together.

▪ we end up with a cycle.

▪ This prevents us from adding edge
7.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Kruskal’s Algorithm Vertex Sets
▪ When we try to add edge 7, we
attempt to connect two vertices
from the same set together.

▪ we end up with a cycle.

▪ This prevents us from adding edge 7.

▪ We’ll use the rule:

▪ For a candidate edge to add to our
spanning tree, if the vertices u, v from
(u, v) are part of the same set of
vertices, do not add the edge.

▪ To organize these sets of vertices,
we’ll use a new data structure.

▪ Disjoint Set Data Structure

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Disjoint Set Data Structure (Union-Find)
▪ Disjoint-Set maintains a set of subsets. The main purpose is to merge
subsets together (Union) and see if elements are in the same subset (Find).

▪ Union(A, B) – Find the two subsets elements A and B are in and merge together.

▪ Find(A) – Finds the subset A is in.

▪ In our case with Kruskal’s, we’ll maintain a set vertices. Initially each vertex
will be in its own subset.

▪ When Kruskal’s attempts to add edge (u, v) to the spanning tree, we see if Find(u)
and Find(v) are the same subset.

▪ If the subsets are not the same, then we add edge (u, v) to our spanning tree and
Union(u, v).

▪ Else, we ignore edge (u, v).

Disjoint Set Subset Representation
▪ Subsets are represented as Trees.

▪ Node {

Data data

Node parent

int rank = 0

}

▪ Data is data in the subset

▪ Parent pointer points to a parent
node. Root nodes point to
themselves.

▪ Rank is similar to height. A root
node of higher rank has more nodes
in the tree. The rank of a node can
change.

CRC SC CULC TTCOC KLAUS T2

0 00 0 0 0 0

Disjoint Set Subset Representation
▪ Find(A): finds the root of the tree A
is in recursively and returns the
root.

▪ Path Compression - All nodes from
A to root have their parent pointers
point to the root.

▪ This optimizes Find() operations for
later uses.

▪ Union(A, B): find the root of trees A
and B are part of and have one root
point to the other.

▪ Union by rank - the root of lower rank
points to the root of higher rank. If
both are the same, arbitrarily point
one to the other and increase the
rank of the new root.

CRC SC CULC TTCOC KLAUS T2

0 00 0 0 0 0

Disjoint Set Analysis
▪ With both path compression and union by rank, each operation has an
amortized running time of O(α(n)).

▪ α(n) is the inverse Ackermann Function. This is an extremely slowly growing
function. Practically α(n) <= 4. You can treat this as O(1).

▪ Formal Proof: CLRS 21.4

Kruskal’s + Disjoint Set

CRC SC CULC TTCOC KLAUS T2

0 00 0 0 0 0

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

Kruskal’s + Disjoint Set

Try adding (COC, KLAUS) to our spanning
tree.

CRC SC CULC TTCOC KLAUS T2

0 00 0 0 0 0

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

Kruskal’s + Disjoint Set

Try adding (COC, KLAUS) to our spanning
tree.

Find(COC) != Find(KLAUS). COC and
KLAUS are in separate subsets.

CRC SC CULC TTCOC KLAUS T2

0 00 0 0 0 0

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

Kruskal’s + Disjoint Set

Try adding (COC, KLAUS) to our spanning
tree.

Find(COC) != Find(KLAUS). COC and
KLAUS are in separate subsets.

We can add (COC, KLAUS) to our spanning
tree. We also call Union(COC, KLAUS).

CRC SC CULC TTCOC KLAUS T2

0 01 0 0 0 0

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

Kruskal’s + Disjoint Set

Try adding (COC, KLAUS) to our spanning
tree.

Find(COC) != Find(KLAUS). COC and
KLAUS are in separate subsets.

We can add (COC, KLAUS) to our spanning
tree. We also call Union(COC, KLAUS).

CRC SC CULC TTCOC

KLAUS

T2

0 01

0

0 0 0

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

Kruskal’s + Disjoint Set

Same for (CULC, TT).

CRC SC CULC

TT

COC

KLAUS

T2

0 01

0

0 1

0

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

Kruskal’s + Disjoint Set

Now let’s check (KLAUS, CULC).

Find(KLAUS) = COC.
Find(CULC) = CULC.
Not the same root, so this edge is okay.

CRC SC CULC

TT

COC

KLAUS

T2

0 01

0

0 1

0

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

Kruskal’s + Disjoint Set

Now let’s check (KLAUS, CULC).

Find(KLAUS) = COC.
Find(CULC) = CULC.
Not the same root, so this edge is okay.

Add (KLAUS, CULC) to our spanning tree.

CRC SC CULC

TT

COC

KLAUS

T2

0 01

0

0 1

0

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

Kruskal’s + Disjoint Set

Now let’s check (KLAUS, CULC).

