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ABSTRACT

Some seemingly simple behaviours such as human walking are difficult to model because of their

inherent instability.  This thesis proposes an approach to generating balanced 3D walking motions

for physically-based computer animations by viewing the motions as a sequence of discrete cycles

in state space.  First, a mechanism to stabilize open loop walking motions is presented.  Once this

basic “balance” mechanism is in place, the underlying open loop motion can then be modified to

generate variations on the basic walking gait.  In addition to other interesting variations, the speed,

stride rate and direction of a walk can each be controlled.  These variations can be parameterized

and potentially used to provide the animated character with the ability to perform autonomous

motions such as following a path specified by the animator.  While this work is somewhat specific

to physically-based animation, some of the underlying ideas may prove useful in other disciplines

such as robotics and biomechanics.
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1.  INTRODUCTION
Computer animation has long been an integral part of the simulation, motion picture, television

and consumer entertainment industries and promises to play a much greater role in the future.  As

it becomes more pervasive, improved techniques will be needed to simplify and speed up the

process of creating convincing, high quality animations.  One key area of interest is the generation

of motion for various types of creatures and characters to be used in an animation.  These

creatures are the actors of the computer graphics world.  The way they move and interact with

their environment has a great effect on a viewer's perception of the animation, whether it appears

intentionally cartoon-like, or as an integral part of a realistic scene.  In the quest for tools to

generate realistic motion, one of the key directions of research has been the use of physically-

based animation.  This thesis presents an approach to the generation of bipedal locomotion for

computer animations using physics-based simulations.

There are essentially two basic models used in the generation of motion for the purpose of

animating articulated figures:  kinematic models and dynamic models.  The following brief

overview of these approaches is useful for placing the research topic of this thesis in an

appropriate context.

1.1 Kinematic Approaches

The most straightforward method for character animation is kinematic in nature.  Kinematic

animation is concerned only with the specification of joint angles and angular velocities over time.

It does not deal with the forces and torques acting on or within a creature or their effect on the

creature's motion.
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Motion capture is a special case of the kinematic approach in which the joint angles and/or velocity

data are measured from a real motion and then re-used on an animated character.  The most

common way of capturing a motion at present is to attach a series of markers to various points on

the subject's body and to use multiple video cameras or other sensory devices to record the motion

of the markers.  The subject's motions are mapped directly onto the animated character, thereby

ensuring that the animated motion will be realistic.  The ability to modify, blend and transition

between pre-recorded motions is important to provide the animator with sufficient control over the

final motion.  However, results based on modifications of captured motions are not guaranteed to

remain realistic.

1.2 Dynamics

An alternate approach toward providing realism is the use of physically-based animation.  In this

scheme, motions are the result of physical simulations, which include detailed modeling of

internal and external forces and torques, the creature's mass and moments of inertia, and its

interaction with the environment.  All these parameters affect the final result, as they would in the

real world.  The essence of this approach is to ensure realism by constraining the motion of the

system to abide by the laws of physics.  Dynamics-based animation has the advantage that the task

of ensuring that motion is physically realistic has been automated.  The animator is, in principle,

free to apply his or her abilities to the more artistic aspects of the animation process.  Note that

"realism" in this context refers to behaviour consistent with a simulated model of the real world.

Similarity to the real world depends completely on the fidelity of this model.

This approach introduces new and challenging problems to be solved in order to be of practical

use.  First, incorporating dynamics effects involves the integration of the equations of motion over

time, and has historically been computationally expensive for all but the most simplistic problems.

While it seems that no amount of computing power is truly enough, efficient simulation

algorithms and faster hardware are beginning to bring the simulation of complex systems of
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interest to animators into the realm of real-time performance.  A second problem, which remains

largely unsolved, is often called the control problem of dynamic animation.  Briefly stated, in the

context of computer animation, the control problem is:

Given a creature, an environment and a desired motion specified by the animator, what

are the control forces and torques required to achieve the desired motion or a close,

physically-realistic approximation?

While the incorporation of dynamics in the generation of computer animations has been a topic of

significant research interest for approximately a decade [AG85] [WB85] [Wil86], it is only now

beginning to play a more serious role in commercial computer animation systems.  A dynamics

simulator is now a part of one of the most popular computer animation packages [Alias].  The

delay is due to both the performance issues and a lack of suitable solutions to the control problem.

This thesis provides an approach to solving the control problem for bipedal locomotion.

1.3 Goals

The primary goal of this thesis is to provide a technique for the animation of physically-based

bipedal locomotion.  More specifically, we present a control solution for articulated figures

performing cyclic motions such as walking.  Aperiodic motions such as sitting down and standing

up are not addressed.

Within this context, this thesis has a number of more specific objectives:

• The technique should work for statically unstable articulated figures.  This means that it

must provide some form of ongoing corrective control actions.

• The basic approach should be general in nature, allowing for a wide variety of periodic

motions without changes to the basic control structure.
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• The approach should work for creatures of reasonable complexity without making any

fundamental assumptions about the creature's structure.  In particular, it should at least be

suitable for animating a human model with tens of degrees of freedom (DOFs).    

• The control representation should be relatively compact, and flexible enough to allow

straightforward specification of walking variations.

• If desired, the motion should exhibit autonomy.  For example, the animator might be

allowed to specify the start and end points of a walk rather than being required to specify

the placement of the foot for each step.

Two desirable objectives which we do not directly address are "naturalness" of the resulting

motion (as opposed to physical realism) and interactivity.  While both of these features are

important to have in an animation system, the problem of generating bipedal locomotion subject to

the above goals is a sufficiently challenging intermediate goal.  Nevertheless, the proposed

technique affords the animator the freedom to potentially obtain natural looking motions with

reasonable additional effort compared to generating basic course motions.  As well, expected

increases in computer performance over the next year or two promise to make interactive use of

the system a realizable goal.

1.4 Thesis Organization

This thesis is divided into 6 chapters.  Chapter 2 summarizes the previous related work and

presents the background material necessary to understand the chapters which follow.  It also

provides an overview of our animation system.  Chapter 3 discusses the underlying principle of

our control approach.  It further describes the general control structure and its application to the

generation of balanced, cyclic locomotion.  Chapter 4 presents the basic results of applying the

control formulation to bipedal walking.  Chapter 5 describes further results for variations on

walking gaits.  The ability to have the walking biped follow a desired path is also demonstrated.

Finally, Chapter 6 concludes the thesis and discusses a number of possible directions for future

work.
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2.  BACKGROUND
This chapter presents the background information required to understand later chapters in the

thesis.  First, important definitions are introduced.  Previous related work is then reviewed,

followed by a description of the underlying control representation on which our balance control

approach is based.  Finally we describe our animation system and our biped models.

2.1 Definitions

A number of important terms and acronyms are used throughout the thesis.  Their definitions and

descriptions can be found in Appendix A.  The majority of the terms are commonly used terms in

the robotics and biomechanics literature.  More in-depth information can be found in [HR86],

[SV89], [Fr86] and [IRT81].

2.2 Previous Work

Bipedal locomotion is a topic of interest to a number of disciplines.  This section describes a

representative subset of the work in these fields.  First, we provide an overview of the various

approaches to motion generation in computer animation.  This is followed by discussion of work

specific to bipedal locomotion in computer animation, biomechanics and robotics.  Finally, some

relevant work in the control literature is addressed.

2. 2. 1 Kinematic Animation

Research in computer animation has evolved significantly in its relatively short life span.  The

earliest approaches to computer animation use keyframing, a technique based on classical

animation.  In keyframing, the configuration of the animated objects at various points in time is

specified by the animator and the computer generates the in-between frames using linear or other

forms of interpolation.  In early systems, specification of keyframes required the animator to
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directly manipulate the DOFs of an object [Mez68, BW71, Csu71, KB84, Stu84, MTT85b,

SB85, Las87].  Later systems allowed the animator to specify the position of specific points on

the objects being animated (such as a hand or foot ) and used inverse kinematics to determine the

appropriate values for the creature's internal DOFs [KB82] [GM85] [BMW87].  Procedural

descriptions of motion, often based on real-world data and observations, can be used to model

very specific classes of movement, effectively "programming" the animated movement [Zel82]

[GM85].  In all cases, the quality of the resulting motion is heavily dependent on the ability of the

animator who is responsible for ensuring that the perceived dynamics of the motion are

appropriate.  This is a task which requires significant skill.  It potentially distracts the animator

from the primary task at hand, but it also allows him or her complete artistic control.

Rotoscoping and motion capture are techniques commonly used to obtain kinematic data from

real-world sources.  Directly recording a phenomenon to be animated guarantees realistic and

natural-looking motion.  Specialized hardware is generally required, but such equipment is

becoming more accessible.  A number of problems with this approach make the investigation of

other motion generation techniques desirable.  First, captured motions are limited to real-world

motions that can easily be recorded.  Essentially, motion capture has many of the same restrictions

as live actors.  Also, approaches to parameterizing captured motions often produce results that are

no longer fully realistic.  Physical constraint violations, such as ground interpenetration and

sliding are common examples of failure.  While solutions to enforcing such constraints for

particular classes of motion have been demonstrated [BMTT90] [KB93], no general solution

currently exists.  More recent parameterization approaches seem oriented toward more broadly

modifying captured motions and are likely to have similar problems [BW95] [WP95] [UAT95].

Finally, captured motions cannot easily be modified to respond realistically to environments

different from the one in which they are obtained.  Varying terrain and collisions are two examples

of such potentially desirable changes.  As the demand for fully interactive environments increases,

this issue becomes more important.  In recent years the interactive home-entertainment industry
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has begun to exceed the motion picture industry in consumer revenues.  Today's interactive video

games are being made with the same effort as low-budget movies, incorporating complex scripts

and storylines, well-known actors, and mixing real and computer-generated imagery [Sni95].

2. 2. 2 Dynamics-based Animation

The techniques used to integrate physics into the generation of computer animations can be

divided into two basic approaches, trajectory-based and controller-based.

Trajectory-based techniques such as [WK88], [BN88], [Coh92] and [LGC94] attempt to find a

physically realistic or near-realistic trajectory from one point in the state space of a creature to

another.  Since the systems are typically highly underconstrained, the trajectory is usually

optimized in some way, for example for smoothness, minimum control energy or minimum time.

A disadvantage of the technique is that a new trajectory must be generated for each new desired

instance of motion.  Also, interactions with the environment such as collisions and friction are

often difficult to properly incorporate into the dynamics specification.  One decided advantage of

trajectory-based techniques is that they relate well to keyframing.  The animator can control details

of the end result through the specification of keyframes and other trajectory-based constraints.

Trajectory-based techniques are also able to find the most physically plausible solution, even if no

completely physical solution is possible.

In the controller-based approach, a dedicated controller or control algorithm is used to activate the

simulated muscles of a creature, causing it to perform some motion or action within a simulated

environment.  The use of such controllers has a number of advantages over the trajectory-based

approach.  In many cases, controllers can be designed to be reusable and composable [van89]

[Hod91] [SC92].  Reusability implies that a controller can be used to achieve a given motion with

a variety of initial states.  Composability implies that a sequence of motions can be generated by
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switching between several controllers over time, possibly subject to some form of transition

requirements.  

