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Instructions
▪ There will be questions on these slides.  Please have a clean piece of paper 
to write your answers.  Write your name on the top right corner for our 
record.  At the end of lecture, we will collect these pieces of paper for your 
participation grade. Scribes should get ready to scribe.
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Announcements
▪ 5 scribes please

▪ Write names on white board to remember

▪ Homework 8 Graphs is Due next Thu
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Last Time…
▪ Take 5 min to write down a the 
following:

▪ For the Graph:

▪ Perform Depth First Search 

▪ Perform Breadth First Search

▪ If a Vertex has multiple neighbors, add 
the Neighbors to your Queue/Stack in 
alphabetical order.
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Last Time…
▪ Take 5 min to write down a the 
following:

▪ For the Graph:

▪ Perform Depth First Search 

▪ Perform Breadth First Search

▪ If a Vertex has multiple neighbors, add 
the Neighbors to your Queue/Stack in 
alphabetical order.

▪ DFS: A, D, F, E, C, B

▪ BFS: A, B, D, C, F, E
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Shortest Path 
▪ Let’s say I start at A and I want to go 
to G.  The edge weights represent 
walking distance on that edge.

▪ What is the fastest way to get from A 
to G?  What is the shortest path 
from A to G?
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Shortest Path 
▪ Let’s say I start at A and I want to go 
to G.  The edge weights represent 
walking distance on that edge.

▪ What is the fastest way to get from A 
to G?  What is the shortest path 
from A to G?

▪ Performing DFS and BFS will not give 
me the shortest path.

▪ These don’t account for edge 
weights.
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Shortest Path Strategy
▪ To get from A to G, we’ll have to 
travel through other vertices.

▪ Let’s try to find the shortest path 
from A to the other vertices as well.  
This will help us get to G.

▪ The orange cloud represents the 
shortest path from A to any vertex.

▪ From our orange cloud, we will find 
all vertices we can reach.
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Shortest Path Strategy
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Shortest Path Strategy
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Vertex Path Dist

A A 0
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D INF
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From A, I can go to: 

▪ A in a distance of 0

I will solidify that as the 
shortest path from A to A.



Shortest Path Strategy
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From A, I can go to:

▪ B in a distance of 5

▪ C in a distance of 17



Shortest Path Strategy
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B A, B 5

C A, C 17

D INF

E INF

F INF

G INF

From A, I can go to:

▪ B in a distance of 5

▪ C in a distance of 17

Let’s update our distances to 
B and C in our table.



Shortest Path Strategy
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Vertex Path Dist

A A 0

B A, B 5
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From A, I can go to:

▪ B in a distance of 5

▪ C in a distance of 17

Let’s update our distances to 
B and C in our table.

Out of the vertices we can 
reach, expand to the vertex 
with shortest distance. B



Shortest Path Strategy
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Vertex Path Dist

A A 0

B A, B 5

C A, C 17
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From A, I can go to:

▪ B in a distance of 5

▪ C in a distance of 17

Let’s update our distances to 
B and C in our table.

Out of the vertices we can 
reach, expand to the vertex 
with shortest distance. B



Shortest Path Strategy

G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Vertex Path Dist

A A 0

B A, B 5

C A, C 17
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We have now solidified the 
shortest path from A to B is 
[A, B] with a distance of 5.



Shortest Path Strategy
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A A 0

B A, B 5

C A, C 17

D INF

E INF

F INF

G INF

We have now solidified the 
shortest path from A to B is 
[A, B] with a distance of 5.

Now that we’ve expanded to 
B, we can visit B’s neighbors 
{C, D, F}
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A A 0

B A, B 5

C A, C 17

D INF
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G INF

From A, I can go to:

▪ C in a distance of 17

▪ C in a distance of 5 + 10

▪ D in a distance of 5 + 19

▪ F in a distance of 5 + 13

The last 3 distances are from 
path [A, B].
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From A, I can go to:

▪ C in a distance of 17

▪ C in a distance of 5 + 10

▪ D in a distance of 5 + 19

▪ F in a distance of 5 + 13

The last 3 distances are from 
path [A, B].

