String Searching

String searching is a classical problem in computer science. You're
given a long string text (referred to as n) and a string pattern (referred
to as m) and you want to find the pattern inside of the text. This text
and pattern is comprised of characters from a finite set (the alphabet
%). In our examples, we will use the English alphabet as our set of
characters, but other alphabets include the binary alphabet (= = {0, 1})
and DNA bases (2 ={A, C, T, G}).

When performing string search, the cost of our algorithm is the sum of
character comparisons. Because the algorithm running time factors in
both the sizes of our text and pattern, we include both n and m in our
Big-O analysis: O(nm), O(n + m), etc.

String searching is used in DNA sequencing, text editor, online
searching, etc.

Brute Force String Search

The “Brute Force” method is the naive method of string searching.
Given your text n and pattern m, you align the beginning of n and m and
see if n[0] == m[0]. If they match, you then check n[1] == m[1], then n[2]
==m[2], and so on.

If there is a mismatch (n[i] != mli]), then you shift m over by one
character so now the compare n[1] == m[0].

n= A B C A B C D

m= A B C D

A B C D

You continue these search patterns until you find your string. Perform
the rest of the brute force string search algorithm below. Mark
characters that matched.

n= A B C A B C D

m= A B C

This runs in worst case O(mn) given such a case:

n= A A A A A A B

m = A A A B

We would compare the entire pattern every shift.




Boyer-Moore

In 1977, Robert Boyer and J Moore published A Fast String Searching
Algorithm with some key intuition on string searching:
1. Given a mismatch at n[i] and ml[j], if n[i] does not appear in
m, then one can shift all of m passed nl[i].
2. If n[i] does appear in m as character ¢, align n[i] with the last
occurrence of ¢ in m. If you have already passed c, shift over
by 1.
3. To have the above work, start comparisons at the end of the
pattern instead of the beginning.

Both of these intuitions allow us to skip many more unnecessary
comparisons. The first intuition states that if a character we're
matching with doesn’t appear in our pattern, there’s no point in shifting
our pattern over by 1 if there’s a mismatch. Because shifting over by
1 will yield us another mismatch with this character, we can
completely shift over this character. E.g.

n= A B D A B C D

m= A B C

A B C

In the above case we mismatch with D. Because D doesn’t appear in
m, we can completely shift m passed D.

The second intuition states that if we mismatch with a character c in
the text and ¢ appears earlier in our pattern, we can align ¢ with the
last occurance of the same character in our pattern.

n=| A P A T T E R N
m=| R I T H M
R I T H M

In the above case we mismatch with T in our text and M in our pattern.
We do have alast occurrence of T earlier in our pattern, so we can align
the two T’s with each other. From here we would start comparing from
the end again. By aligning these characters, we can guarantee a match
with those characters and increase our chances for a pattern match.

Sometimes we may have already passed the last occurence of our
mismatched character. In such a case, we will shift over by 1.

n= B A C A A B R N
m = B A C A B
A B A C A B
NO | A B A C A B
YES A B A C A B

In the second iteration of comparisons, we mismatch with Ainn and C
inm. We look for the last occurrence of A in our pattern, but we've
already passed this. Trying to align this old A would shift our pattern
backwards. Therefore, we shift over by 1.



Boyer-Moore Last Table

To know how much to shift our pattern over by, we perform
preprocessing over our pattern and create a Last Table. This table is
a mapping between characters and numbers.

For our pattern ABACAB, our last table would look like:

chars A B C *

Last Ocec. 4 5 3 -1

Underneath, complete the code that would create such a table.

int[] createlastTable(String pattern) {
int[] table = new int[Characters.MAX VALUE];

return table;

procedure BoyerMoore (text, pattern)
lastTable «~ BoyerMoorelastTable (pattern)
i<0
while i1 <= length of text - length of pattern
j < length of pattern - 1
while j >= 0 and text[i + Jj] = pattern[j]
J <3 -1
end while
if j = -1 then
return i
else
shiftedIndex ~ lastTable[text[i + j]]
if shiftedIndex < J then
i« 1 + (J - shiftedIndex)
else i « 1 + 1
end if
end if
end while
return -1
end procedure