Early versions of controllers for animation used force and torque functions, specified either by the

user [Wil86] [AGL87] [FW88] or based on measured or observed data [MZ90] [Mil88].  Other

controllers are based on state machines, dividing the motion into a number of phases, each of

which is represented by a single state.  Controllers are designed by hand in many cases [RH91]

[SC92] [HSL92] [H+95].  Hand-designed controllers require the use of carefully chosen

parameters to simplify the control program and are typically specific to a particular type of motion

(e.g. hopping).

Controllers can also be automatically synthesized.  Automatic synthesis uses various stochastic

search strategies to explore the space of possible controllers [VF93] [vKF94] [vKF94b] [vL95]

[NM93] [A+95] [Sim94] [GT95].  Each controller is assigned a fitness value which characterizes

its "goodness" and a mechanism is provided for keeping and refining good controllers and

eliminating poor ones.  In [Sim94], the structure of the creature itself is allowed to evolve, as well

as the controller.  Current automatic synthesis techniques are best at finding controllers for

relatively stable creatures and motions such as a crawling ant or motion in a single plane.  This is

because they rely on the fact that a good first guess can be stochastically determined with a

reasonable amount of computation.  A relatively smooth fitness function is also typically required

to allow incremental progress toward an acceptable solution.  Unstable motions such as human

walking do not meet these requirements since the solution space is exceedingly small compared to

that of a more stable creature and motion, especially when motion in 3 dimensions is desired.

The use of motion controllers increases the autonomy of the creature being animated, thereby

requiring less direct animator intervention as compared to kinematic and trajectory-based

approaches.  The cost of this increased autonomy is in the degree of control the animator has over
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the final motion.  Allowing the animator to specify that the biped "follow that taxi" often removes

the animator's choice of which precise path to take.  The tradeoff between autonomy and degree

of animator control is illustrated in Figure 2.1.

Animator
Control

Animator
Effort

Keyframing

Autonomous Characters

Motion capture

Figure 2.1 - Animator control vs autonomy

2. 2. 3 Bipedal Locomotion

The animation of bipedal locomotion has long been a topic of fascination to many.  Zeltzer [Zel82]

presents a hierarchical task-oriented animation system in which the low-level walking motions are

implemented kinematically, based on measured human data.  Girard and Maciejewski [GM85] use

rules associated with dynamics (rather than dynamics simulations) for torso motion and inverse

kinematics for leg motion to generate one of the first non-rotoscoped, natural looking walks.

Bruderlin and Calvert [BC89] break each step into a number of kinematically-defined subphases

based on known human gait mechanics and use simplified dynamics simulation to generate the

motion in between each subphase.  By allowing the user to vary a number of gait determinants, a

wide variety of natural-looking walks can be generated.  Since in this approach, the dynamics are

highly constrained, replacing the dynamic interpolation with kinematic interpolation [BC93] is

found to give results of similar quality while increasing performance significantly, allowing gait

parameters to be adjusted interactively.  This work currently represents the state-of-the-art in real-

time, parameterized kinematic models of natural looking human walking motion.  A similar
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technique has also been applied to human running [BC96].  Badler [BPW93] uses primarily

kinematic techniques as well as rotoscoped data with dynamic enhancements to achieve many

human motions and behaviours.  Boulic, Magnenat-Thalmann and Thalmann [BMTT90] and Ko

and Badler [KB93] present techniques to generalize rotoscoped or motion captured walking data

to other subjects and step lengths while reducing or eliminating the resulting ground constraint

violations.  

Raibert and Hodgins [RH91] use full dynamical simulation with robust hand-crafted hopping

control to attain various bounding gaits for biped and quadruped robot models.  As well, a

similarly controlled planar kangaroo model is shown to compare well to its real-world counterpart.

Stewart and Cremer [SC92] use their flexible constraint-based approach to generate fully dynamic

3D bipedal walking on level terrain and up a flight of stairs.  One of the required constraints,

however, is a 0 DOF "magnetic boot" on the stance foot.  Van de Panne, Fiume and Vranesic

[VFV92] use optimal state-space control tables to control walking on level terrain and up and

down ramps, smooth curved surfaces and stairs for a planar biped model.  This approach requires

a suitable control decomposition to make the generation of the state-space controllers tractable.  

Auslander et al. demonstrate automatic synthesis of interesting 2D bipedal walking and tumbling

motions but meet with difficulty in their initial attempts to extend this approach directly to 3D

[Aus+95].  Van de Panne and Lamouret propose the use of guiding external forces to initially

attain reasonable controllers using similar automatic synthesis [vL95]. The forces are then reduced

in a number of steps and can sometimes be entirely eliminated to yield a fully-balanced,

automatically synthesized motion.  Examples of human walking, skipping and running and

walking over varying terrain for a simple 3D biped are given.  One difficulty with this approach is

that the removal of guiding forces must be performed incrementally over the entire motion

sequence (for example, each step of a walk).  This process that can become prohibitively

expensive for more complex creatures.  Hodgins et al. [H+95] show how Raibert's hopping
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principles along with various forms of additional control can be applied to running for a fully-

dynamic, complex human model.  The ground model for the runner uses a 1 DOF constraint

which allows motion only in the body’s pitch DOF.  

Legged locomotion has also received significant attention in the robotics and biomechanics

literature.  Research in the biomechanics literature is directed primarily toward gait analysis.  Of

particular interest is the efficiency of natural motion in humans and animals [McM84] [Ale84] and

the identification of various determinants of gait and their role in normal and pathological gaits

[TT76] [SCD80] [MM80] [IRT81] [SSH82] [PB89].  To this end, a number of dynamic

locomotion models have been proposed [VJ69] [MM80] [McM84] [Tow85] [PB89].  These

approaches generally make assumptions which limit their usefulness for animation.  Typical

assumptions include a simplified biped model and/or motion only in a plane [VJ69] [TT76]

[Tow85] [McM84] [PB89].  Some only consider the open-loop motion over one or two steps

[TT76] [McM84] [PB89].

The robotics literature has more in common with the goals of physically-based computer

animation than biomechanics does.  It has as an objective the synthesis of legged locomotion,

rather than analysis.  While some works present only simulation results and others implement real

robots, all systems, of necessity, incorporate some form of forward dynamics.  Many approaches

propose various reduced-order models for the equations of motion and rely on reference

trajectories, typically based either on the motion of an inverted pendulum [FM84] [MS84]

[KKI90] [KT91] or on measured human data [VS72] [HF77].  As with biomechanics, the

complexity of the locomotion problem is often reduced through the use of simplified biped

models.  Constraining motion to the sagittal plane, is perhaps the most common simplification

[HF77] [FM87] [KKI90] [KT91] [CHP92].  A number of approaches deal only with statically

stable walking motions in which the biped is balanced at all points in the walk cycle [HF77]

[ZS90] [SZ92].  While such motions may be quite useful for a robot due to their inherent stability,



12

they are of less interest to animators.  Miura and Shimoyama present a stilt-leg biped that walks

dynamically in 3D on point feet [MS84].  Takanishi et al. [TIYK85] achieve a dynamic but very

rough, lurching 3D walk for a robot with anthropomorphic legs.  Furusho & Sano [FS90]

demonstrate the use of sensor-based feedback to produce smoother motions from a similar gait.

Raibert et al. [Rai+84] present an elegant three-way decomposition of control to accomplish

robust one-legged hopping in three dimensions which is later extended to bipedal and quadrupedal

models using the notion of a virtual leg [Rai86] [Rai86b].

2. 2. 4 Limit Cycle Control

A number of papers view bipedal walking and running motions as limit cycles in state space.

These are most closely related to the work in this thesis.  McGeer [McG89] [McG90] [McG90b]

demonstrates that various forms of passive legged locomotion, such as walking with and without

knees and running can exist as natural modes of a mechanical device.  By using Newton's method

to search for motions which have identical initial and final system states, stable gaits could be

found for a system which uses only a small downhill slope as a source of energy.  Katoh and

Mori [KM84] use high-gain PD control to drive a biped's motion toward a prescribed cyclic state

space trajectory.   Hmam and Lawrence [HL91] use nonlinear feedback control to drive a running

biped onto a prescribed trajectory which is based on the passive motion of the system.  The

feedback is used to improve the robustness of the system to perturbation.  These latter two works

use very simple biped models and all three assume strictly planar dynamics.   

2.3 Pose Control

The fundamental control representation used throughout this thesis is the pose control graph, or

PCG [vKF94].  Figure 2.2 shows a typical PCG, which is essentially a specialized type of finite

state machine.  Pose control provides a compact way to specify the torques to be applied to an

articulated figure in order to attain a desired motion.  Each state in the PCG specifies a set of

desired joint angles for the creature with respect to some fixed reference position, called a desired
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pose, and transition information.  A pose table is a sequential list of each desired pose and its

transition information.  Figure 2.3 illustrates a typical creature which might be controlled using

pose control graphs.

L

R

S1

S2

S3

S4

0.2

0.2

(a)

DOF right right left left transition
hip knee hip knee info

S1 0 0 -90 90 0.2     
S2 0 0 -45 0 0 L

state S3 -90 90 0 0 0.2     
S4 -45 0 0 0 0 R

(b)

Figure 2.2 - A periodic PCG for a simple planar, 4 degree of freedom biped model
(a) State diagram form.
(b) Pose table form.  All DOF values are in degrees relative to a

reference position with straight, vertical legs and upright torso.
Time-based transitions are in seconds.  For sensor-based
transitions, L - left foot sensor,  R - right foot sensor.

While pose control appears similar to keyframing, two distinctions should be emphasized.  First,

the PCG determines the desired joint angles, and not the actual joint angles.  The joints must be

driven toward the desired angles through the use of a low-level control mechanism.  Second, the

poses do not specify the creature's position and orientation with respect to the world frame of

reference.  Instead, these are determined by the creature's interaction with its environment.
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rotaty joint

Figure 2.3 - Typical articulated creature model used with
pose control graphs

In our implementation, joint angles are driven toward their desired values by joint actuator torques

generated according to the following proportional-derivative (PD) control law:

τ = kp ⋅ θdesired − θ( ) − kd ⋅ θ̇

where τ is the control torque applied at the joint, θ is the current joint angle, θdesired  is the desired

joint angle,θ̇  is the relative angular velocity of the rigid links connected by the joint and kp and

kd  are proportional and derivative control constants.

kdθ
kp

Figure 2.4 - Rotational PD controller for pose control

kp and kd  specify the strength of a rotational spring and damper pair which acts as the "muscle"

controlling the joint, as indicated in Figure 2.4.  While this is a simple model, it is sufficient for

our purposes in that it ensures that only internal control forces are used to generate the creature's

motion.  The actuator PD gain constants are held fixed for each joint and are considered to be part

of the model specification.

The low-level mechanism for driving individual DOFs to their desired angles incorporates

feedback, and is thus an example of closed loop control.  The basic pose control mechanism does
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not make use of any other feedback to correct or adjust the overall motion of the creature.

Therefore, we will refer to pose control using a fixed PCG as being a form of open loop control.