Let’s update our table with 
these new distances and 
paths.
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Vertex Path Dist

A A 0
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From A, I can go to:

▪ C in a distance of 17

▪ C in a distance of 5 + 10

▪ D in a distance of 5 + 19

▪ F in a distance of 5 + 13

The last 3 distances are from 
path [A, B].

Let’s update our table with 
these new distances and 
paths.
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B A, B 5

C A, B, C 15

D A, B, D 24
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F A, B, F 18

G INF

From A, I can go to:

▪ C in a distance of 17

▪ C in a distance of 5 + 10

▪ D in a distance of 5 + 19

▪ F in a distance of 5 + 13

The last 3 distances are from 
path [A, B].

Let’s update our table with 
these new distances and 
paths.
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From A, I can go to:

▪ C in a distance of 17

▪ C in a distance of 5 + 10

▪ D in a distance of 5 + 19

▪ F in a distance of 5 + 13

The last 3 distances are from 
path [A, B].

Let’s update our table with 
these new distances and 
paths.

We’ve found a shorter path to 
C through the path to B!

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15
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Now out of these paths, let’s 
expand our cloud to the 
vertex with shortest distance. 
C
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Now out of these paths, let’s 
expand our cloud to the 
vertex with shortest distance. 
C

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24
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Now out of these paths, let’s 
expand our cloud to the 
vertex with shortest distance. 
C

Now we’ve solidified the 
shortest path from A to C as 
[A, B, C] with a distance of 
15.

We use that path rather than 
path [A, C] which is a 
distance of 17.
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So right now our strategy is:

1. Calculate distances to 
vertices reachable from 
our cloud.

2. Update these potential 
shortest paths in our 
table.

3. Expand our cloud to the 
vertex not in our cloud 
with shortest distance.

Anything within the cloud is 
the shortest path from A to 
that vertex.

Shortest Path Strategy

Vertex Path Dist
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From A, I can go to:

▪ D in a distance of 5 + 19

▪ F in a distance of 5 + 13

▪ E in a distance of 15 + 6

Let’s update our table with 
these new distances and 
paths.

Shortest Path Strategy

Vertex Path Dist
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From A, I can go to:

▪ D in a distance of 5 + 19

▪ F in a distance of 5 + 13

▪ E in a distance of 15 + 6

Let’s update our table with 
these new distances and 
paths.
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Now out of these paths, let’s 
expand our cloud to the 
vertex with shortest distance. 
F

Shortest Path Strategy



G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E A, B, C, E 21

F A, B, F 18

G INF

Now out of these paths, let’s 
expand our cloud to the 
vertex with shortest distance. 
F
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Now out of these paths, let’s 
expand our cloud to the 
vertex with shortest distance. 
F

Now we’ve solidified the 
shortest path from A to F as 
[A, B, F] with a distance of 
18.

Shortest Path Strategy



G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

From A, I can go to:

▪ D in a distance of 5 + 19

▪ E in a distance of 15 + 6

▪ D in a distance of 18 + 8

▪ G in a distance of 18 + 21

The last two paths are using 
vertex F.

Shortest Path Strategy

Vertex Path Dist

A A 0
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From A, I can go to:

▪ D in a distance of 5 + 19

▪ E in a distance of 15 + 6

▪ D in a distance of 18 + 8

▪ G in a distance of 18 + 21

The last two paths are using 
vertex F.

Let’s update our table with 
these new distances and 
paths.
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Vertex Path Dist
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From A, I can go to:

▪ D in a distance of 5 + 19

▪ E in a distance of 15 + 6

▪ D in a distance of 18 + 8

▪ G in a distance of 18 + 21

The last two paths are using 
vertex F.

Let’s update our table with 
these new distances and 
paths.

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, D 24

E A, B, C, E 21

F A, B, F 18

G A, B, F, G 39



G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

From A, I can go to:

▪ D in a distance of 5 + 19

▪ E in a distance of 15 + 6

▪ D in a distance of 18 + 8

▪ G in a distance of 18 + 21

The last two paths are using 
vertex F.

Let’s update our table with 
these new distances and 
paths.