Boyer-Moore performs in O(nm) where n is the length of the text and m
is the length of the pattern. Such is the case.

n= A A A A A A A

m = B A A




Rabin Karp

In 1987, Richard Karp and Michael Rabin wrote a paper Rolling Hash
(Rabin-Karp Algorithm) that used the idea of hashing to perform pattern
matching. Remember that a hash function will map a String to a
number. Because of the property of hash functions, these mappings
should be bijective(1 to 1). Therefore, two completely different strings
should not output the same hash value. However, with the limitations
of computers and hash functions, two strings may produce the same
hash value. In such a case, we must make sure the two strings are
identical, so then we compare characters. If our strings produce the
same hash value and have same characters, then the two strings match.
If our strings produce the same hash value and have mismatching
characters, then they are not the same.

Of course with string searching, our strings we want to compare are the
pattern m and substring of the text n. Using our idea of hashing, we will
perform hash(m) and hash(n[0 ... m.length-1]) . The question is what is
our hash function?

Rolling Hash

Let's say m = ABACAB and n = ABABACAB such that:

To calculate the hash, the following formula is used:

J .
Y text[i] * BASE'"
i=0
where j is the number of letters in text, and BASE is a prime number.
With BASE = 101, Hash(m) would yield:
65+ 101° + 66 % 101* + 65# 101° + 67 % 101° + 65 101" + 66 % 101°
= 690092178694

Because we’re comparing our pattern to the beginning of our text, we’'ll

hash an equal length of the beginning of the text ABABAC.

Hash(n[O0... m.length-1) would yield:

65+ 101° + 66 % 101* + 65 101° + 66 % 101> + 65 % 101' + 67 % 101°
=690092168494

These two hash values don’t match, so we know for sure the strings
don’t match. We continue by shifting our pattern over by 1.

n= A B A B A C A B

m= A B A C A

A B A C A B

And we would hash this new substring of text BABACA.
66 101° + 65 % 101* + 66 101° + 65 101° + 67 % 101" + 65 101°
=700499228894

However, performing this hash on a new substring everytime we shift
over is expensive. An O(m) hash function done O(n-m) times will yield
an O(nm) algorithm... and if our hash function is bad or we produce the
same hash values every time O(m) comparison, we’'ll get an O(mnm)
algorithm.



Look at the first substring of n we hashed and the next substring.

A B A B A C A B

A B A B A C A B

The difference between the substrings we hash is the first character (A)
is removed and the next character (A) is appended. Mathematically, our
hash expressions share similar statements:

hash(“ABABAC”)

65+ 101° + 66+ 101* + 65%101° + 66 % 101> + 65 101" + 67 = 101°

hash(“BABACA”)
66 % 101° + 65% 101" + 66 % 101° + 65 101> + 67 % 101" + 65 = 101°
=101 * (66 * 101* + 65 101° + 66 % 101% + 65 101" + 67 % 101°)
+ 65%101°
Both expressions share
(66 + 101* + 65%101° + 66 * 101> + 65 101" + 67 % 101°)

Using this observation, we can write a mathematical expression and
code that handles this hash updating.



procedure RabinKarp (text, pattern)

patternHash « rolling hash of pattern P A N C A K E C A T
textHash « rolling hash of first
pattern.length characters of text C T
i« 0
while i <= text.length - pattern.length C A T
if patternHash = textHash then C T
J <« 0
while j < pattern.length and text[i + j] C A T
= pattern[]]
S5 e C|l|A|T
?ndlwhlle C T
if 7 = length of pattern then
return 1 C
end if
end if i « i + 1 C|A|T
if i <= text.length - pattern.length then
textHash « new hash of text, with the
hash window shifted over Rabin-Karp will run in worst case O(mn) if our hash values end up being
end if the same every shift. This would give us an O(m) comparison at most

end while O(n) times.

return -1
end procedure



Boyer Moore Example

chars A B

Last Occ. 4 5

A|B|A

A|B|A