Our definition is one of convenience and is appropriate since we choose to use pose control as our

fundamental representation.  In essence, the local closed loop control at the joints is treated as part

of the system being controlled rather than part of the controller itself.  In this context, closed loop

refers to feedback used to modify the desired joint angle parameters of the PCG.

The transitions between the states of a PCG are based on a fixed hold time and/or are sensor-

based.  A hold-time transition occurs after a specified time has elapsed in the associated state.  A

sensor-based transition occurs when a particular binary sensor turns "on", or takes place

immediately if the sensor is already on upon entering the state.  The only form of sensors used in

this work are ground contact sensors on the creature's feet, which are considered to be on when

the foot is in contact with the ground.

(a) (b) (c)

Figure 2.5 - Pose control graph structures
(a)  cyclic
(b)  aperiodic
(c)  composite

PCGs may be periodic, aperiodic, or composite (see Figure 2.5).   A periodic PCG is one in

which the state machine is cyclic.  In this form, the desired poses are perfectly periodic.  The

actual motion and the applied torques need not be so; they do not typically repeat from one cycle to

the next.  As discussed in [vKF94], creatures controlled using periodic PCGs are analogous to

simple windup toys.  An aperiodic PCG is a chain of successive poses, useful for performing a

single motion instance, such as recovering after a fall.  A composite PCG is a more general form

of state machine composed of periodic and aperiodic PCGs.
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While pose controllers can be automatically synthesized with reasonable efficiency for relatively

simple creatures and motions [vKF94], they work best for naturally stable motions.  The base

pose controllers presented in this thesis are reasonably complex and have all been designed by

hand.  The possibility of using automatic synthesis with the control techniques described is

discussed later as future work.

To achieve the types of motions we are interested in, it is necessary to adjust our PCG to perform

appropriate corrective actions on each cycle.  An approach to the selection of these control actions

is one of the key contributions of this thesis.  Adjustments to the PCG are accomplished by

applying linearly scaled perturbations to the PCG joint parameters during each cycle of motion.

2. 3. 1 Linear Parametric PCG Perturbations

To distinguish between the PCG providing our basic motion and the perturbations we apply to it,

we will introduce the notion of a base PCG. A base PCG is a pose control graph which provides

the fundamental cyclic motion of the creature we are trying to animate.  For example, in the case

of walking, the base PCG might consist of a left step followed by a right step.  Ideally, the

execution of a base PCG from a suitable initial state would result in the desired motion (e.g. a

walk).  However, the creatures we are interested in animating are unstable.  The periodic open-

loop actions of the base PCG invariably results in the creature falling.  In order to generate

balanced locomotion, additional control must be provided.  Chapter 3 introduces one approach to

providing such additional control, which uses the notion of linear parametric  perturbations

(LPPs), which we define below.

We begin by defining a relative PCG, which describes a change in the pose control to be applied

to a creature, typically used to effect a desired change a motion.  Consider a base PCG, B, to

which we add a relative PCG, ∆P, scaled by an arbitrary scalar constant, k:

C = B + k ∆P.
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k·∆P is a linearly parameterized control perturbation where the parameter k is a scaling factor of

∆P.  The PCGs B, ∆P and the overall control, C, are each similar in form to Figure 2.2 (b). The

addition operation denotes the addition of the corresponding desired joint angle and hold time

parameters of two PCG pose tables of equal dimensions.  Scalar multiplication is applied to each

desired joint angle and hold-time parameter of a PCG pose table.  Sensor-based transitions in a

perturbed PCG remain unaltered.  As an example, an LPP could be used to turn a creature’s head

to look in a particular direction or to say "no".  To accomplish this, ∆P might be chosen to vary

only the desired angle of the neck and k would be chosen to turn the head to the right or left by the

desired amount.

A variety of LPPs will be used in Chapters 3 and 5 as the mechanism to provide our biped with

basic balance control and additional gait variations.

final
motion

balanced
controller

simulator
source
code

creature
definition

control
script

dynamics
compiler

simulator
executable

logfile

Figure 2.6 - Overview of the simulation process

2.4 The Animation System

Figure 2.6 provides an overview of the process of generating a physically-based animation with

our system, beginning with a creature definition and a control script.  The creature definition is

used by a dynamics compiler to generate code which solves and integrates the equations of
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motion.  The dynamics code, together with code implementing the ground model, basic pose

control and the balance control formulation of Chapter 3 is then compiled into the simulator

executable.  The control script provides the particular control parameters for the desired

simulation.  Sample control scripts can be found in Appendices B and C.  The primary outputs of

each simulation are the final balanced motion of the creature and the aperiodic PCG which was

ultimately responsible for generating it.  Note that the resulting aperiodic PCG output provides

open loop control.  It is therefore only reusable given an identical initial state.  In essence it is a

record of the applied control actions for the motion, already complete with feedback actions.

The dynamics compiler used is a commercially available software package [SDFAST].  The

animation environment currently supports the simulation and control of a single articulated

creature consisting of rigid links in a tree structure with rotary joints of up to 3 DOF each and no

joint limits.  Each DOF has individual PD constants which remain fixed for the entire simulation.

Collision forces due to interpenetration of the links of the articulated figure are not simulated.

The equations of motion are integrated using a fixed time step, fourth order Runge-Kutta

integrator which is part of the dynamics compiler software.  Performance of the simulator varies

with model complexity with the most complex human model (described in Section 2.5) requiring

approximately 1 minute of wall clock time to compute 1 second of simulated motion on a Sun

Sparkstation 10.  The use of a fixed integration time step has a significant impact on performance

since the worst-case (i.e. smallest) time step for the complete simulation must be used.  It is

estimated that the use of a variable integration time step could improve performance by a factor of

5-10.  Recorded simulation results can be played back in real-time on a Silicon Graphics Indigo2

Workstation with GR3-XZ graphics hardware.  Display functions are implemented using the

using the SGI-GL graphics library.
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2. 4. 1 Ground Model

The ground reaction forces are modeled for all simulations using a spring and damper model.

Figure 2.7 illustrates the model for a 2D system.  Ground forces are applied to specific, pre-

defined monitor points on the model.  The ground forces exerted on a monitor point, M, which

has penetrated the ground surface are:

F = kp ⋅ P − M( ) − kd ⋅ Ṁ

where F is the ground reaction force, M is the position of the monitor point, Ṁ  is its velocity, P

is the initial point of contact with the ground, and kp and kd are proportional and derivative

constants defining the stiffness and damping properties of the ground (see Figure 2.7).

Fy

Fx

P

M

L

ground

Figure 2.7 - Spring and damper ground force model (2D example)
L - a link of the creature
M - a monitor point attached to link L
P - point of initial contact of M with ground plane
Fx - simulated ground forces in x direction
Fy - simulated ground forces in y direction

The ground reaction forces are bounded such that the vertical component is always positive, thus

never allowing the damping term to impede the lifting of the foot.  Monitor point slippage is

implemented using a Coulomb friction model, which is used to limit the tangent of the ground

reaction force.  Slippage is allowed when the ratio of the vertical and tangent forces exceeds a

specified limit as illustrated in Figure 2.8 for the 2D case.  Slippage is simulated by moving the

point of initial contact, P, to be directly above monitor point.
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Fy

Fx

P

M
Fx́

P´

L

CC

= 0

Figure 2.8 - Friction cone ground slip model (2D example)
L - a link of the creature
M - a monitor point on link L
C - boundaries of a friction cone for a ratio of 1.0
P - point of initial contact of M with ground plane
P´ - new "point of initial contact" of M with ground

 plane after slipping is applied

No other ground forces are applied to the creature to constrain movement in any direction.  The

foot may be in full or partial contact with the ground, depending on which monitor points are in

ground contact.  It is free to pitch, roll and yaw and to slip within the described constraints

provided by the friction cones.  This contrasts with many approaches in animation and in robotics,

which use planar dynamics or place less realistic constraints on the motion of the foot while in

contact with the floor [HF77, FM87, KKI90, KT91, CHP92,VFV92, SC92,  Hod+9].

2.5 Biped Models

The most complex human model used, shown in Figure 2.9, has 19 degrees of freedom including

ball-and-socket hips, 2 DOF ankles and a jointed torso.  All other joints are modeled using 1

DOF.  Mass and inertia parameters are realistic for a human model and are from taken from

[WH95].  Several other simpler human models with fewer DOFs are also used throughout our

experiments in order to reduce simulation time requirements.  The simplest of these has 12 DOFs,

with 2 DOF hips (pitch and roll but no yaw), no arms, and a rigid torso which incorporates the

mass and inertia parameters for fixed arms in the reference position of Figure 2.9.
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1 m

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

13

3,6

4,7

5,8

9,11

(a) (b) (c)

   – rotary joints  – rotary joint axes  – monitor points

Degrees of Freedom

1 - waist pitch (sagittal plane)
2 - neck pitch (sagittal plane)

3:0 - left hip roll (coronal plane) 6:0 - right hip roll (coronal plane)
3:1 - left hip pitch (sagittal plane) 6:1 - right hip pitch (sagittal plane)
3:2 - left hip yaw (transverse plane) 6:2 - right hip yaw (transverse plane)
4 - left knee pitch (sagittal plane) 7 - right knee pitch (sagittal plane)
5:0 - left ankle pitch (sagittal plane) 8:0 - right ankle pitch (sagittal plane)
5:1 - left ankle roll (coronal plane) 8:1 - right ankle roll (coronal plane)

9 - left shoulder pitch (sagittal plane) 11 - right shoulder pitch (sagittal plane)
10 - left elbow pitch (sagittal plane) 12 - right elbow pitch (sagittal plane)

13 - mid-back pitch (sagittal plane)

Figure 2.9 - Complex human model
(a)  front view (reference position)
(b)  left side view (reference position)
(c)  typical pose (with monitor points shown)

A second model has a bird-like structure similar to the biped All-terrain Scout Vehicle (ASV) robot

in the motion picture "The Empire Strikes Back".  The robo-bird creature, shown in Figure 2.10,
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has 15 degrees of freedom, including 2 DOF hips and 2 DOF ankles.  The models do not

incorporate any physical joint limits.  Dimensions, mass and inertia parameters for both models

can be found in Appendix B.

These models are quite complex compared to much of the previous work on bipedal systems

which have often assumed very simple bipedal models.  In the next chapter, we will present an

approach to generating animations of balanced motion for these creatures, which represents one of

the major contributions of this thesis.