G is now reachable, but it’s 
not guaranteed this current 
path [A, B, F, G] is the 
shortest.
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Now out of these paths, let’s 
expand our cloud to the 
vertex with shortest distance. 
E
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Now out of these paths, let’s 
expand our cloud to the 
vertex with shortest distance. 
E
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Now out of these paths, let’s 
expand our cloud to the 
vertex with shortest distance. 
E

Now we’ve solidified the 
shortest path from A to E as 
[A, B, C, E] with a distance of 
21.
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From A, I can go to:

▪ D in a distance of 5 + 19

▪ D in a distance of 18 + 8

▪ D in a distance of 21 + 1

▪ G in a distance of 18 + 21
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From A, I can go to:

▪ D in a distance of 5 + 19

▪ D in a distance of 18 + 8

▪ D in a distance of 21 + 1

▪ G in a distance of 18 + 21

We now have 3 possible 
paths to D: [A, B, D], [A, B, F, 
D], and [A, B, C, E, D]
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From A, I can go to:

▪ D in a distance of 5 + 19

▪ D in a distance of 18 + 8

▪ D in a distance of 21 + 1

▪ G in a distance of 18 + 21

We now have 3 possible 
paths to D: [A, B, D], [A, B, F, 
D], and [A, B, C, E, D]

Let’s update our table with 
these new distances and 
paths.
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From A, I can go to:

▪ D in a distance of 5 + 19

▪ D in a distance of 18 + 8

▪ D in a distance of 21 + 1

▪ G in a distance of 18 + 21

We now have 3 possible 
paths to D: [A, B, D], [A, B, F, 
D], and [A, B, C, E, D]

Let’s update our table with 
these new distances and 
paths.
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Now out of these paths, let’s 
expand our cloud to the 
vertex with shortest distance. 
D
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Now out of these paths, let’s 
expand our cloud to the 
vertex with shortest distance. 
D
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Now out of these paths, let’s 
expand our cloud to the 
vertex with shortest distance. 
D

Now we’ve solidified the 
shortest path from A to D as 
[A, B, C, E, D] with a distance 
of 22.
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From A, I can go to:

▪ G in a distance of 18 + 21

▪ G in a distance of 22 + 14
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From A, I can go to:

▪ G in a distance of 18 + 21

▪ G in a distance of 22 + 14

Let’s update our table with 
these new distances and 
paths.
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From A, I can go to:

▪ G in a distance of 18 + 21

▪ G in a distance of 22 + 14

Let’s update our table with 
these new distances and 
paths.
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D A, B, C, E, D 22

E A, B, C, E 21

F A, B, F 18

G A, B, C, E, D, G 36
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From A, I can go to:

▪ G in a distance of 18 + 21

▪ G in a distance of 22 + 14

Let’s update our table with 
these new distances and 
paths.
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Now out of these paths, let’s 
expand our cloud to the 
vertex with shortest distance. 
G
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Now out of these paths, let’s 
expand our cloud to the 
vertex with shortest distance. 
G

Now we’ve solidified the 
shortest path from A to G as 
[A, B, C, E, D, G] with a 
distance of 36.
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B A, B 5

C A, B, C 15

D A, B, C, E, D 22

E A, B, C, E 21

F A, B, F 18

G A, B, C, E, D, G 36
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Observations:

▪ Starting at A, the shortest 
paths we solidified were 
from vertices immediately 
available from the cloud.

▪ The shortest path A to G 
involved the shortest path 
from A to vertices in 
between A and G.

▪ We calculated the shortest 
path to these in-between 
vertices first.

Shortest Path Strategy

Vertex Path Dist

A A 0

B A, B 5

C A, B, C 15

D A, B, C, E, D 22

E A, B, C, E 21

F A, B, F 18

G A, B, C, E, D, G 36



Dijkstra’s Shortest Path Algorithm
▪ What we did is called Dijkstra’s Shortest Path Algorithm

▪ Dijkstra’s algorithm will calculate the shortest path distnace from a start 
vertex to every other vertex in a graph.

▪ In our case, we had a specific goal vertex: G.

▪ Dijkstra’s performs as a greedy algorithm.

▪ Given calculated distances to vertices, we expanded our cloud to the vertex with 
shortest distance.  We then used these shortest distances to get to our goal.

▪ Graph Assumptions:

▪ Graph is connected.

▪ Edge Weights are non-negative.



