
Published in ACM’s Conference on Universal Usability, 2000, Washington, D.C., Nov 16-17.

 1

Reducing the Gap Between What Users Know
and What They Need to Know

Ron Baecker*‡‡‡‡, Kellogg Booth††††, Sasha Jovicic‡‡‡‡, Joanna McGrenere‡‡‡‡, Gale Moore

Knowledge Media Design Institute
University of Toronto

10 Kings College Road #4306
Toronto, ON, M5S 3G4, CANADA

+1 416 978 6983
rmb@dgp.toronto.edu

ABSTRACT
“Universal usability” [17] is currently impeded by system
complexity and poorly-crafted interfaces which lead to
confusion, frustration, and failure. One of the key
challenges is “the gap between what users know and what
they need to know” [17, p. 86]. This paper describes and
presents early results from three related research projects
designed to identify and close this gap and to examine how
users might learn what they need to know.
Keywords
Usability, human-centered design, bloat, user study, survey,
email, mail system, visualization, multimedia.

INTRODUCTION
We describe three inter-related projects that address three
aspects of software complexity as experienced by users:
functional complexity, data complexity, and the complexity
of learning about software.
The first project focuses on system complexity as
manifested in functionality-filled software. This work
comes out of research begun in the Learning Complex
Software Project initiated in 1998 by Moore. In the first
study Moore and McGrenere undertook to better
understand the experience of 53 users of Microsoft Word.
McGrenere, building on insights gained in this study, is
designing and testing a novel system architecture to support
using and learning complex software. The approach allows
users to access software that concurrently embodies both
what users know and what they might need to know.
The second project is an effort to enhance the usability of
email systems by reducing both what users need to know
and what they need to do. TimeStore does not require users
to file email in folders. Instead it presents a novel interface
for managing large bodies of email and retrieving needed
messages through a triad of automatically derived email

descriptors: when received, by whom sent, and dealing with
what. We summarize recent results of Jovicic, who built
and tested a new Java implementation of TimeStore.
The third project focuses on the development of a new
method for mitigating system complexity by radically
changing the way in which we present information about
what users need to know. The method borrows from the
field of software visualization. It uses dynamic graphic
presentations to display software behaviour, but focuses on
showing users what to do, rather than showing
programmers how programs operate, as in conventional
software visualization. We replace typical text and still-
graphic forms of documentation and on-line help with
structured video explanations that live on the Web and can
be streamed over the Internet “just in time.”
All three projects deal with the management of some form
of complexity. The first project addresses the complexity of
having a plethora of functions in the interface. The second
project addresses the complexity of managing large
quantities of email data. The third project proposes the use
of video explanations as a means of mastering complexity
by presenting users information that they need to know in a
comprehensible form when they need to know it.
The rest of this paper is organized as follows. Each of the
projects is described in turn, starting with a presentation of
the appropriate research context. The results of the projects
are then integrated by extracting common research themes,
describing the next steps in the research, and identifying
common research challenges that must be addressed if we
are to achieve the goal of universal usability.

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT
COLUMN ON THE FIRST PAGE FOR THE
COPYRIGHT NOTICE.

* Also with Expresto Software Corporation, Toronto
† The Department of Computer Science, University of British

Columbia
‡ Also with the Department of Computer Science, University of

Toronto

Published in ACM’s Conference on Universal Usability, 2000, Washington, D.C., Nov 16-17.

 2

PROJECT 1: COPING WITH FUNCTIONAL COMPLEXITY
End-user applications have changed dramatically since the
PC and the Macintosh were introduced two decades ago. A
sharp increase in compute power and strong market forces
have resulted in desktop applications, such as word
processors, with sophisticated graphical user interfaces and
with considerably more functionality than their
predecessors. The assumption has been that the more
functionality there is, the more useful and marketable the
application will be. As these applications have become
more powerful and more complex, there has also been a
substantial increase in both the number and the diversity of
users. Users differ in their knowledge of the various skills
needed to use an application and the tasks that they do, and
hence in the knowledge they need. Yet desktop applications
typically present a single user interface that is expected to
accommodate all users. If universal usability is to be
achieved with general productivity applications, we need to
challenge the notion of the “one-size-fits-all” interface.
The term “bloatware” or “bloat” has been used within the
technical community [11] and in the popular press [7] to
describe heavily-featured applications. “Bloat” is seldom
clearly defined, but used as a catch-all phrase indicating
that an application is filled with “unnecessary”
functionality. Do all users experience such software as
bloated? If not, how do users actually experience heavily-
featured software? These questions have not been addressed
in the research literature, yet could provide valuable
insights for interface design. Our extensive study of 53
users of a complex software application, Microsoft Word,
Office 97 (MS Word) helps us to understand how users
experience this complex software application. The study is
outlined below and selected results are highlighted, looking
specifically at the gap between what users know, what they
need to know, and what they think they need to know. The
reader is encouraged to read McGrenere and Moore’s paper
[15] for a more complete discussion.