1 m
49

1 2,3

5,6

7,8

10,11

1

2,73,8

4,9

5,106,11

(a) (b) (c)

   – rotary joints   – rotary joint axes – monitor point

Degrees of Freedom

1 - neck yaw (transverse plane)

2:0 - right hip roll (coronal plane) 7:0 - left hip roll (coronal plane)
2:1 - right hip pitch (sagittal plane) 7:1 - left hip pitch (sagittal plane)
3 - right knee1 pitch (sagittal plane) 8 - left knee1 pitch (sagittal plane)
4 - right knee2 pitch (sagittal plane) 9 - left knee2 pitch (sagittal plane)
5 - right knee3 pitch (sagittal plane) 10 - left knee3 pitch (sagittal plane)
6:0 - right ankle roll (coronal plane) 11:0 - left ankle roll (coronal plane)
6:1 - right ankle pitch (sagittal plane) 11:1 - left ankle pitch (sagittal plane)

Figure 2.10 - Robo-bird creature
(a)  front view (reference position)
(b)  left side view (reference position)
(c)  typical pose (with monitor points shown)
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3.  DISCRETE LIMIT CYCLE CONTROL
This chapter describes our basic control approach and its application to the generation of bipedal

walking motions.  Section 3.1 begins by describing the notion of limit cycles, on which our

control formulation is based.  Next, Section 3.2 presents the overall control strategy and develops

a discrete system model to be used with a number of user-specified control elements to stabilize

periodic open-loop motions.  Section 3.3 discusses the application of this control system to

bipedal walking.  The underlying open-loop control, which serves as the basis for a desired gait,

is discussed in Section 3.4.  Sections 3.5 and 3.6 then go on to describe various possible

observed and controlled variables for walking.  Section 3.7 provides details on the application of

the control elements introduced in earlier sections to the generation of balanced walks.  Finally,

minor variations on the basic control which are of particular use in improving the aesthetics of the

human model’s motion are described in Section 3.8. While the basic formulation is applied to

bipedal walking, it is not inherently tied to any particular model or motion and could potentially be

applied to the generation of limit cycles in other types of animated figures.  Some of the terms we

define in this and subsequent chapters have different meanings in the context of control system

theory.  While we make efforts to avoid such conflicts, we have chosen to sometimes give

preference to the colloquial usage of terms.  Our relaxed definition of a limit cycle is one example

of such usage.

3.1 Limit Cycles

One common characteristic of many non-linear dynamical systems is the existence of system-wide

limit cycles.  A limit cycle is a periodic, cyclic trajectory through the state-space of a system.

Strictly speaking, a limit cycle involves the full state of the system.  However, within the context

of this thesis we will use a relaxed definition in which only part of the full system state must cycle
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periodically.  This definition is one of convinience since it allows periodic locomotion such as

walking or running to be discussed in terms limit cycles.

state space

perturbation

state space

perturbation

(a) (b)

Figure 3.1 - Passive Limit Cycle Stability
(a) Passively stable
(b) Passively unstable

Limit cycles may be stable or unstable.  A stable limit cycle is one in which slight perturbations to

the state-space trajectory are driven back into the limit cycle as indicated in Figure 3.1 (a).  An

unstable limit cycle is one in which slight perturbations to the trajectory result in the system

deviating further from the limit cycle as shown in Figure 3.1 (b).  We will call limit cycles that do

not require explicit control forces to maintain them passive limit cycles.  Note that this definition

does not preclude a system with active components (motors etc.) from exhibiting passive limit

cycles.  A motorized or windup toy is an example of such a system.

We wish to attain similar stable limit cycles with passively unstable bipedal systems by applying

suitable control forces to periodically drive the system back into an active limit cycle.  We define

an active limit cycle as one that requires corrective control forces to be applied to the system for

the explicit purpose of maintaining the cyclic trajectory.  Figure 3.2 illustrates this idea.
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state space

perturbation

corrective
control forces

Figure 3.2 - An Active Limit Cycle

3.2 Control Formulation

The problem of choosing appropriate control perturbations to drive the entire state of a system to a

desired value is a difficult one.  Assuming a solution does exist, the number of parameters to be

determined is large for all but very simple systems (a few DOFs or less).  Non-linearities in a

system mean that over the course of a full cycle even small perturbations of certain state variables

can cause large changes in final state and/or result in almost no cycle at all.  For example, a small

change in the roll angle of the ankle in a walk might cause the next foot to miss the ground

completely.

The essence of our control approach is to begin with a passively unstable system, discretize it into

individual cycles and stabilize each cycle in turn.  Each cycle is stabilized by applying control

perturbations which drive its final state to a suitable state from which to begin the next cycle.  The

motivation for using a discrete version of the system is that the discrete dynamics are much

simpler to model than the continuous system and therefore, simpler to control, as we shall see

shortly.  
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The continuous dynamic system which we eventually wish to control can be modelled by the

following system state equation:

x t + ∆t( ) = V x t( ), U( ) . (3.1)

where x is the system state and U is a set of applied control forces defined over [t, t+∆t].

V is a highly complex function which involves the integration of the forward dynamics of the

animated model over time and includes the effect of both internal and external applied forces such

as gravity, ground collisions, and muscular control forces.  Instead of working directly with this

complex continuous system, we assume that a strictly cyclic motion is desired and discretize Eq.

3.1 into individual motion cycles to obtain  

xi+1 = g xi , Ui( ). (3.2)

Here, the subscript i denotes the cycle number.  Ui is the set of time-varying control forces

applied over the ith cycle. The function g is a special case of V in which the sample times are not

necessarily regular1, depending on the definition of a motion cycle.  For example, the end of a

motion cycle could be defined as the time of a particular transition in a state machine.  We further

assume that a user-supplied open loop controller, Unom, produces a near-cyclic motion when

applied to the system being controlled.  To drive the final motion into a cycle, additional control

forces are required.  We denote these forces as ∆Ui
*, which are the control perturbations required

to drive each cycle of the nominal motion, toward a limit cycle.  The discrete system then becomes

xi+1 = g xi , Unom + ∆Ui
*( ) . (3.3)

where ∆Ui
* are still to be determined.  Figure 3.3 illustrates this discrete dynamical system.  

                                                

1 Note that strictly speaking, g is a different function for each cycle since the size of the interval over which it is

defined may vary from one cycle to the next.
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state space

end of one cycle,

beginning of the next

controlled cycle
Ui = Unom + ∆Ui

xi

xi+1

xi+1
*

uncontrolled cycle
Ui = Unom *

Figure 3.3 - Discrete System
xi initial state of the ith cycle/final state of the (i-1)th cycle
xi+ 1 final state of the uncontrolled ith cycle

xi+1
* final state of the controlled ith cycle/initial state of the (i+1)th

cycle
Unom basic cyclic control

∆Ui
* computed control perturbation for ith cycle

We will furthermore choose to express the corrective control forces, ∆Ui
*, as the linear sum of

several “basis” corrective actions:

Ui = Unom + kij
j=1

N

∑ ∆Uj = Unom + Ki • ∆U (3.4)

where ∆Uj  are fixed control perturbations which are defined over a cycle and kij  are linear scaling

factors applied to ∆Uj.  Ki is the vector of perturbation scaling factors and ∆U is a vector whose

elements are the fixed control perturbations, ∆Uj, which remain the same from one cycle to the

next.  N is the dimensionality of our control system and is equal to the number of state variables

which we wish to observe (and control).

Rather than using the complete system state, we choose to work with a small number of regulation

variables (RVs).  Regulation variables are a projection of the system state and are the observed
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part of state in our control system.  Using a reduced set of state variables greatly reduces the

computational effort required to construct a model of the discrete system.  We will use Q to denote

the vector of RVs and define γ (x) to be the projection function such that

Q = γ (x). (3.5)

Note that choosing to work strictly in the reduced state space carries the imlicit assumption that

controlling the reduced state is sufficient to control the complete system state in a desireable way.

For this to hold, γ (x) and ∆U must be chosen appropriately.  However, there is no guarantee that

such an appropriate choice exists.

Replacing the full state in Eq. 3.3 with the reduced state, Q, and substituting the control

formulation of Eq. 3.4 yields the reduced-order system which we will control directly:

Qi+1 = h Qi , Unom + Ki • ∆U( ) (3.6)

For a given cycle, Qi, U
nom, and ∆U are treated as apriori information.  We will use Qi+1 = h(K)

as a convinient short form of Eq. 3.6 when we are interested in discussing only the effect of K on

the system.

Eq. 3.6 can be restated as

Qi+1 = Qnom + ∆Qi+1 = h Qi , Unom + Ki • ∆U( ) (3.7)

where Qnom = h Qi , Unom( ) (3.8)

We choose to approximate the response of this system about the nominal operating point Qnom

(where K=0) using the following linear predictive model:

∆Qi+1 = J Ki (3.9)
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where J is the NxN discrete system Jacobian, defined as 
∂qi
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i, j ∈ 1, N[ ]
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J relates the change in Qi+1 over a single cycle to the applied perturbation scaling, Ki.

Figure 3.4 illustrates the relationship between the parameters of the linear model and the perturbed

system's cyclic motion in state space for a 1D system.  In this example, the linear predictive model

is constructed using two sample points on Qi+1 = h(k), corresponding to applied perturbation

scalings of k1 and k2.  The figure illustrates that we can predict (and hence control) the value of

Qi+1.

Qi

Qi+1

Qi+1

k2

k1

Qi+1
0

RV
dimension

Q = 0
Qi

nom∆k·Ji

Figure 3.4 - Linear parameters of a 1D discrete system in state space.
Here, ∆k = k2 – k1
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Evidence supporting the use of a linear discrete system model for bipedal control and the details of

model construction are presented later in the thesis (Section 3.6), after the particular choices of

RVs and LPPs have been described.

The key to using the linear predictive model for determining the correct control action is the

following.  Once the linear discrete system model has been constructed, the control perturbation

scalings required to drive Qi+1 to a desired value, can be computed using the inverse model:

Ki = J−1∆Qi+1
d (3.11)

where ∆Qi+1
d  = Qnom – Qi+1

d , the desired change in the RVs with respect to Qnom for the current
cycle.

Figure 3.5 shows the limit cycle viewed as state trajectory with respect to time.  Three consecutive

controlled cycles of a 1D discrete system are shown in this diagram, T is the cycle period, ki is the

perturbation scaling for cycle i, and Vi is the resulting state trajectory for cycle i. In this example,

Qi+1
d , the desired RV value for each cycle, is held constant for all three cycles.

γ(t)

t
γ(V1(Unom))

γ(V2(Unom)) γ(V3(Unom))

T 2T 3T

γ(V2(Unom + k2· ∆U)) γ(V3(Unom + k3· ∆U))

γ(V1(Unom + k1· ∆U))

Q
d

Cycle 1 Cycle 2 Cycle 3

Q2
d

Q3
d

Q4
d

Figure 3.5 - Three cycles of a typical 1-dimensional system.
In this case, each cycle has the same period, T.

Our control formulation assumes the following apriori information, supplied by the user:

1. the open-loop control, Unom.
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2. the RV projection function, γ.

3. the fixed control perturbations, ∆U.

4. the desired (target) values for the RVs, Qi+1
d

, for each cycle, i.

The parameters of the discrete system model (Qnom and J) and the required perturbation scalings,

Ki
*, are calculated automatically.  These computations will be discussed in Section 3.7 after the

various elements of the bipedal control system have been described.

3.3 Application to Bipedal Locomotion

In attempting to generate balanced locomotion for a biped, we must first select the number of

control dimensions to be used. For successful balance, the base of support must, on average,

remain under the centre of mass and the torso should remain generally upright.  Only two control

dimensions are required to achieve this, one in each dimension of the horizontal plane.  Thus to

balance each step, our bipedal control system will use two RV dimensions and require two LPPs

which span the RV space.  Since we use pose control exclusively with our biped we will use B

and ∆P to represent the pose control equivalents of Unom and ∆U respectively.