Dijkstra’s w/ General Graph Search
GraphSearch(start, goal)

Set visited

Structure s

s.add(start)

while (s not empty)

curr = s.remove()

if (curr is visited)

continue

visited.add(curr)

evaluate(curr) // do something if curr is the goal

for Vertex u in neighbors(curr)

s.add(u)



Dijkstra’s w/ General Graph Search
Dijkstra(start, goal)

Map<Vertex, Integer> paths  // Map of Vertex and Distance

initialize(paths)  // All V have a distance of INF except start

PriorityQueue s // Stores tuples (Vertex, Distance)

// Removes tuples by smallest distance

s.add( (start, 0) ) // (Vertex, Distance)

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)           // do something if curr is the goal

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)  // Checks to see if vertex is visited

s.add((u,

paths[curr.vertex] + edge(curr.vertex, u)))
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A INF

B INF

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

PQ: (A, 0)

Curr:
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A INF

B INF

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

PQ:

Curr: (A, 0)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A INF

B INF

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

PQ:

Curr: (A, 0)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B INF

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

PQ:

Curr: (A, 0)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B INF

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

PQ:

Curr: (A, 0)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B INF

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

PQ: (B, 5), (C, 17)

Curr: (A, 0)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B INF

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

PQ: (C, 17)

Curr: (B, 5)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

PQ: (C, 17)

Curr: (B, 5)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

PQ: (C, 15) (C, 17), (F, 18), (D, 24)

Curr: (B, 5)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C INF

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (C, 15)

PQ: (C, 17), (F, 18), (D, 24)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (C, 15)

PQ: (C, 17), (F, 18), (D, 24)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (C, 15)

PQ: (C, 17), (F, 18), (E, 21), (D, 24)



G

F

E

B

D

C

A

5

21

13

8
19

6

1

17

10

14

Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (C, 17)

PQ: (F, 18), (E, 21), (D, 24)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (C, 17)

PQ: (F, 18), (E, 21), (D, 24)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E INF

F INF

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (F, 18)

PQ: (E, 21), (D, 24)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E INF

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (F, 18)

PQ: (E, 21), (D, 24)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E INF

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (F, 18)

PQ: (E, 21), (D, 24), (D, 26), (G, 39)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E INF

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (E, 21)

PQ: (D, 24), (D, 26), (G, 39)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (E, 21)

PQ: (D, 24), (D, 26), (G, 39)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (E, 21)

PQ: (D, 22), (D, 24), (D, 26), (G, 39)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D INF

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (D, 22)

PQ: (D, 24), (D, 26), (G, 39)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D 22

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (D, 22)

PQ: (D, 24), (D, 26), (G, 39)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D 22

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (D, 22)

PQ: (D, 24), (D, 26), (G, 36), (G, 39)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D 22

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (D, 24)

PQ: (D, 26), (G, 36), (G, 39)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D 22

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (D, 24)

PQ: (D, 26), (G, 36), (G, 39)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D 22

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (D, 26)

PQ: (G, 36), (G, 39)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D 22

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (D, 26)

PQ: (G, 36), (G, 39)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D 22

E 21

F 18

G INF

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (G, 36)

PQ: (G, 39)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D 22

E 21

F 18

G 36

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))

Curr: (G, 36)

PQ: (G, 39)
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Shortest Path Strategy w/ Priority Queue

Vertex Dist

A 0

B 5

C 15

D 22

E 21

F 18

G 36

while (s not empty)

curr = s.remove_min()

if (paths[curr.vertex] is not INF)

continue

paths[curr.vertex] = curr.distance

evaluate(curr)  // End if goal is reached

for Vertex u in neighbors(curr.vertex)

if (paths[u] is INF)

s.add((u, 

paths[curr.vertex] + edge(curr.vertex, u)))



Dijkstra’s and Negative Edge Weights
▪ Dijkstra’s is a greedy algorithm.  When it 
calculates a new distance to a vertex, 
Dijkstra’s assumes that distance is the shortest 
distance to that vertex.

▪ When we introduce negative edge weights, this 
greedy heuristic does not hold.  An encounter 
with a negative edge weight can provide us a 
shorter distance to a vertex than previously 
calculated.  However, Dijkstra does not revisit 
these calculated distances.

▪ In this graph, Dijkstra would calculate the 
shortest distance to C as 3.  Running more 
iterations will reveal that the shortest distance 
is actually 1, but Dijkstra will keep C : 3.