Study of a Word Processor
In order to capture the diversity of user experience it was
important to identify and select a group of people who were
representative of the general population of MS Word users
and not simply a sample of convenience. Care was taken to
achieve representation in terms of variables such as age,
gender, education, occupation and organizational status.
Participants also varied in their experience with computers
and with MS Word. The final sample consisted of 53
participants. Two parts of the study are relevant here.
Part I: Functionality Identification and Usage
The objective of Part I was to establish empirically 1) the
distribution of users in terms of their familiarity with the
functions in MS Word and 2) the use of functions and the
variation in use across users.
Functions are defined from the user’s perspective rather
than that of the underlying application code. Functions are
action possibilities (i.e., affordances) that are specified
visually to the user. The first-level count included all icons

and final menu items in the default MS Word interface. We
counted 265 functions1.
In interviews subjects were presented with a series of screen
shots which included all 265 functions. These were
reviewed systematically and subjects were asked to report
(1) if they were familiar with what the function does and (2)
if they used it. The responses to (1) were unfamiliar or
familiar. If subjects were familiar with a function they were
asked in (2) to score usage on a 3-point scale: regularly,
irregularly, or never. Note that we specifically chose self-
reporting over software logging which has generally been
the method of choice in computer science for capturing
function usage [e.g., 9, 13]. The reason is that logging
cannot distinguish between familiarity and use and must be
used for an extensive period of time if irregularly used
functions are not to be missed.
Part I concluded with a semi-structured interview with each
subject to ground, support, and enrich our understanding of
the users’ experience. The result is that the quantitative
findings can be contextualised by qualitative interpretation.
Part II: Perception of Bloat
A semi-structured questionnaire was used to establish the
users’ levels of expertise, the nature of their work practices,
the type of tasks they carry out on the word processor, and
their history of word processing. Finally, they were asked to
evaluate a series of statements about MS Word, several of
which were used to create self-reported measures of
efficiency and effectiveness.

Selected Results
If software is considered to be “bloated” when there is a
large number of unused functions, then our data shows that
MS Word is indeed “bloated”. For example, of the 265
first-level functions, there were 42 that were not used by
any participant, 118 that were used by less than 25% of the
participants, and only 12 functions that were used regularly
by more than 75% of the participants. We can also look at

1 Detailed heuristics have been developed to count the functions.

These are available from the authors. Second-level counts (first-
level dialog boxes) add an additional 709 functions.

Figure 1: Percentage of functions “familiar” and “used” for each
participant sorted in descending order of familiarity.

0
10
20
30
40
50
60
70
80
90

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53

Individual Participants

%
 o

f F
un

ct
io

ns

Familiar
Use

n = 53

Published in ACM’s Conference on Universal Usability, 2000, Washington, D.C., Nov 16-17.

 3

the usage and familiarity data from the perspective of the
individual user (Figure 1). On average the participants used
27% of the functions, and were familiar with 51%. The
mean Usage to Familiarity Ratio was 57% (standard
deviation = 0.148). One way to interpret this result is that
users know roughly twice as much as they need to know, at
least if we measure need-to-know by the functions they
actually use in practice. Those functions that are not used
by any users provide an objective measure of “bloat”.
But do users actually experience the software as “bloated”?
Do those who use very little functionality experience the
excess unused functionality negatively? Do those who use
most of the functionality experience MS Word more
positively? Our qualitative data from Part II provides some
insight on this issue.
Responses to questions designed to assess the impact of a
large number of functions on usability do indicate that some
users have a negative experience (Table 1). Users were
almost evenly divided between those who agreed, disagreed
or had no opinion when asked if they were overwhelmed by
the number of interface elements. However, when asked
specifically about the impact of excess functionality on their
activities they were more polarized.