Find(KLAUS) = COC.
Find(CULC) = CULC.
Not the same root, so this edge is okay.

Add (KLAUS, CULC) to our spanning tree.

Union(KLAUS, CULC) will have one root point
to the other.

CRC SC CULC

TT

COC

KLAUS

T2

0 02

0

0 1

0

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

Kruskal’s + Disjoint Set

Now let’s check (KLAUS, CULC).

Find(KLAUS) = COC.
Find(CULC) = CULC.
Not the same root, so this edge is okay.

Add (KLAUS, CULC) to our spanning tree.

Union(KLAUS, CULC) will have one root point
to the other.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

CRC SC

CULC

TT

COC

KLAUS

T2

0 0 2

0

0

1

0

Kruskal’s + Disjoint Set

(COC, SC) is okay.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

CRC

SC CULC

TT

COC

KLAUS

T2

0 0 2

00 1

0

Kruskal’s + Disjoint Set

Now for (COC, CULC)…

Find(COC) = COC
Find(CULC) = COC

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

CRC

SC CULC

TT

COC

KLAUS

T2

0 0 2

00 1

0

Kruskal’s + Disjoint Set

Now for (COC, CULC)…

Find(COC) = COC
Find(CULC) = COC

Since the roots are the same (COC), we
ignore this edge.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

CRC

SC CULC

TT

COC

KLAUS

T2

0 0 2

00 1

0

Kruskal’s + Disjoint Set

We ignore (SC , CULC) as well.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

CRC

SC CULC

TT

COC

KLAUS

T2

0 0 2

00 1

0

Kruskal’s + Disjoint Set

When we check (SC, TT)

Find(SC) = COC

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

CRC

SC CULC

TT

COC

KLAUS

T2

0 0 2

00 1

0

Kruskal’s + Disjoint Set

When we check (SC, TT)

Find(SC) = COC
Find(TT) = COC

TT’s parent will now be COC. This is
due to Path Compression.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

CRC

SC CULC

TT

COC

KLAUS

T2

0 0 2

00 1

0

Kruskal’s + Disjoint Set

When we check (SC, TT)

Find(SC) = COC
Find(TT) = COC

TT’s parent will now be COC. This is
due to Path Compression.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

CRC

SC CULCTT

COC

KLAUS

T2

0 0 2

00 10

Kruskal’s + Disjoint Set

When we check (SC, TT)

Find(SC) = COC
Find(TT) = COC

TT’s parent will now be COC. This is
due to Path Compression.

We ignore (SC, TT).

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

CRC

SC CULCTT

COC

KLAUS

T2

0 0 2

00 10

Kruskal’s + Disjoint Set

(CRC, COC) will be added to our spanning
tree.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

CRC SC CULCTT

COC

KLAUS

T2

0

0 2

00 10

Kruskal’s + Disjoint Set

(CRC, SC) is ignored.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

CRC SC CULCTT

COC

KLAUS

T2

0

0 2

00 10

Kruskal’s + Disjoint Set

(KLAUS, T2) is okay.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

CRC SC CULCTT

COC

KLAUST2

00

2

00 10

Kruskal’s + Disjoint Set

(CULC, T2) is ignored.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

CRC SC CULCTT

COC

KLAUST2

00

2

00 10

Kruskal’s + Disjoint Set

(CULC, T2) is ignored.

We’ll continue this until our spanning tree
is |V| - 1 edges or until we exhaust all our
edges.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6
5

7

15

21

CRC SC CULCTT

COC

KLAUST2

00

2

00 10

Kruskal’s Analysis
▪ Kruskal’s Algorithm is O(|E| log |V|).

▪ Having a Priority Queue of |E| edges is O(E log E)

▪ You could also presort the list of edges in O(E log E).

▪ For every edge, we perform Union() and Find(), and since these operations are
O(α(V)), we have O(Eα(V)).

▪ α(n) = O(log V) = O(log E), so we end up with O(E log E).

▪ So adding the priority queue operations and Disjoint Set operations, we have
O(2ElogE) = O(ElogE).

▪ Because |E| < |V2|, we can change O(E log E) to O(E log V).

Prim’s Algorithm
▪ Prim’s is another MST finding algorithm.

▪ The behavior is similar to Dijkstra’s Algorithm except the priority queue will
hold edges instead of (Vertex, distance) tuples.

▪ Prim’s begins with a starting vertex, and we branch to neighboring vertices
over smallest edge weight. The edges we traverse over are part of our
spanning tree.