A

B C

35

-4



Dijkstra Analysis
▪ Dijkstra runs in O( (|V| + |E|) log(|V|) ).  If we use a min-heap for our 
priority queue, calling PQ.remove_min() will yield O( log(|V|) ).  

▪ If we visit each vertex and edge at most once, we will call PQ.remove_min() O(|V| 
+ |E|) times



Practice
▪ For the graph:

▪ Find the shortest path from A to all vertices A

B

C

D

E
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Vertex Dist

A INF

B INF

C INF

D INF

E INF



Practice
▪ For the graph:

▪ Find the shortest path from A to all vertices A

B

C

D

E

2

1

7

3

1

3

Vertex Dist

A 0

B 3

C 2

D 3

E 6



Connecting the Campus
▪ Our campus to the right has the 
following buildings and sidewalks.

▪ Let’s say Bud Peterson implemented 
budget cuts to side walks, so we 
need to pick sidewalks to keep.

▪ We want the least set of sidewalks 
that will still connect the campus.

▪ Every building has a path to every 
other building.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21



Connecting the Campus
▪ Our campus to the right has the 
following buildings and sidewalks.

▪ Let’s say Bud Peterson implemented 
budget cuts to side walks, so we 
need to pick sidewalks to keep.

▪ We want the least set of sidewalks 
that will still connect the campus.

▪ Every building has a path to every 
other building.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21



Connecting the Campus
▪ Our campus to the right has the 
following buildings and sidewalks.

▪ Let’s say Bud Peterson implemented 
budget cuts to side walks, so we 
need to pick sidewalks to keep.

▪ We want the least set of sidewalks 
that will still connect the campus.

▪ Every building has a path to every 
other building.
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Spanning Tree
▪ In an undirected graph, a spanning 
tree is the set of edges that connect 
every vertex with the least number of 
edges.

▪ There for, the number of edges in a 
spanning tree is equal to |V|-1.

▪ Spanning tree’s cannot have cycles.

▪ If there exists a cycle in a spanning 
tree, then we can remove one edge in 
the cycle and still maintain 
connectivity.
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Connecting the Campus (minimum)
▪ In this campus there are multiple 
spanning trees, but with budget cuts, 
we want to keep sidewalks with the 
least amount of distance. 

▪ (distance = $$)

▪ In this graph, what is the spanning 
tree of sidewalks with the least 
cost?
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Connecting the Campus (minimum)
▪ In this campus there are multiple 
spanning trees, but with budget cuts, 
we want to keep sidewalks with the 
least amount of distance. 

▪ (distance = $$)

▪ In this graph, what is the spanning 
tree of sidewalks with the least 
cost?
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Minimum Spanning Tree
▪ The Minimum spanning tree of a 
graph is a spanning tree of a 
weighted graph with minimum total 
edge weight.

▪ This MST has a edge weight of 42.

▪ MST’s are useful for:

▪ Transportation networks (subways)

▪ Network Cabling
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Minimum Spanning Tree
▪ The Minimum spanning tree of a 
graph is a spanning tree of a 
weighted graph with minimum total 
edge weight.

▪ This MST has a edge weight of 42.

▪ MST’s are useful for:

▪ Transportation networks (subways)

▪ Network Cabling

▪ How did you find the MST of this 
graph?
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Kruskal’s Algorithm
▪ Finds the MST of a weighted graph.

▪ To Perform by hand and diagram

1. Start with the smallest edge and 
add it to your spanning tree.

2. If the edge creates a cycle within 
your spanning tree, skip it.

3. Repeat this until all of your vertices 
are connected.
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Kruskal’s Algorithm Example
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Kruskal’s Algorithm Example
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Kruskal’s Algorithm Implementation
1. To Perform Algorithmically:

1. Add all your edges into a Priority 
Queue.

2. Pull our edges 1 by 1 and add them 
to your spanning tree.

3. Stop when all vertices are included 
in your spanning tree.
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Kruskal’s Algorithm Implementation
1. To Perform Algorithmically:

1. Add all your edges into a Priority 
Queue.

2. Pull our edges 1 by 1 and add them 
to your spanning tree.

3. Stop when all vertices are included 
in your spanning tree.

▪ When should you add an edge to 
your spanning tree?
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Kruskal’s Algorithm Vertex Sets
▪ When we add edge 1 and 4, we 
end up with two separate set of 
vertices.
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Kruskal’s Algorithm Vertex Sets
▪ When we add edge 1 and 4, we 
end up with two separate set of 
vertices.