 Agree No Op. Disagree
I am overwhelmed by how
much stuff there is. (n=51) 27.5% 39.2% 33.3%

I have a hard time finding the
functions I need unless I use
them regularly. (n=53)

58.5%

5.7%

35.8%

After using a new version for
a short time, the commands
and icons that I don’t use
don’t get in my way. (n=51)

51.0%

17.6%

31.4%

Wading through unfamiliar
functions can often be
annoying/frustrating. (n=53)

62.3%

17.0%

20.8%

Table 1: Responses to statements about usability.

But how would users like to see excess functionality
handled? Again, our participants were divided, and offered
no easy solutions for designers (Table 2). Only 24.5%
wanted to have unused functions removed entirely but 45%
preferred to have unused functions “tucked away”. The fact
that 51% wanted the ability to discover new functions as
they use the application points to one underlying reason for
users not wanting unused functions removed.

 Agree No Op. Disagree
I want only the functions I
use. (n=53) 24.5% 9.4% 66.0%

I prefer to have unused
functions tucked away. (n=53)

45.3%

15.1%

39.6%

It is important to me that I
continually discover new
functions. (n=53)

50.9%

18.9%

30.2%

Table 2: Users’ preferences for numbers of functions in the
interface.

Contrary to our prior assumptions, participants’ responses
to these statements (Table 1 and Table 2) are actually
independent of the number of functions used, the number
they are familiar with, and their level of computer
expertise2. Given this diversity, it is not surprising that there
was no single group of functions with which all participants
were dissatisfied. This led us to define a subjective
dimension of “bloat”: users differ in the functions that they
know and use and they differ in their desire to know about
unused functions and have them available in the interface.
The fact that some users do not experience unused
functionality negatively should be respected in future
interface designs. Further in this paper we describe one
such design that we have prototyped and are evaluating.

PROJECT 2: COPING WITH DATA COMPLEXITY
The second study deals with the complexity arising from
overload of email in the modern workplace. The increase in
volume of email makes it apparent that semantic hierarchies
of files and folders, the currently predominant paradigm,
are not suitable for organizing all electronic information.
Numerous studies document users’ frustration and inability
to organize their email effectively [4, 12, 22]. The
complexity that arises in attempting to manage the high
volume of email needs to be more adequately addressed.

The Design Approach
The TimeStore project [14, 18, 23, 24, 10] addresses the
complexity involved in managing large volumes of email.
Here semantic hierarchies are abandoned in favour of an
organizational approach which eliminates the need for
filing; messages are automatically organized by time and by
sender in a two-dimensional grid.

Jovicic [10] reviews relevant literature on human memory
in order to determine how the email retrieval process might
be supported. She makes recommendations for the design
of user interfaces for managing large amounts of email
based on what the user knows (remembers) about the
context in which the email arose. The advantage of this
approach is that the user need no longer construct and
maintain a semantic hierarchy for organizing and managing
her email, nor need she know (remember) where in the
hierarchy she stored a particular message.

Background
This context of a piece of email can differ widely from
message to message. Some messages may best be regarded
as autobiographical (personal) events, and some as news
events (events where a person was not present). Some may
have elements of both types of events, in that they deal with
news that has a direct personal connection to the recipient
and to events in his or her life.

2 The two exceptions to this are that users who want only those

functions that they use tend to be those with more computer
expertise, and the users who have a hard time finding the
functions tend to be those users who are familiar with and use
relatively fewer functions.

Published in ACM’s Conference on Universal Usability, 2000, Washington, D.C., Nov 16-17.

 4

Memory literature indicates that the context of recent
autobiographical events — the people present, the location
of the event, and the time of the event — are typically well-
remembered [20]. With old autobiographical events,
contextual information is gradually lost over time. With
news events, little contextual information is available.
Other memory literature results (such as [8]) concern
temporal schemata such as days, weeks and years, which
are commonly used in event retrieval. The importance of
weeks is especially salient, since day-of-week schema are
strikingly resilient to the passage of time. That is, people
can locate the exact day of the week for an event, even if
they cannot locate the week of the event.