The base PCG, B, describes one complete cycle of motion, or in the case of bipedal walking, two

steps.  For bipedal walking we choose to split the cycle into two symmetric halves and apply our

control formulation to each step.  The PCG control perturbations, ∆P, affect the motion

throughout the cycle, rather than at a single point in the cycle.  

Figure 3.6 illustrates the overall pose control structure used for our bipedal systems.  The

structure is an expansion of Eq. 3.4, for N=2, with the left step and right step perturbations

specified explicitly.  In summary, each step is balanced by the choice of two scalar parameters, for

example, k10 and k20 for step 0.  These parameters are calculated automatically using the discrete

system model.
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Figure 3.6 - Overall limit cycle control structure for a walking biped.  The walk
begins with the left leg as the stance leg.  B is the open-loop base
PCG.  C is the overall applied control  for each step, consisting of
the base PCG B and additional (left or right) stance leg perturbations
to balance the step.  The Si are the states of B (four in this example).

With suitable parameter choices, the control algorithm is able to generate stable walking limit

cycles whose open loop motion is described by the base PCG.

Appropriate parameter choices are crucial for successful control.  The next few sections describe

each component of the control system for a walking biped.  The process of choosing various

parameters will be described as they are introduced.

3.4 Nominal Open-loop Control, Unom

A base PCG provides the nominal open-loop control for the periodic motion of the biped.  In the

case of a forward walk, the base PCG consists of a sequence of poses to generate a forward step

with one leg followed by a forward step with the other leg.  The base PCG for walking must

generate motion that is initially close to attaining a balanced walk when used without additional
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compensating perturbations.  A base PCG producing an open-loop walk of a few steps is more

likely to be successfully stabilized than one that falls in the first step.

Figure 3.7 shows a base PCG used to generate a forward walking motion for the simplest human

model along with its equivalent graphical representation.  The base PCG has right-left symmetry,

although PCG asymmetry can also be quite useful as will be demonstrated by the turning

perturbations presented in Section 6.2.

The base PCG consists of six states.  The poses in states S1 and S2 are identical.  The poses in

states S4, S5, and S6 are identical to those of states S1, S2 and S3 respectively, with the left and

right sides exchanging roles.  Having a total of only four unique poses, the controller describes a

simpler motion than a typical human walk.  This relatively small number of poses simplifies the

specification of a base PCG as well as the creation of suitable parametric perturbations.

Sensor-based transitions are necessary to synchronize the biped's motion to the external world.

The base PCG of Figure 3.7 uses such transitions to move from S1 to S2 and from S4 to S5.  A

transition occurs when the swing foot for the current step (i.e. the next stance foot) contacts the

ground.  If this has already happened before the state is entered, the transition occurs immediately.

Actively ensuring ground contact at fixed points in the walk cycle is important in certain situations

such as when starting from an initial resting state.  While the sensors are typically no longer

necessary once a walking limit cycle is reached, changing from one limit cycle to another can

require sensor-based synchronization again.
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S1

S2

S3

S4

S5

S6

0.2 sec

0.2 sec

0.2 sec

0.2 sec

right foot in
ground contact

left foot in
ground contact

P1

P1

P1'

P1' P2

P2'

(a)
transition

DOF: 1 2 3:0 3:1 4 5:0 5:1 6:0 6:1 7 8:0 8:1  info

S1 0 0 0 -50 60 -5 0 0 -10 0 0 0 0 R
S2 0 0 0 -50 60 -5 0 0 -10 0 0 0 .2

state S3 0 0 0 -20 0 5 0 0 -10 0 0 0 .2
S4 0 0 0 -10 0 0 0 0 -50 60 -5 0 0 L
S5 0 0 0 -10 0 0 0 0 -50 60 -5 0 .2
S6 0 0 0 -10 0 0 0 0 -20 0 5 0 .2

 (b)

Figure 3.7 - Forward walking base PCG for a simple human model
(a) State diagram (right foot dashed).  Poses Pi and Pi' are left-right symmetric.
(b) Pose table. All DOFs are in degrees relative to reference position.

Transition information is given as time (seconds) followed by an optional
foot sensor type (left or right) for sensor-based transitions.

State Description
S1 Right foot placed on ground

Left leg begins forward swing (knee bent for ground clearance)
S2 Right leg propels body forward

Left leg continues forward swing (knee bent for ground clearance)
S3 Left leg extends in anticipation of ground contact
S4 Left foot placed on ground

Right leg begins forward swing (knee bent for ground clearance)
S5 Left leg propels body forward

Right leg continues forward swing (knee bent for ground clearance)
S6 Right leg extends in anticipation of ground contact
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Figure 3.8 shows the open loop motion resulting when the base PCG alone is used for control.

As expected, the biped falls over after several steps.

Side view

Rear view

Side view
(continued)

Rear view
(continued)

Figure 3.8 - Unbalanced motion of human model using base PCG
shown in Figure 3.7.

Surprisingly, the small number of poses is sufficient not only for walking, but also for a limited

form of running.  Running can be achieved simply by replacing the 0.2 second time-based

transitions of the walking base PCG with 0.1 second transitions.  The flexibility of the pose

controller to accommodate the different motions is due to the ground sensors which are used in

state transitions.  The sensor-based transitions exist to ensure that the next stance foot is in contact

with the ground before proceeding into its stance phase.  However, they do not constrain the

initial time of ground contact.  In the case of running, ground contact typically occurs shortly after

entering state S1 or S4 as the new stance leg moves to propel the biped forward.  In the case of
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walking, ground contact typically occurs in the previous state (S6 or S3) toward the end of the

swing leg extension.  These two scenarios are illustrated in Figure 3.9.

right foot in
ground
contact

both feet
in ground
contact
(double-
stance)

S2S6

left foot in
ground
contact

S6
S1->S2

left foot in
ground
contact

flight
(brief)

right foot in
ground
contact

S6 S1
S2

S1->S2

(a) (b)

Figure 3.9 - Possible walking and running steps described by base PCG of
Figure 3.7.  Related states and transitions are indicated.
(a) walking
(b) running

An initial state must also be chosen for the walk.  The initial state provides a starting position from

which a successful walking motion can begin.  While the simplest initial state to use would have

the creature at rest in the reference position, it is easier to achieve a limit cycle when the initial state

more closely resembles a state on a balanced walk cycle.  Finding an appropriate initial state

currently requires trial-and-error on the part of the animator.  Figure 3.10 shows the initial state

which was generated manually for the simple human model controlled by the base PCG of Figure

3.7.
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Rear view Right side view

DOF: 1 2 3:0 3:1 4 5:0 5:1 6:0 6:1 7 8:0 8:1

Value: 0 0 0 0 0 0 0 -5.1 -20 50 0 0

Figure 3.10 - Initial configuration for simple human model.
Right foot shown as two segments for clarity.  All
velocities are 0.

3.5 Choice of Regulation Variables, Q

As discussed earlier, the discrete balance control of Eq. 3.6 is applied only once per step.  This

implies that each regulation variable must represent the behaviour of some part of the system state

over an entire step as a single scalar value.  It is important to choose suitable functions of state and

sampling times which give a reasonably smooth response to perturbations as we assume in

Section 3.2 by using the discrete system Jacobian.

All of the RVs presented in this thesis are projections of the system state at a specific point in the

cycle as shown in Figure 3.11.  The sample times correspond to the approximate time of foot

placement for each step.  Variations such as sampling an average or peak value of some function

of state over the whole step are also promising but unexplored possibilities.
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S1

S2

S3

S4

S5

S6

Q2n

Q2n+1

step
2nstep

2n+1
n = 0, 1, 2, ...

Figure 3.11 - End-of-step sampling times for Qi.

RVs must be chosen to be meaningful functions of the system state in order to improve the

chances of attaining a limit cycle.  A number of general criteria should be met:

1. RVs should incorporate some key element(s) of the desired cycle and should reflect

movement or position relative to the world frame.  An example that meets both criteria

is “uprightness” with respect to the world vertical axis for the case of walking.

2. The RVs should be easily controllable.  It should be possible to reach a wide range of

RV values from various initial states by choosing an appropriate parametric control

perturbation.  For example, the system must have DOFs which can affect the chosen

RVs.

3. RVs should vary smoothly around a reasonable range of interest.  For example, in the

case of a walking biped, the range of interest might correspond to configurations with

a relatively upright torso.

4. We should be able to estimate a target value for each RV which will keep the motion

close to a desirable limit cycle.  For example, to attain a walking limit cycle, we must

be able to determine target RV values that will keep the biped balanced.
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5. When multiple RVs are used, independence or near-independence of the RVs can be

useful.  RV interdependencies can be complex (e.g. non-smooth), making it more

difficult to find parametric perturbations which cause only smooth variations over a

wide range of RV values.  For our bipedal control, we assume near-independent RVs.

(a) (b) (c)

centre of mass

Figure 3.12 - Balance RV vectors
(a)  swing-COM vector
(b)  stance-COM vector
(c)  up vector

In this thesis, we experiment with three choices of RVs, based on the vectors shown in Figure

3.12.  The first, the up-vector, is based on the notion of torso "uprightness".  The up-vector is

fixed to and runs along the length of the torso in the human model and the head in the robo-bird

model.  The swing-centre of mass (swing-COM) vector describes the position of the COM of the

biped with respect to the current swing foot.  The stance-centre of mass (stance-COM) vector

indicates the position of the COM with respect to the stance foot.  The sampling time for all three

types of RV are at the end of states S3 and S6.  For the purpose of computing RVs, the swing and

stance legs do not exchange until after the last base PCG state of the step.  The leg which is the

swing leg for most of the current step is used to compute the swing-COM RV.  The stance-COM

RV is treated in a similar fashion.
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The RVs are two scalar components extracted from the given vector.  The vector is sampled at the

end of the current step, normalized, and projected onto the horizontal plane.  The projection is

then decomposed into the two components as illustrated in Figure 3.13 for the up-vector case.

The components provide an indication of the forward and lateral lean of the chosen vector. The

forward direction is defined as being orthogonal to the ground-plane projection of a line joining

the biped's hips.

forward
component

axis

Up vector

Horizontal plane

Qfwd
Qlat

lateral
component

axis

Figure 3.13 - Decomposition of up vector projection into RVs

3.6 Choice of Perturbation Parameters, ∆ U

The balance control formulation of Figure 3.6 uses two linear parametric perturbations (LPPs) to

control each step in the base PCG cycle.  Recall from Section 2.3 that each LPP consists of two

basic components, a fixed PCG perturbation, and a scalar multiplier. New values for each scalar

multiplier are automatically computed for each step to balance that step.  The fixed part of the PCG

perturbations remain the same throughout a given walk.  This section discusses the choice of fixed

PCG perturbations which must be supplied by the animator.  Throughout this section, the term

"perturbation" will be used to refer strictly to the fixed part of an LPP rather than an arbitrarily

scaled perturbation.
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As in the case of RVs, the choice of perturbations should meet a minimal set of requirements to be

effective.  The criteria for good PCG perturbations are related to the criteria for suitable RVs,

discussed in Section 3.5.  In general, the following should hold:

1. The scaled perturbation should be able to reach a wide range of desired RV values

from a wide variety of initial conditions.