▪ In fact, every vertex is in it’s own 
set of vertices.
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Kruskal’s Algorithm Vertex Sets
▪ When we add edge 1 and 4, we 
end up with two separate set of 
vertices.

▪ In fact, every vertex is in it’s own 
set of vertices.

▪ If we add edge 5, we connect two 
separate sets of vertices.
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Kruskal’s Algorithm Vertex Sets
▪ When we add edge 1 and 4, we 
end up with two separate set of 
vertices.

▪ In fact, every vertex is in it’s own 
set of vertices.

▪ If we add edge 5, we connect two 
separate sets of vertices.

▪ Adding edge 6 also connects two 
separate sets of vertices.
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Kruskal’s Algorithm Vertex Sets
▪ When we add edge 1 and 4, we 
end up with two separate set of 
vertices.

▪ In fact, every vertex is in it’s own 
set of vertices.

▪ If we add edge 5, we connect two 
separate sets of vertices.

▪ Adding edge 6 also connects two 
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Kruskal’s Algorithm Vertex Sets
▪ When we try to add edge 7, we 
attempt to connect two vertices 
from the same set together.

▪ we end up with a cycle.

▪ This prevents us from adding edge 
7.
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Kruskal’s Algorithm Vertex Sets
▪ When we try to add edge 7, we 
attempt to connect two vertices 
from the same set together.

▪ we end up with a cycle.

▪ This prevents us from adding edge 7.

▪ We’ll use the rule:

▪ For a candidate edge to add to our 
spanning tree, if the vertices u, v from 
(u, v) are part of the same set of 
vertices, do not add the edge.

▪ To organize these sets of vertices, 
we’ll use a new data structure.

▪ Disjoint Set Data Structure
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Disjoint Set Data Structure (Union-Find)
▪ Disjoint-Set maintains a set of subsets.  The main purpose is to merge 
subsets together (Union) and see if elements are in the same subset (Find).

▪ Union(A, B) – Find the two subsets elements A and B are in and merge together.

▪ Find(A) – Finds the subset A is in.

▪ In our case with Kruskal’s, we’ll maintain a set vertices.  Initially each vertex 
will be in its own subset.

▪ When Kruskal’s attempts to add edge (u, v) to the spanning tree, we see if Find(u) 
and Find(v) are the same subset.

▪ If the subsets are not the same, then we add edge (u, v) to our spanning tree and 
Union(u, v).

▪ Else, we ignore edge (u, v).



Disjoint Set Subset Representation
▪ Subsets are represented as Trees.

▪ Node {

Data data

Node parent

int  rank = 0

}

▪ Data is data in the subset

▪ Parent pointer points to a parent 
node.  Root nodes point to 
themselves.

▪ Rank is similar to height.  A root 
node of higher rank has more nodes 
in the tree.  The rank of a node can 
change.
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Disjoint Set Subset Representation
▪ Find(A): finds the root of the tree A 
is in recursively and returns the 
root.

▪ Path Compression - All nodes from 
A to root have their parent pointers 
point to the root.

▪ This optimizes Find() operations for 
later uses.

▪ Union(A, B): find the root of trees A 
and B are part of and have one root 
point to the other.

▪ Union by rank - the root of lower rank 
points to the root of higher rank.  If 
both are the same, arbitrarily point 
one to the other and increase the 
rank of the new root.
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Disjoint Set Analysis
▪ With both path compression and union by rank, each operation has an 
amortized running time of O(α(n)).

▪ α(n) is the inverse Ackermann Function.  This is an extremely slowly growing 
function.  Practically α(n) <= 4.  You can treat this as O(1).

▪ Formal Proof: CLRS 21.4



Kruskal’s + Disjoint Set
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Kruskal’s + Disjoint Set

Try adding (COC, KLAUS) to our spanning 
tree.
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Kruskal’s + Disjoint Set

Try adding (COC, KLAUS) to our spanning 
tree.