Design Details and Implementation
In order to reduce the complexity of handling email
messages, TimeStore does not require the users to do any
filing. Instead, email messages are displayed in a two-
dimensional grid organized by time and sender (Figure 2).
Memory literature stresses that information about time and
place of the event, the people involved, and the main
activity are all well remembered. All of these components
except place have a straightforward analogue in email
messages, and are incorporated into the user interface. The
two-dimensional representation allows locating messages
by specifying when the message was received and by whom
it was sent. In order to make it possible to locate messages
by content (what it's about) as well, TimeStore allows
narrowing of the search space using full-text searching by
one or more keywords.

Figure 2: The user interface of the TimeStore prototype. A
dot shows that messages were received from that sender on
that day. Clicking on a dot pops up a window with a list of
messages.
The search engine also compensates for lack of context,
which is particularly important for old autobiographical
events and news events, both of which have little contextual
information.
Weekends are emphasized by dark bands that visually
separate weeks. As noted earlier, days of weeks of events
are well remembered and often used in dating, so their use
is supported in the interface. The senders, represented along
the vertical axis, may be clustered in groups. This provides

additional retrieval context and makes it easier to locate
messages by sender.
The interface represented in Figure 2 was implemented
using Java and C and integrated with the Eudora email
system. Preliminary user testing [10] shows that users liked
the visualization of their email and found it useful for
retrieval of both old and new messages.

PROJECT 3: LEARNING ABOUT COMPLEXITY
The third project takes a different approach to complexity
and the gap between what users know and need to know by
focusing on the method by which features are explained.
Various methods are used today without great success to
introduce and explain complex technology such as
software. Documentation typically consists of lengthy prose
interspersed with screen snapshots, but users don’t read
manuals and typically find “online help” unhelpful. Vendor
support staff and corporate help desks struggle with
creating and conveying answers to queries, but it is difficult
to explain complex step-by-step procedures in words.
Courses present lots of material, but usually not what is
needed when it is needed. Videos are hard to search and
often out-of-date. One-on-one tutoring is best because it
allows software to be demonstrated, but is expensive and
rarely available when needed.
We describe here an alternative approach which draws from
the field of software visualization [19]. Software
visualization has been defined [16] as “the use of the crafts
of typography, graphic design, animation, and
cinematography with modern human-computer interaction
and computer graphics technology to facilitate both the
human understanding and effective use of computer
software.” To date, almost all work in the field has focused
on enhancing the human understanding of how software
operates internally (for example, [1, 2, and 5]).
Our approach is to facilitate the rapid development of
structured digital video presentations that demonstrate
software and show users how to accomplish desired tasks.
This approach is supported by a recent comprehensive
review of the instructional effectiveness of video media
[21], which suggests that video’s strengths arise in
situations where “[it] might provide additional visual forms
of information to that available in descriptions given in
text..., and when learning procedural sequences might be
benefited by conveying motion video compared to static or
verbal descriptions” [21, p. 210].
The video demonstrations and explanations are then
integrated into the training, support, and sales sections of a
company’s Web site. They can be accessed from the Web
by users and streamed over the Internet “just in time.”
Current technology easily supports this and the ubiquity of
Internet access makes it a practical solution for many users.

The Authoring Technology
The video authoring system, Expresto Creator/Publisher,
enables the rapid creation and desktop publishing of video
communications. The system, previously called the

Published in ACM’s Conference on Universal Usability, 2000, Washington, D.C., Nov 16-17.

 5

University of Toronto Movie Authoring and Design system
in published papers such as [3], is a thinking tool, a “word
processor for movies,” which allows great ease in
imagining, structuring, creating, and improving software
explanations. It enables automatic publication of media on
Web sites, and transmission over the Internet as streaming
video and as video email. The Web publishing ability
allows integration of video communications with existing
corporate databases and Web applications such as customer
care and online learning solutions.

Expresto's system makes this new software explanation
medium possible, and makes it easy, rapid, and cost-
effective. It does this by:
• supporting the entire media creation process
• encouraging a structured design process to allow the

hierarchic organization of a video communication, and
nonlinear access to its component parts

• supporting the integration (via the Web) of other
explanatory information with each segment of these
structured, randomly accessible, video communications.