2. Perturbations should provide smooth control over the RVs so that a suitable linear

model of the discrete system can be constructed.  The inverse of this model is used to

determine the appropriate scaling factors for each perturbation for each step.  For

bipedal walking, the chosen perturbations provide near-linear control over each of the

three balance control RVs presented in Section 3.5.

3. Perturbations should be designed to be as independent as possible in order to reduce or

eliminate non-linear interactions between RVs.

The control perturbations chosen in this thesis affect the stance hip pitch and stance hip roll DOFs.

They are shown in Figure 3.14.  Items (c) and (d) show the pose table form of the perturbations

which are scaled and added to a base PCG pose table such as that of Figure 3.7 (b).  In our case,

each of the chosen PCG perturbations affects a single DOF.  Unity-valued perturbations are used

so that the scalar multiplier units are in degrees.  Each perturbation is applied to all poses (i.e. all

states) of the related step, left or right.  This provides a smoother and more effective control

perturbation.  

Figure 3.14 illustrates the hip pitch and roll perturbations for a body in free space.  When applied

to a body in contact with the ground, the perturbations primarily affect the biped as shown in

Figure 3.15.  Applying a stance hip pitch perturbation varies the torso angle in the sagittal plane.

Applying a stance hip roll perturbation varies the torso angle in the coronal plane.
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(a) (b)

transition
DOF: 1 2 3:0 3:1 4 5:0 5:1 6:0 6:1 7 8:0 8:1  info

S1 0 0 0 0 0 0 0 0 1 0 0 0 0
S2 0 0 0 0 0 0 0 0 1 0 0 0 0

state S3 0 0 0 0 0 0 0 0 1 0 0 0 0
S4 0 0 0 0 0 0 0 0 0 0 0 0 0
S5 0 0 0 0 0 0 0 0 0 0 0 0 0
S6 0 0 0 0 0 0 0 0 0 0 0 0 0

(c)
transition

DOF: 1 2 3:0 3:1 4 5:0 5:1 6:0 6:1 7 8:0 8:1  info

S1 0 0 0 0 0 0 0 1 0 0 0 0 0
S2 0 0 0 0 0 0 0 1 0 0 0 0 0

state S3 0 0 0 0 0 0 0 1 0 0 0 0 0
S4 0 0 0 0 0 0 0 0 0 0 0 0 0
S5 0 0 0 0 0 0 0 0 0 0 0 0 0
S6 0 0 0 0 0 0 0 0 0 0 0 0 0

(d)
Figure 3.14 - Right hip pitch and roll perturbations for a simple

human model.  During states S1 to S3, the right
leg is the stance leg.  DOF 6:1 is right hip pitch.
DOF 6:0 is right hip roll.

(a) hip pitch (viewed from right)
(b) hip roll (viewed from rear)
(c) hip pitch (pose table)
(d) hip roll (pose table)

Figure 3.16 shows the relationship between the stance hip pitch perturbation and the forward and

lateral component of each of the three types of RVs introduced in Section 3.5.   Figure 3.17

shows similar results for the stance hip roll perturbation.  Each curve represents the value of the
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particular RV at the end of a single step for a range of applied perturbation scalings.  For each

curve, a different initial state is used.  The initial state for step n was generated by first simulating

n-1 steps with the open-loop base PCG.  By the fourth step, the figure is falling noticeably.

(a) (b)

Figure 3.15 - Typical effect of stance hip perturbations when dynamics are considered
(a) right stance hip roll
(b) right stance hip pitch

The graphs illustrate that hip pitch varies nearly linearly with Qfwd for all three choices of RV.

Similarly, hip roll is nearly linear with respect to Qlat.  These relationships provide evidence which

supports our assumption that the discrete system can be modelled using a linear model.  Despite the

fact that the perturbations themselves are mutually independent, their effect on the RVs is not

cleanly decoupled.  Thus, they do not provide truly independent control over each RV dimension

as desired.  In general, however, the magnitudes of the undesired variations are not excessively

large relative to the accessible range of RV values in the desired control dimensions.  Completely

independent control of the RVs would imply a diagonal discrete system Jacobian.  The relatively

small effects of each perturbation on other's control dimension mean that the off-diagonal elements

of the discrete system Jacobian will be small compared to the diagonal elements.
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Figure 3.16 - Balance RV components vs linearly scaled hip pitch perturbation
(a) - (b) up vector
(c) - (d) swing-COM vector
(e) - (f) stance-COM vector



45

-0.8

-0.6

-0.4

-0.2

0

0.2

-10 -8 -6 -4 -2 0 2 4 6 8 10

Q lat

hip roll (deg.)    

-0.2

0

0.2

0.4

0.6

0.8

-10 -8 -6 -4 -2 0 2 4 6 8 10

Qfwd

hip roll (deg.)

(a) (b)

  

-0.8

-0.6

-0.4

-0.2

0

0.2

-10 -8 -6 -4 -2 0 2 4 6 8 10

Q lat

hip roll (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

-10 -8 -6 -4 -2 0 2 4 6 8 10

Qfwd

hip roll (deg.)

(c) (d)

  

-0.8

-0.6

-0.4

-0.2

0

0.2

-10 -8 -6 -4 -2 0 2 4 6 8 10

Q lat

hip roll (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

-10 -8 -6 -4 -2 0 2 4 6 8 10

Qfwd

hip roll (deg.)

(e) (f)

step 1 step 2 step 3 step 4

Figure 3.17 - Balance RV components vs linearly scaled hip roll perturbation
(a) - (b) up vector
(c) - (d) swing-COM vector
(e) - (f) stance-COM vector
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These relationships allow us to attain final values for Q close to the desired values for each step

using a simplified form of the Jacobian, discussed in the next section.

 One interesting point to note is that the slope of the stance-COM curves in Figure 3.16 and Figure

3.17 are opposite in sign compared to the corresponding slopes for the up vector and swing-COM

RVs.  This is due to the mechanism through which the stance-COM angle changes.  Figure 3.18

shows this effect exaggerated for clarity.

up vector

swing–C. of M.

stance–C. of M.

Figure 3.18 - Direction of change of forward RV components with hip pitch

3.7 Linear, Sampled "Balance" Control

This section describes how the base PCG, perturbations and various RVs discussed in earlier

sections can be used to compute and apply the discrete system model parameters (J and Qnom) to

generate a balanced walk.  The "balancing" is done by choosing appropriate RV target values for

each step and finding the scaling factors to apply to the PCG perturbations to reach them.  The

scaling factors are determined automatically using the inverse of the linear discrete system model

(Eq. 3.11).  The balancing process is repeated, one step at a time, for as many steps as desired.

In some cases, the resulting walk is erratic and wanders.  In others,  a walking limit cycle is

reached.
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Two separate problems must be solved in order to achieve the motions we seek:

1. We must choose an RV target value, Qd, on the cycle, which is likely to drive the

system into a reasonable limit cycle.

2. We must construct the discrete system model of Eq. 3.9 and then use it to compute the

final control perturbation for each step.  This involves calculating the discrete system

Jacobian, J, and the nominal operating point, Qnom for each step.

3. 7. 1 Desired RV Values

The desired (target) values for the RVs should be chosen each step to keep the system near a limit

cycle.   We choose to use a constant target value for all steps.  The idea is that by forcing the RVs

to the same desired value at the same point in each cycle, a limit cycle will be generated.  This

approach is sufficient both to drive the system into a stable limit cycle initially and to maintain it.

Allowing the RV targets to vary from one step to the next can be useful, but requires a way to

select them.  This possibility is further explored in Chapter 5 where variation in Qd is used to

provide control over the biped’s walking speed.  

Once the choice is made to use constant RV targets, the particular values must be chosen.  This is

essentially a trial-and-error process.  However, common sense and the behaviour of the open-loop

system can provide valuable clues.  For example, if a straight forward walking motion is desired,

the lateral RV target can be quickly estimated using the final pose in one PCG step as shown in

Figure 3.19.  Similarly, the first few steps of the open loop motion (such as that in Figure 3.8)

can provide a reasonable estimate for the forward component targets.  Finally, performing a

number of trials with different forward Qd values provides a solution, if one exists, as well as

information on the useful range of target values.  In this case, a “trial” is an attempt to balance the

biped’s motion by applying our proposed control technique with some particular trial value of Qd.
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ii iii

i

Figure 3.19 - Estimate of desired lateral RV components
(based on S6 from Figure 3.7  (a) - rear view)

i) up vector (vertical)
ii) stance-COM
iii) swing-COM

3. 7. 2 Constructing and Applying the Discrete System Model

Once an RV target has been chosen, the discrete system model is reconstructed and applied at each

step as shown in Figure 3.20.  In general, a single fixed model is not sufficient to represent all

possible steps.  While RVs provide a reduced, low dimensional representation of system state,

they are also an incomplete and ambiguous representation of the system state.  For example, the

chosen RVs use position information and no velocity information.  Such unobserved parts of the

system state cause variations in both Qnom and J.  Figure 3.21 illustrates this idea.  This result is

evident in graphs of Figure 3.16 and Figure 3.17 where both the average slope and the offset of

the curves can vary from one step to the next.  These variations are especially apparent in the

lateral control dimension.  

simulate
final step

(1 simulation)

use model inverse
to compute final

control perturbatiuon

determine model
parameters

(4 simulations)

Figure 3.20 - Balancing process for each step.
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A BQ i ,

Qi+1
A

BQ i+1

(t)

(t)

=

x i
A Bx i≠

Figure 3.21 - Unobserved state problem. Two unperturbed RV
trajectories beginning with identical values for Qi
but different initial states.  

Because of the variation of Qnom and J from one step to the next, it is (unfortunately) necessary to

construct a new discrete system model for each step.  This is done by sampling h(Ki) to determine

the model parameters for the current step, Qi
nom  and Ji.  The inverse of this linear model, J-1, is

then used to choose the perturbation scalings necessary to reach Qi+1
d .  Figure 3.22 illustrates this

process for a one-dimensional system.

Qi+1

sample point

Qd

Qi+1 = hi(ki)

linear model

extrapolated perturbation value

k* k1 k2

J
Qnom

Figure 3.22 - Model construction and extrapolation.  k1 and k2 are
two sample points used to construct the forward
model.  The inverse model and Qd yield the
necessary applied perturbation scaling, k*
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In general, there is no guarantee that the discrete system Jacobian will be invertible for each step.

However, with well-chosen choices of RVs and LPPs, singularities generally occur only for

trajectories far enough from useful limit cycles to be of little interest.  Typical singularities for the

human model, occur when it is lying on its side and when the current stance leg does not contact

the ground at all during the current step.