Prim’s Algorithm
Prims(G, start):

visited = {start}

spanning_tree = {}

PriorityQueue PQ = {start.edges}

loop while PQ isn’t empty:

currEdge = PQ.extract_min() // (u, v) = (currVertex, destination)

if visited contains edge.u and edge.v:

continue

spanning_tree.add(currEdge)

for edge e of currEdge.v.edges: // for all of v’s edges,

if visited doesn’t contain e.v:

PQ.add(e)

return spanning_tree

Prim’s Examplme

▪ We call Prims(Graph, TT), so we start
at TT. Visited vertices are in the
orange cloud. CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Prim’s Examplme

▪ We call Prims(Graph, TT), so we start
at TT. Visited vertices are in the
orange cloud.

▪ We then look at all edges connected
to TT and attempt to traverse the
smallest edge.

▪ In this case we have edge 10 and 4.
We will attempt to traverse edge 4.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Prim’s Examplme

▪ We call Prims(Graph, TT), so we start
at TT. Visited vertices are in the
orange cloud.

▪ We then look at all edges connected
to TT and attempt to traverse the
smallest edge.

▪ In this case we have edge 10 and 4.
We will attempt to traverse edge 4.

▪ We have not visited CULC, so we
include edge 4 into our spanning
tree.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Prim’s Examplme

▪ We call Prims(Graph, TT), so we start
at TT. Visited vertices are in the
orange cloud.

▪ We then look at all edges connected
to TT and attempt to traverse the
smallest edge.

▪ In this case we have edge 10 and 4.
We will attempt to traverse edge 4.

▪ We have not visited CULC, so we
include edge 4 into our spanning
tree.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Prim’s Examplme

▪ Now we look at all edges connected
to our cloud and attempt to traverse
the smallest edge.

▪ This is edge 5.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Prim’s Examplme

▪ Now we look at all edges connected
to our cloud and attempt to traverse
the smallest edge.

▪ This is edge 5.

▪ KLAUS has not been visited yet, so
we can include edge 5 in our
spanning tree.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Prim’s Examplme

▪ Now we look at all edges connected
to our cloud and attempt to traverse
the smallest edge.

▪ This is edge 1.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Prim’s Examplme

▪ Now we look at all edges connected
to our cloud and attempt to traverse
the smallest edge.

▪ This is edge 1.

▪ COC has not been visited yet, so we
include edge 1 in our spanning tree.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Prim’s Examplme

▪ Now we look at all edges connected
to our cloud and attempt to traverse
the smallest edge.

▪ This is edge 6.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Prim’s Examplme

▪ Now we look at all edges connected
to our cloud and attempt to traverse
the smallest edge.

▪ This is edge 6.

▪ SC has not been visited yet, so we
can include edge 6 in our spanning
tree.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Prim’s Examplme

▪ Now we look at all edges connected
to our cloud and attempt to traverse
the smallest edge.

▪ This is edge 7.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Prim’s Examplme

▪ Now we look at all edges connected
to our cloud and attempt to traverse
the smallest edge.

▪ This is edge 7.

▪ However, both vertices in edge 7
have already been visited, so we
ignore this edge.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Prim’s Examplme

▪ Now we look at all edges connected
to our cloud and attempt to traverse
the smallest edge.

▪ This is edge 7.

▪ However, both vertices in edge 7
have already been visited, so we
ignore this edge.

▪ The same goes for edge 8, and edge
10.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Prim’s Examplme

▪ Now we look at all edges connected
to our cloud and attempt to traverse
the smallest edge.

▪ This is edge 11.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Prim’s Examplme

▪ Now we look at all edges connected
to our cloud and attempt to traverse
the smallest edge.

▪ This is edge 11.

▪ CRC has not been visited yet, so we
can include edge 11 in our spanning
tree.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Prim’s Examplme

▪ We skip edge 13.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Prim’s Examplme

▪ We skip edge 13.

▪ And we add edge 15. CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Prim’s Examplme

▪ We skip edge 13.

▪ And we add edge 15.

▪ We can end once all our vertices
have been visited, or when all edges
have been looked over.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Prim’s Examplme

▪ We skip edge 13.

▪ And we add edge 15.

▪ We can end once all our vertices
have been visited, or when all edges
have been looked over.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21

Prim’s Analysis
▪ Prim’s runs in O(E log V).

▪ The main loop runs in O(E) because our priority queue will include all edges.

▪ extract_min() runs in O(log E), so we run O(E log E) extract_mins()’s.

▪ The inner loop over all neighbors of a vertex runs in total 2|E| times. Our
adjacency list will have each edge twice (u, v) and (v, u).

▪ The inner loop will add a total of |E| edges into our priority queue, so this is O(E log E).

▪ Assuming the graph is connected, E < V2, so |E|log|E| = O(E log V)

TODO
▪ On your paper to turn in

▪ What was something important that you learned

▪ What do you have a question about?

▪ Also feedback form

▪ Don’t write your name on it.