Figure 3: Hierarchical structure of videos explaining CaseWare’s
products.

A Typical Project Example
To illustrate the approach, we briefly present our work with
CaseWare International, a Toronto-based firm that develops
software for auditors and markets it worldwide. Under
development is a series of short videos based on the
hierarchical structure that appears in Figure 3.
The top-level of this structure is a corporate video
describing the capabilities and strengths of CaseWare. The
next level comprises a set of product videos introducing the
company’s products. The third level focuses on key
features of the products, and the fourth level presents
explanations of how to accomplish tasks that exploit the key
features. The top three levels are useful in software sales,
and the bottom three in support and training.
Figure 4 shows a typical display presented to a user viewing
a movie about the “mapping” key feature of CaseWare’s
“Working Papers” software. The movie appears on the left,
and a list of “show me how to” movies appears on the right.
A frame from one of these “show me how to” movies
appears in Figure 5.

RESEARCH THEMES AND CHALLENGES
These projects, while diverse, all illuminate different facets
of the problem of software complexity: functional
complexity, data complexity, and mastering complexity.
Additional links among the projects appear as common
research themes, next research steps, and challenges.

Figure 4: A key feature of the “Working Papers” software.

Figure 5: A movie explaining how to accomplish a task with a key
feature of the “Working Papers” software.

Themes
All three projects deal with the management of complexity.
Doing so requires the development of appropriate and in
some cases novel representations, such as the use of video
in place of text to explain how to use software, or the
display of large bodies of email as two-dimensional tableau
rather than as conventional lists of messages.
Innovations in representing complexity also encourage us to
provide multiple views and multiple control mechanisms for
transacting with complex systems. Thus we interact with

Published in ACM’s Conference on Universal Usability, 2000, Washington, D.C., Nov 16-17.

 6

email both through Eudora lists and the TimeStore tableau.
We also envision a word processor in which people can
work concurrently with a conventional feature-rich version
and a stripped-down version that includes only those
functions that they currently know and use.

Directions for the Next Steps in the Research
Interface designers have begun to recognize that “one-size-
fits-all” interfaces may not in fact fit all and have provided
facilities for customization and tailoring. Our first project
showed that such facilities are too heavyweight and are thus
ineffective because users are constantly confronted with the
gap between what they know and what they need to know.
We recommend that interface design should support the
creation of a personalizable interface in a way that is low in
overhead for the user. We suggest that one way to start is to
provide multiple interfaces where individual interfaces
within the set would be designed to mask complexity and
support learning through a lightweight mechanism for
moving among these interfaces.
To test this hypothesis, we have built a simple three-
interface MS Word prototype that provides one interface
with a minimal function set (similar to MS NotePad), a
second interface with a function set personalized to the
user's needs and wants, and a third interface with the default
function set. We have tentatively called these interfaces
“Mini Word”, “My Word”, and “Maxi Word”. Users can
easily toggle between the three interfaces and in this way
are not limited to a pre-selected set of features. In the
current prototype it is the experimenter who constructs and
adapts the “My Word” version on behalf of the users
through a Wizard of Oz methodology. This particular
design is a direct response to the understanding gained in
the initial study, which suggested that users want both
simplicity (“what they know”) and access to additional
functionality (“what they may need to know”). Our
prototype accommodates both novice users and users who
regularly use only a few features, for example, the lawyers
in our study. This general direction for our design is similar
to much earlier work by Carroll and Carrithers, whose
“Training Wheels” interface [6], despite its promise, has
never been fully actualized.
Our multiple-interface approach, a response to subjective
bloat, is a generalization of Carroll and Carrithers’s notion
that learning should be integrated with use so that users can
actively manage the gap between what they know and what
they need to know. Switching between multiple interfaces
does not, however, tell us how learning can best be
achieved in this context.
The third project tackles that problem, taking advantage of
digital video technology, something not available when
“Training Wheels” were first investigated. This approach
may appear to be a radical one, especially given the current
costs associated with digital video, but these costs must be
compared with current organisational training and support
budgets, which are enormous.