The general form of the Jacobian for a 2D system is:

J =

∂q1
∂k1

∂q1
∂k2

∂q2
∂k1

∂q2
∂k2



















(3.10)

Using finite differences, a minimum of N+1 samples are required to construct the linear model of

h(K) for a control system of dimension N: one for the nominal operating point and one for each

control dimension, each of which yields a column in the Jacobian.  In this case, each “sample”

consists of a simulation of one step with a different value of K .  In practice, a greater number of

samples may be required.

For the two dimensions of our bipedal control system, we use four sample simulations, two for

each dimension.  An additional simulation computes the final motion for the step after the final

PCG scalings have been chosen using the model.  Rather than using the complete Jacobian, we

choose to work with two simplified forms:

1.  Assume independent control dimensions and observe only the primary RV.  This

corresponds to the assumption of a diagonal Jacobian (i.e. ∂qi / ∂kj = 0, i≠j).  We will

refer to this form as superposition (SP) sampling.

2.  Assume near-independent control dimensions but allow the operating point to move as

each final perturbation scaling is determined.  This corresponds to a form of triangular
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Jacobian which makes use the most up-to-date values of the model parameters in a

manner similar to the Gauss-Seidel method for solving linear systems.

For the first, two independent 1D models are constructed then combined in the final simulation.

For the second, two variations are considered.  In the first, a 1D model is constructed in the

forward control dimension and inverted to obtain the required K fwd
* .  A second 1D model is then

constructed in the lateral control dimension making use of the known value of K fwd
* .  We refer to

this as forward-then-lateral (F-L) sampling.  Lateral-then-forward (L-F) sampling is similar but

performs 1D control in the lateral dimension first, then uses this result to construct a 1D model in

the forward dimension.  We might expect that one or both of these approaches perform better than

superposition sampling since they both incorporate additional knowledge of the perturbations to

be applied.  Somewhat surprisingly, this turns out not to be the case as we shall see in Chapter 4.

All three approaches give comparable results, with superposition slightly outperforming the other

two.  The three sampling strategies investigated are illustrated in Figure 3.23.

k fwd

(0,5)

(0,-5) k lat

(-1,0)

(1,0)

(k *
lat

*, k      )fwd

klat

(0,5)

(0,-5)

(k *
lat, k      )*
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, k      )*
fwd(-1

, k      )*
fwd(1
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, -1)(k *
lat

, 1)(k *
lat

(0,-1)
(0,1)

(k *
lat, k      )*

fwd

k fwd

k lat

(a) (b) (c)

  sample points   interpolated points   final points

Figure 3.23 - 2D sampling strategies
(a) superposition  (SP)
(b) forward then lateral  (F-L)
(c) lateral then forward  (L-F)

The final parameters to consider in constructing a good linear model of the discrete system are the

perturbation scaling factors used to sample h(K) (e.g. k1 and k2 in Figure 3.22). Since the
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discrete system is quite linear, the precise location of the sample points is not critical. There are,

however, a few potential pitfalls to be avoided in choosing them:

1. Since we cannot necessarily predict the sign of the required perturbations from one

step to the next, it is often best to sample h(K) symmetrically about the nominal

operating point, K=0, rather than at the nominal point itself.  Figure 3.24 (a) shows

such a case.

2. Samples should span a sufficiently large range in order to avoid local distortions in

h(K).  A typical failure due to this problem can be seen in Figure 3.24 (b).

3. Sample points should not consist of excessively large control perturbations.  When the

current state is far from the limit cycle, large control perturbations can result in the

biped falling over.  Including a fall as a sample can lead to a poor model.  This

situation is illustrated in Figure 3.24 (c).

Sample scaling factors of kfwd = ±5 degrees for hip pitch and klat = ±1 degree for hip roll give

acceptable linear models for our biped models over a wide variety of gaits.
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Figure 3.24 - Sampling point pitfalls in discrete model construction
(a) sample scalings non-symmetric
(b) sample scalings too small
(c) sample scalings too large

3.8 Torso Servoing

While it is preferable for animation to have general control solutions, more specific control

solutions are sometimes useful or necessary.  The control described in previous sections can be

used to generate successful walking gaits.  However, the resulting walks exhibit a characteristic

bobbing2 of the torso in the sagittal plane.  This is due, in part, to the choice of simple stance hip

                                                

2 rocking back and forth.



54

perturbations and, in part, to the fact that the motion is only constrained at a single point in the

cycle for each step.  

One possible solution to this problem is to use the waist pitch degree-of-freedom of our human

model to continuously servo the torso to a desired angle from the vertical in the sagittal plane.  The

torso servoing control is applied to the biped's waist pitch DOF.  The applied torque for a planar

example is calculated as

τ = kp ⋅ (φ − φdesired ) − kd ⋅ φ̇

where

τ  is the applied joint torque

φdesired  is the desired torso angle from vertical in the world frame (constant)

φ  is the torso angle with respect to world frame vertical

φ̇  is the time derivative of φ

and

kp and kd are the proportional and derivative gains

The parameters τ , φdesired , and φ  are shown in Figure 3.25

hip DOF

waist
DOF τ

φdesired
φ

Figure 3.25 -  Torso servo parameters

With continuously-applied torso servoing, the torso motion becomes considerably smoother.

However, it also presents an additional problem when used with balance control.  The application

of a torso servo precludes the use of torso-based RVs since these will no longer vary with hip
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perturbations.  Redefining the up vector using a vector fixed to the pelvis as illustrated in Figure

3.26, rather than the torso, is sufficient to overcome this problem.

Figure 3.26 -  Pelvis-based up vector balance indicator

Torso servoing ensures that the upper body of the biped remains upright, and provides increased

stability by damping large upper body movements.  However, it should be noted that it does

nothing to prevent the biped from falling over since the legs must still support the upper body.  An

example of a fall with torso servoing applied can be seen in Figure 3.27.

There are a number of benefits in addition to a more aesthetic result.  Reducing the highly dynamic

oscillations of the torso (a significant portion of the body mass) results in a successful limit cycle

for a larger range of Qd. As well, longer stride times and very slow walks become possible.

Figure 3.27 - Falling with torso servoing enabled.
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3.9 Conclusions

In this chapter, we have described a control system capable of generating and controlling stable

3D bipedal walking limit cycles from unstable open loop motions.  A number of key

simplifications were made, leading to a well-behaved discrete system which is remodelled for each

step using a discrete linear model.  The details of each of the system components and their roles in

the overall system were described and examples were given for a walking human model.  

In the following chapter, we will present some of the results obtained by applying this control

strategy to our dynamic models.
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4.  BALANCED WALKING RESULTS

This chapter describes the results of a series of experiments performed using the balance control

approach of Chapter 3.  Various parameter choices are explored to determine their importance in

generating successful limit cycles and their effect on the resulting motion.  Control of the human

model is the primary focus of these experiments, although trials using the robo-bird model are

also included to demonstrate success with a significantly different bipedal model.  Sections 4.1,

4.2, and 4.3 present results obtained using each of the three choices of RVs introduced in Section

3.5.  Section 4.4 examines the effectiveness of applying a torso servo to the human model.  

Figure 4.1 shows a few steps from a typical balanced walk.  The motion reaches a limit cycle and

continues to walk in a straight line for the full 60 steps of the trial.  Using the nominal open-loop

control alone results in only 5 steps before the human figure falls over.  The results clearly

demonstrate that with suitable parameter choices, active stabilization of bipedal locomotion cycles

is both possible and useful.

   
Figure 4.1 - A sequence of steps from a walking limit cycle.

Up vector-based, Qd = [ .25, 0 ], F-L sampling.

The motion resulting from the application of the described balance control varies significantly,

depending on the choice of RVs and other parameter values.  Many choices of parameter values
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result in a number of successful steps but eventually fall.  Other values move the system onto a

successful walking limit cycle.  Some walks don't fall despite seemingly chaotic motion.

4.1 Up Vector Regulation Variables

The first results we show use the base PCG of Figure 3.7 and the stance hip perturbations

described in Section 3.6.  The RVs consist of the components of the up vector, as illustrated in

Figure 3.12 (c).  Torso servoing is not applied.  Figure 4.2 shows a representative set of RV

trajectories corresponding to successful walking trials of 60 steps.  These curves are the

experimentally-based equivalents of the idealized cyclic trajectories shown earlier, such as those of

Figure 3.3.  In three of the plots, a clear limit cycle emerges.  In the fourth, the trajectory is

chaotic.
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Figure 4.2 -  Continuous-time up-vector RV component phase
diagrams
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While such phase plots are useful tools for observing limit cycle behaviour in a system, they tell

us relatively little about the difference between sampling strategies and/or the visual appearance of

the walk.

The graphs shown in Figure 4.3 provide additional information. Graphs (a), (c) and (e) show the

effect of various choices for Qd, in particular, for the forward component of Qd.  The trials explore

the useful range of this parameter by uniformly sampling a broad set of values.  For each trial, the

forward component of the Qd is held constant for all steps.  The lateral component is fixed at 0.0

for all trials.  Walks are up to a maximum of 60 steps long and fewer than 60 successful steps

indicates a fall.

The "hip plots" corresponding to the most successful trials for each sampling strategy are shown

in Figure 4.3 (b), (d) and (f).  Hip plots indicate the position and orientation of the biped's pelvis

in the horizontal plane as viewed from above.  This orientation information indicates the direction

the biped is facing as it walks, allowing a forward motion to be easily distinguished from a lateral

(sidestepping) motion.  The lines on the plots are approximately 1 meter in length, significantly

wider than the biped's actual hips so that their orientation can be easily seen.  This affects the

perceived scale of the plot, making the walks appear shorter than they actually are.  The

dimensions of the terrain are given in meters.  The elapsed time between adjacent samples on the

hip plots is approximately 0.16 seconds.
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Figure 4.3 - Nominal up-vector Qd range and corresponding hip plots for
each sampling method.  All trials are limited to a maximum of
60 steps. The biped initially faces left (i.e. in the -x direction).
(a) - (b)  F-L sampling
(c) - (d)  L-F sampling
(e) - (f)  SP sampling
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A number of observations can be made from these graphs and the corresponding animations:

1. Not all choices of Qd work.  Successful trials fall within a "nominal range" of Qd

which is similar across sampling strategies.

2. Choice of sampling strategy noticeably affects the appearance of the walks. Somewhat

surprisingly, no one strategy is demonstrably superior.

3. Walks are not of uniform quality.  Some walks initially appear stable but then fall

over.  Other walks appear chaotic but don't fall.  Choices of Qd toward the centre of

the nominal ranges give the most consistent walks in terms of stability and appearance.

4. One walk begins moving forward, slows to a stop and then moves backwards

chaotically for about 15 steps before finally falling.  The fact that such a walk emerges

from a base PCG designed to produce forward walking motions illustrates the

potential for a broad range of useful motions with little or no change in the underlying

balance mechanism.

Figure 4.4 through Figure 4.6 show the end-of-cycle components of the reduced state vector, Qi
* ,

over time, for the walks of Figure 4.3 (b), (d) and (f).  The sampled points are joined by lines to

better visualize oscillations.  The lines do not represent the continuous motion of the RV during

each stride.  Qd is indicated by a dotted line.