Find(COC) != Find(KLAUS).  COC and 
KLAUS are in separate subsets.
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Kruskal’s + Disjoint Set

Try adding (COC, KLAUS) to our spanning 
tree.

Find(COC) != Find(KLAUS).  COC and 
KLAUS are in separate subsets.

We can add (COC, KLAUS) to our spanning 
tree.  We also call Union(COC, KLAUS).  
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Kruskal’s + Disjoint Set

Try adding (COC, KLAUS) to our spanning 
tree.

Find(COC) != Find(KLAUS).  COC and 
KLAUS are in separate subsets.

We can add (COC, KLAUS) to our spanning 
tree.  We also call Union(COC, KLAUS).  
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Kruskal’s + Disjoint Set

Same for (CULC, TT).
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Kruskal’s + Disjoint Set

Now let’s check (KLAUS, CULC).

Find(KLAUS) = COC.
Find(CULC) = CULC.
Not the same root, so this edge is okay.
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Kruskal’s + Disjoint Set

Now let’s check (KLAUS, CULC).

Find(KLAUS) = COC.
Find(CULC) = CULC.
Not the same root, so this edge is okay.

Add (KLAUS, CULC) to our spanning tree.
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Kruskal’s + Disjoint Set

Now let’s check (KLAUS, CULC).

Find(KLAUS) = COC.
Find(CULC) = CULC.
Not the same root, so this edge is okay.

Add (KLAUS, CULC) to our spanning tree.

Union(KLAUS, CULC) will have one root point 
to the other.
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Kruskal’s + Disjoint Set

Now let’s check (KLAUS, CULC).

Find(KLAUS) = COC.
Find(CULC) = CULC.
Not the same root, so this edge is okay.

Add (KLAUS, CULC) to our spanning tree.

Union(KLAUS, CULC) will have one root point 
to the other.
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Kruskal’s + Disjoint Set

(COC, SC) is okay.
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Kruskal’s + Disjoint Set

Now for (COC, CULC)…

Find(COC) = COC
Find(CULC) = COC
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Kruskal’s + Disjoint Set

Now for (COC, CULC)…

Find(COC) = COC
Find(CULC) = COC

Since the roots are the same (COC), we 
ignore this edge.
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Kruskal’s + Disjoint Set

We ignore (SC , CULC) as well.
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Kruskal’s + Disjoint Set

When we check (SC, TT)

Find(SC) = COC
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Kruskal’s + Disjoint Set

When we check (SC, TT)

Find(SC) = COC
Find(TT) = COC

TT’s parent will now be COC.  This is 
due to Path Compression.
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Kruskal’s + Disjoint Set

When we check (SC, TT)

Find(SC) = COC
Find(TT) = COC

TT’s parent will now be COC.  This is 
due to Path Compression.
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Kruskal’s + Disjoint Set

When we check (SC, TT)

Find(SC) = COC
Find(TT) = COC

TT’s parent will now be COC.  This is 
due to Path Compression.

We ignore (SC, TT).
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Kruskal’s + Disjoint Set

(CRC, COC) will be added to our spanning 
tree.
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Kruskal’s + Disjoint Set

(CRC, SC) is ignored.
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Kruskal’s + Disjoint Set

(KLAUS, T2) is okay.
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Kruskal’s + Disjoint Set

(CULC, T2) is ignored.
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Kruskal’s + Disjoint Set

(CULC, T2) is ignored.

We’ll continue this until our spanning tree 
is |V| - 1 edges or until we exhaust all our 
edges.
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Kruskal’s Analysis
▪ Kruskal’s Algorithm is O(|E| log |V|).

▪ Having a Priority Queue of |E| edges is O(E log E)

▪ You could also presort the list of edges in O(E log E).

▪ For every edge, we perform Union() and Find(), and since these operations are 
O(α(V)), we have O(Eα(V)).

▪ α(n) = O(log V) = O(log E), so we end up with O(E log E).

▪ So adding the priority queue operations and Disjoint Set operations, we have 
O(2ElogE) = O(ElogE).

▪ Because |E| < |V2|, we can change O(E log E) to O(E log V).



Prim’s Algorithm
▪ Prim’s is another MST finding algorithm.