Video explanations may be more expensive to produce than
text, and certainly they consume more resources to store
and deliver. The latter two will diminish as Internet access
drops in cost and increases in bandwidth. Future work will
seek to generate experimental evidence of the relative
communication effectiveness of video versus text plus still
graphics for demonstrating and explaining software. Other
near-term goals are more pragmatic, and center around
improvements in production efficiency and the development
of methods for managing, accessing, and serving large
bodies of video material.
The second project in fact addresses the latter issue, but in a
different context. TimeStore’s novel view facilitates access
to large bodies of email. The approach would become even
more interesting with the incorporation of “where” as well
as “when”, “who” and “what” to provide a fuller context for
email retrieval. Many people read their email from multiple
locations. If the software were aware of location (which it
easily could be), this would provide retrieval cues related to
“where” a message was read — a component of
autobiographical memory that is currently not utilized. This
will be powerful and essential as the use of various mobile
devices such as PDAs and Web-enabled cell phones
becomes more widespread.
Integrating ideas from the three projects leads us to
consider future systems that will have multiple interfaces
that will permit a user to easily navigate between what the
user currently knows and what the user needs to know. Our
current MS Word prototype does this with three interfaces,
but leaves open the questions of how the user will learn
about unknown features and how to facilitate the
construction of the personalized interface, namely “My
Word”. The third project provides a mechanism to address
the learning question through just-in-time digital video
explanations. These explanations then become part of the
complexity problem themselves, since the user needs to
manage knowledge of which video explanations they might
need to return to for additional help. The second project
provides a promising solution by incorporating full “what”,
“when” and “where” contexts, which could help in
managing multiple interfaces and multiple help systems.

Challenges for Universal Usability
Developing experimental software to manage complex sets
of functions or data, as we have in these three projects,
requires us to construct scalable experimental systems
capable of handling this complexity. We therefore face
software engineering challenges not always present in
experimental computer science, in which new ideas can be
explored on toy problems and data sets. For example, in the
first project we had to instrument MS Word to toggle
between a user’s personalized function set and the full
functionality of Word. We were able to accomplish this
using Visual Basic scripting, but this placed limitations on
what we could do. In general, we believe that systems
should be designed to support multiple interfaces.
Developing a general architecture that encourages this
design discipline is the on-going focus of the first project.

Published in ACM’s Conference on Universal Usability, 2000, Washington, D.C., Nov 16-17.

 7

These experimental systems must also be tested in real use
by real users in real work contexts over extended time
frames, and not in artificial laboratory environments. The
relationship of technology to work practice is paramount,
and we employ a human-centred design process. Social and
ethical issues often arise, such as protecting the privacy of
our users when studying the impacts of new technology on
how they handle their email. In our second project, we had
to work with users and their actual email system in order for
our study to be meaningful. We did this by building the
TimeStore software on top of Eudora taking advantage of
Eudora’s API. In order to broaden our subject pool for
future studies, we will need to consider fitting TimeStore to
other commercial email products.
Projects such as these stress our evaluation methodologies
to the limit, as they require field studies with extensive use
of both quantitative and qualitative research methods. For
example, our second and third projects have thus far been
limited to in-house testing, but a strength of the first project
is that we conducted a study in the workplace and
triangulated multiple methodologies. The triangulation of
methods provides several perspectives as each method
helps illuminate a different part of the problem.
A significant impediment to universal usability is the
complexity inherent in many of today’s software systems.
Complex functionality, data complexity, and the complexity
of learning about these systems all affect usability. The use
of multiple interfaces, customized for what the user needs
to know, is intended to reduce the functional complexity
seen by users. Introducing “who-what-where-when”
information that the user already knows is intended to
reduce data complexity. The use of just-in-time digital
video explanations is intended to reduce the complexity of
learning software.

ACKNOWLEDGMENTS
We gratefully acknowledge research support from the
Natural Sciences and Engineering Research Council of
Canada, from Communications and Information
Technology Ontario, and from the IBM Canada Centre for
Advanced Studies. Agnes Ouellette and Anne Dmitrovic of
Expresto Software contributed to this work and helped
prepare the paper.

REFERENCES
[1] Baecker, R. (1998). Sorting Out Sorting: A case study

of software visualization for teaching computer
science. In [19], 369-381.

[2] Baecker, R. & Marcus, A. (1990). Human Factors and
Typography for More Readable Programs, ACM
Press.

