Knuth Morris Pratt (KMP)

In 1977, Donald Knuth, Vaughan Pratt, and James Morris published
Fast Pattern Matching In Strings using observations found in the
pattern m to make fast comparisons. KMP work similarly to
brute-force by starting comparisons from the front of text n and
pattern m. Specifically, we have i and j to index into n and m
respectively and keep track of what characters we’'re comparing.

In KMP, when there is a mismatched character n[i] != m[j], instead of
shifting our pattern by one and start matching the pattern over again
as in brute force, we tell ourselves “| want to keep i where it's at in
n[i]. How can | shift my pattern to keep matching at n[i]?”

In the below example, we mismatch at B !=D

n=| A | B A B A B | A |D

m=| A B A B A | D

| want to keep comparing at the B in n, so let’s shift our pattern some
amount.

A B A B A | D

When we shift over our pattern once, we end up trying to compare B
and A. We cannot continue our comparisons here because
characters before B in n do not match up with the characters before A
in m. BABA != ABAB. Let’s keep shifting.

n=| A B A B A B A | D
m=| A A B A | D
A | B|A|B]|A|D
A | B|A|B]|A|D

Here we can attempt to compare B in n and B in m. In this case we
do have a match, which is good. What's more important are the
characters before the two B’s.

n=| A B | A B | A B A | D
m = A B A | D
A B A B A | D
A B | A B A | D

We can see that the three characters before our B’s are exactly the
same. Because we know that these two substrings are identical, we
don’t have to compare anything before our n[i] (which we promised
wouldn’t move backwards.

The pattern shifting rule is this: if we have a mismatch where n[i] !=
m[j], we will shift over m such
e The first k characters in m match the k characters before n[i].
m[O0 .. k-1] == n[i-k ... i-1] for the largest k possible. We
match the longest prefix in m to the longest suffix in n[0...i].

Failure Table

For a mismatch between n[i] and m[j], the failure table tells us how
much we should shift our pattern by to have a prefix and suffix
alignment. We use a pre-processed table to calculate these values.
The table has an entry for every character in m. The value we store
at an m[i], where i {0 ... m.length-1}, is the length of the longest prefix
m[O0 ... k-1] that matches with m[i - k -1 ... i]. The first character
always has a value of 0.

A, B, A, B, A, D,

0 0 1 2 3 0

Algorithm failureTable (pattern)
FTable[0] « O
i<1
J <« 0
while i < m
// we have matched 7 + 1 chars
if pattern[i] = pattern[j] then
FTable[i] « J + 1
1«1 +1
J <3 +1
// use failure function to shift pattern
else if j > 0 then
J < FTable[j - 1]
// no prefix match
else
FTable[i] « O
1«1 +4+1
return FTablel]

KMP

Algorithm KMPMatch (T, P)
F « failureFunction (P)
i<0
J <« 0
while 1 < n

if T[i] = P[J]
if j =m-1
return i - J // match
else
i«1+1
J <3 +1
else if j >
j <« F[J - 1]
else
1«1 +1

return -1 // no match

This algorithm runs in O(n + m). This is because our n[i] never goes
backwards in our comparisons. It will only go forward, which will
cover the length of n. The while loop only does two things.

1. Increases i s.t. our n..

2. Shifts our pattern over by at least 1.
Our while loop will run at most 2n iterations, so we O(n) for the loop.
The failure table is calculated in O(m), so we get O(n + m).

B

B

B

A|lC|A

B|A|C A

B

B

B

A|C]|A
Al A

B|A|A

B

B

B

A|lCI|A

B

A|lC|A

B

Al A

B|A|A

A|lCI|A

B

B

B

Al A

B | A

A|lC|A

AlA

B

B

Al A
B

B

Al A

B|A|C|A

B

A