▪ The behavior is similar to Dijkstra’s Algorithm except the priority queue will 
hold edges instead of (Vertex, distance) tuples.

▪ Prim’s begins with a starting vertex, and we branch to neighboring vertices 
over smallest edge weight.  The edges we traverse over are part of our 
spanning tree.



Prim’s Algorithm
Prims(G, start):

visited = {start}

spanning_tree = {}

PriorityQueue PQ = {start.edges}

loop while PQ isn’t empty:

currEdge = PQ.extract_min()   // (u, v) = (currVertex, destination)

if visited contains edge.u and edge.v:

continue

spanning_tree.add(currEdge)

for edge e of currEdge.v.edges: // for all of v’s edges,

if visited doesn’t contain e.v:

PQ.add(e)

return spanning_tree
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to TT and attempt to traverse the 
smallest edge.
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Prim’s Examplme

▪ Now we look at all edges connected 
to our cloud and attempt to traverse 
the smallest edge.

▪ This is edge 5.
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Prim’s Examplme

▪ Now we look at all edges connected 
to our cloud and attempt to traverse 
the smallest edge.

▪ This is edge 5.

▪ KLAUS has not been visited yet, so 
we can include edge 5 in our 
spanning tree.
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Prim’s Examplme

▪ Now we look at all edges connected 
to our cloud and attempt to traverse 
the smallest edge.

▪ This is edge 1.
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Prim’s Examplme

▪ Now we look at all edges connected 
to our cloud and attempt to traverse 
the smallest edge.

▪ This is edge 1.

▪ COC has not been visited yet, so we 
include edge 1 in our spanning tree.
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Prim’s Examplme

▪ Now we look at all edges connected 
to our cloud and attempt to traverse 
the smallest edge.

▪ This is edge 6.
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Prim’s Examplme

▪ Now we look at all edges connected 
to our cloud and attempt to traverse 
the smallest edge.

▪ This is edge 6.

▪ SC has not been visited yet, so we 
can include edge 6 in our spanning 
tree.
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Prim’s Examplme

▪ Now we look at all edges connected 
to our cloud and attempt to traverse 
the smallest edge.

▪ This is edge 7.
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Prim’s Examplme

▪ Now we look at all edges connected 
to our cloud and attempt to traverse 
the smallest edge.

▪ This is edge 7.

▪ However, both vertices in edge 7 
have already been visited, so we 
ignore this edge.
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Prim’s Examplme

▪ Now we look at all edges connected 
to our cloud and attempt to traverse 
the smallest edge.

▪ This is edge 7.

▪ However, both vertices in edge 7 
have already been visited, so we 
ignore this edge.

▪ The same goes for edge 8, and edge 
10.
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Prim’s Examplme

▪ Now we look at all edges connected 
to our cloud and attempt to traverse 
the smallest edge.

▪ This is edge 11.

CRC

SC CULC

TT

COC KLAUS
T2

4

10

8

1

13

11

6 57

15

21



Prim’s Examplme

▪ Now we look at all edges connected 
to our cloud and attempt to traverse 
the smallest edge.

▪ This is edge 11.

▪ CRC has not been visited yet, so we 
can include edge 11 in our spanning 
tree.
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Prim’s Examplme

▪ We skip edge 13.
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Prim’s Examplme

▪ We skip edge 13.

▪ And we add edge 15. CRC
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Prim’s Examplme

▪ We skip edge 13.

▪ And we add edge 15.

▪ We can end once all our vertices 
have been visited, or when all edges 
have been looked over.
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Prim’s Examplme
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▪ We can end once all our vertices 
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Prim’s Analysis
▪ Prim’s runs in O(E log V).

▪ The main loop runs in O(E) because our priority queue will include all edges.

▪ extract_min() runs in O(log E), so we run O(E log E) extract_mins()’s.

▪ The inner loop over all neighbors of a vertex runs in total 2|E| times.  Our 
adjacency list will have each edge twice (u, v) and (v, u).

▪ The inner loop will add a total of |E| edges into our priority queue, so this is O(E log E).

▪ Assuming the graph is connected, E < V2, so |E|log|E| = O(E log V)



TODO
▪ On your paper to turn in

▪ What was something important that you learned

▪ What do you have a question about?

▪ Also feedback form

▪ Don’t write your name on it.