[3] Baecker, R., Rosenthal, A., Friedlander, N., Smith, E.,
& Cohen, A. (1996). A multimedia system for
authoring motion pictures, Proc. ACM Multimedia'96,
31-42.

[4] Balter, O. (1998). Email in a working context.
Doctoral dissertation. Royal Institute of Technology,
Sweden.

[5] Brown M.H. (1988). Algorithm Animation. MIT Press.
[6] Carroll, J., & Carrithers, C. (1984). Blocking learner

error states in a training-wheels system. Human
Factors, 26(4), 377-389.

[7] Computer World, Aug 10, 1998. The bloatware debate.
[8] Friedman, W. J. (1993). Memory of time for past

events. Psychological Bulletin, 113(1), 44-66.
[9] Greenburg, S. (1993). The Computer User as

Toolsmith: The Use, Reuse, and Organization of
Computer-base Tools. Cambridge University Press.

[10] Jovicic, A. (2000). Implications for the design of email
management software. M.Sc. thesis, Department of
Computer Science, University of Toronto.

[11] Kaufman, L. & Weed, B. (1998). User interfaces for
computers – Too much of a good thing? Identifying
and resolving bloat in the user interface. Conference
Summary, CHI 98, Workshop #10, 207-208.

[12] Lantz, A. (1998). Heavy users of electronic mail.
International Journal of HCI, 10 (4), 361-379.

[13] Linton, F., Joy, D. & Schaefer, P. (1999). Building user
and expert models by long term observation of
application usage. User Modeling: Proceedings of the
Seventh International Conference, 129-138.

[14] Long, B. (1994). TimeStore: Exploring time-based
filing. Unpublished study, University of Toronto.

[15] McGrenere, J., & Moore, G. (2000). Are we all in the
same “bloat”? Proc. Graphics Interface 2000, 187-
196.

[16] Price, B., Baecker, R., & Small, I. (1993). A principled
taxonomy of software visualization, Journal of Visual
Languages and Computing, 4(3), 211-266.

[17] Shneiderman, B. (2000). Universal usability.
Communications of the ACM, 43(5), 85-91.

[18] Silver, N. (1996). Time-based visualizations of
electronic mail. M.Sc. thesis, Department of Computer
Science, University of Toronto.

[19] Stasko, J., Domingue, J., Brown, M., & Price, B.
(1998). (Eds.), Software Visualization: Programming
as a Multimedia Experience. MIT Press.

[20] Thompson, C., Skowronski, J., Larsen, S. & Betz, A.
(1996). Autobiographical Memory: Remembering
What and Remembering When. Erlbaum.

[21] Wetzel, C., Radtke, P., & Stern, H. (1994).
Instructional Effectiveness of Video Media. Erlbaum.

[22] Whittaker, S. & Sidner, C. (1996). Email overload:
exploring personal information management of email.
Proceedings CHI ’96, 276-283.

Published in ACM’s Conference on Universal Usability, 2000, Washington, D.C., Nov 16-17.

 8

[23] Yiu, K. (1997). Time-based management and
visualization of personal electronic information.
M.Eng. thesis, Department of Electrical and Computer
Engineering, University of Toronto.

[24] Yiu, K., Baecker, R., Silver, N., & Long, B. (1997). A
time-based interface for electronic mail and task
management. Proc. HCI International '97, 2, 19-22.

	ABSTRACT
	Keywords

	INTRODUCTION
	PROJECT 1: COPING WITH FUNCTIONAL COMPLEXITY
	Study of a Word Processor
	
	
	
	Part I: Functionality Identification and Usage
	Part II: Perception of Bloat

	Selected Results

	PROJECT 2: COPING WITH DATA COMPLEXITY
	The Design Approach
	Background
	Design Details and Implementation

	PROJECT 3: LEARNING ABOUT COMPLEXITY
	The Authoring Technology
	
	
	Figure 3: Hierarchical structure of videos explaining CaseWare’s products.

	A Typical Project Example

	RESEARCH THEMES AND CHALLENGES
	
	
	
	Figure 4: A key feature of the “Working Papers” software.
	Figure 5: A movie explaining how to accomplish a task with a key feature of the “Working Papers” software.

	Themes
	Directions for the Next Steps in the Research
	Challenges for Universal Usability

	ACKNOWLEDGMENTS
	REFERENCES