A number of qualitative observations can be made about the behaviour of Qi
* :

1. A startup phase is clearly evident.  The number of steps required to reach a steady-state

response varies from 5 to over 20, with 10 being most typical.  Trials using values of

Qd in the middle of nominal range stabilize most quickly.

2. The desired value, Qd, is not always achieved, but a limit cycle is still attained in many

such cases.

3. No particular sampling strategy appears superior with respect to steady state error or

rate of stabilization.
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4. The chaotic walk (see Figure 4.6) has significantly larger error with respect to the

desired RV values, Qd, as compared to stable limit cycles (note the scale of the graph).

The visual appearance of this walk is noticeably more clumsy than the other walks.

5. Generally speaking, the forward component of Q stabilizes more quickly than the

lateral component and exhibits smaller variation in steady-state (e.g. Figure 4.4).

6. Qi
*  can oscillate from step to step.  This is noteworthy since the overall motion should

ideally have nearly identical characteristics from one step to the next.

4. 1. 1 Other Observations

The walks generated using the up-vector display a number of notable characteristics.  First, while

step length is not a regulated variable, virtually all of the walks travel a uniform distance from one

step to the next.  Figure 4.7 shows the step lengths over the course of a typical walk.  This result

is encouraging since an irregular walk would be much less appealing and a suitable remedy is not

immediately obvious.  This also serves as evidence that the unobservable state variables approach

a limit cycle as desired.

Another characteristic of the resulting motions is that not all of the walks follow a straight line.

This can be seen clearly in the hip plots of Figure 4.3.  Without any form of directional control,

most of the walks follow a curved path.  The chaotic walk corresponding to the Qd = [.35,0] trial

of Figure 4.3 (d) follows a less regular path, weaving back and forth over the course of the trial.

As we shall see in the next chapter, this can be solved by explicitly controlling the biped's

direction with an additional feedback loop.

An adverse effect apparent in some of the walks is a tendency to place each stance foot directly in

line with the previous in the lateral dimension as if walking a tightrope.  In a few cases, this even

results in the biped crossing legs slightly each step, with one leg passing through the other since

such interpenetrations are not prohibited in our simulations.  While the tightrope walking is
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undesirable, it is also an artifact of using the up vector RV in the lateral dimension.  The lateral hip

perturbations which result in this effect are chosen to maintain lateral torso uprightness.    Using a

different choice of RV for the lateral dimension can correct this effect, as will be demonstrated in

Chapter 5.
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Figure 4.7 - Step length vs step number.
Qd = [0.25,0] walk of Figure 4.3 (b)

One final characteristic of the walks is excessive front-to-back and side-to-side motion of the

torso.  This body motion is a result of the particular choice of control perturbations.  This effect

and a suitable solution will be discussed in Section 4.4.

4.2 Swing-COM Regulation Variables

Our balance control technique is also effective with the use of swing-COM RVs.  The fact that

significantly different choices of RV can be used successfully with otherwise identical control

serves to illustrate that the proposed control approach is reasonably general.

Figure 4.8 shows a representative set of RV trajectory plots for the swing-COM vector trials.  The

plots indicate the trajectories of both feet through the whole cycle since the swing leg, and hence

the swing-COM RV, changes legs each step.  In contrast with the similar up-vector trajectories of

Figure 4.2, the swing-COM-based RV trajectories do not exhibit "strong" limit cycle behaviour,
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but rather tends to drift around in near-cycles and/or converge very slowly onto a limit cycle if at

all.
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Figure 4.8 Continuous-time swing-COM RV phase diagrams.  The
two curves represent the left and right feet respectively
(i.e. swing-COM and stance-COM at various times in the
cycle).

(a) F-L-sampling, Qd = [-0.05,0]
(b) L-F-sampling, Qd = [0,0]
(c) SP-sampling, Qd = [0,0]
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Figure 4.9 shows the nominal range plots and hip plots for a series of trials using swing-COM

RVs and stance hip control perturbations with each of the three sampling strategies (F-L, L-F and

SP).  The trials explore the useful range of the forward component of Qd, with uniform sampling.

The lateral component of Qd  is fixed at 0.0 for all trials.  Torso servoing is not applied.  All trials

are a maximum of 60 steps long.

A few of observations can be made based on Figure 4.9 and on the corresponding animated

motion:

1. The swing-COM RVs generate walking motions generally similar in nature to those

generated using up-vector RVs.  As with the up-vector results, there is a “nominal

range” of Qd values which produce the most successful walks.

2. In contrast to the up vector case, different sampling strategies give significantly

different results.  SP sampling generates the most stable motions and F-L sampling the

least stable.   

3. Unlike the up vector walks, which generally move straight forward, many swing-

COM walks demonstrate a tendency of the biped to twist sideways about its own

vertical axis.  This tendency is most prevalent when using the F-L sampling strategy

and is almost entirely absent for the SP sampling strategy.  
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Figure 4.9 - Nominal swing-COM Qd  range and corresponding hip plots for each

sampling method. Lateral Qd = 0.0 for all trials. The biped initially faces
left (i.e. in the -x direction).
(a) - (b)  F-L sampling
(c) - (d)  L-F sampling
(e) - (f)  SP sampling
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Figure 4.10 and Figure 4.11 show discrete RV value plots typical of the results obtained using

swing-COM RVs. Qd  is indicated by a dotted line.
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Figure 4.10 - Discrete RV values, Qi
* , for L-F sampling, Qd = [0.05,0]
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Figure 4.11 - Discrete RV values, Qi
* , for SP sampling, Qd = [0.0,0]

Overall, the results are not as good as those obtained with the up-vector RV.  The swing-COM

Qi
*  values are, in general, less stable, fall farther from their desired values with larger, more

chaotic oscillations, and demonstrate a tendency to drift.  Correspondingly, the continuous motion

of the biped in most swing-COM trials is farther from a true limit cycle, qualitatively speaking.  
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Two particular problems are apparent when viewing the generated motion:

1. All three sampling strategies generate walks with step lengths which vary widely from

one step to the next as shown in Figure 4.12.  This contrasts sharply with the uniform

step lengths generated when using up vector RVs.

2. "Tightrope" walking, similar to that present in some up vector-based walks, is also

prevalent in the swing-COM trials.  The use of swing-COM RVs, however, makes a

reasonable solution possible by choosing Qd with this problem in mind.
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Figure 4.12 - Step length vs step number, SP sampling,
Qd = [0.05,0]
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Figure 4.13 - Discrete RV values for SP sampling, Qd = [0.0,±0.03].
Compare with Figure 4.11.  Larger lateral step-to-step variation means less tightrope walking.

The first problem will be addressed in the next chapter.  To solve the second problem, the lateral

component of Qd is chosen to give the swing foot a displacement slightly away from the body and
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the COM in the lateral dimension.  Figure 4.13 shows the resulting Qi
*  for such an attempt based

on the walk of Figure 4.11, which exhibits tightrope walking.  A lateral Qd component of ±0.03 is

used instead of 0.0.  The sign of Qd is such that foot placement target is away from the COM.

The resulting walk does not fall and exhibits much more realistic lateral foot placement.

4.3 Stance-COM Regulation Variables

While using the up-vector and swing-COM RVs achieves reasonable success in generating

walking motions, similar use of the stance-COM RVs does not.  Most trials fall during the second

controlled step.  The failures are due to the fact that even modest changes in the stance-COM RVs

require very large stance hip perturbations which cause very large changes in the biped's state.

Figure 4.14 illustrates this idea.  Because of this result, the chosen balance parameters fail to reach

a suitable state from which to begin the next cycle, even though the desired RV value might be

attained.

∆Qfwd small

∆K large

Qi
fwd Qi+1

fwd

Figure 4.14 - Variation of stance-COM RV with stance hip pitch (∆K)

While the walks all fall quickly, two interesting observations can be made:

1. The first controlled step reaches Qd with a high degree of accuracy, i.e. the discrete

system model of the first step is accurate.
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2. The above holds for final perturbation scalings, K* , far from the sample point scalings

used to construct the linear discrete system model.  That is, the model applies over a

large change in state.  Table 4.1 shows this for a number of desired values of Qd.  At

one extreme, the model is still accurate for K*  as high as 13 times the sample scalings

used to construct the model.

Taken together, these suggest the possibility of controlling non-trivial aperiodic motions in a

similar way to the periodic motions of this thesis.  Such motions would typically require a much

larger controllable range of Q than cyclic motions since they typically involve a larger change from

initial state to final state.  An example of such an aperiodic motion would be standing up from

sitting in a chair.

Qfwd
d Qlat

d K fwd
∗ Klat

∗ Qfwd
∗ Qlat

∗

.1 0 -36.318 +5.544 0.072 +0.007

.15 0 -10.918 +7.823 0.154 +0.030

.2 0 +14.481 +14.603 0.208 -0.001

.25 0 +39.881 -45.124 0.254 -0.015

.3 0 +65.280 -9.943 0.335 -0.003

Table 4.1 - Results of first controlled step using stance-COM RVs.

K fwd
*  and Klat

*  are final stance hip perturbation scalings in
degrees.  Sample scalings for construction of linear models

are [Kfwd,Klat] = [±5,±1] (compare to K fwd
*  and Klat

*  in
table).

Finally, because the particular choice of perturbation is the primary cause of the poor stability

results with the stance-COM, it is quite possible that a better choice of perturbations might give

better results.  Using a stance ankle pitch perturbation to vary the force with which the stance foot

pushes off the ground is one possible example.
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4.4 Torso Servoing

All of the walks presented thus far suffer from an unaesthetic "bobbing" of the torso.  This can be

readily observed in the continuous-time RV phase diagrams such as those in Figure 4.2.

Excursions in torso pitch of around 12 degrees are typical and they are quite apparent when

watching animations of the balanced walks.  While these motions may in fact be desirable in some

cases, they tend to adversely affect the perceived quality of the motion when a realistic, natural

looking walk is the eventual goal.
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Figure 4.15 - Trial results based on the walks of Figure 4.3 with the addition
of torso servoing to 5 degrees from world vertical. The biped
initially faces left (i.e. in the -x direction).
(a) - (b)  F-L sampling
(c) - (d)  L-F sampling
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Torso servoing significantly reduces the magnitude of the excursions in the forward dimension

and, as a side effect, can also reduce the excursions in the lateral dimension.  Figure 4.15 shows

the results for a set of trials which use the same balance control parameters as the walks of Figure

4.3.  In this set of trials,  torso servoing is applied using a desired angle of 5 degrees forward

from  vertical.

The resulting paths are straighter and generally more consistent in direction than the non-torso

servoed results.  The useful range of Qd increases in general.  The phase diagram in Figure 4.16

illustrates the effectiveness of torso servoing at reducing the bobbing effect caused by the

particular stance hip perturbation used.  In this trial, torso servoing reduces the range of torso

pitch from approximately 12 degrees to 3 degrees.
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Figure 4.16 - Continuous-time up vector component phase diagram for
human model with torso servoing to +5 degrees from
world vertical (Qservo ≈ .09).  Compare to Figure 4.2.

4.5 Robo-bird Running

Figure 4.17 shows the base PCG used to generate a running motion for the robo-bird model,

shown in Figure 4.18.  While the base PCG differs from that used for the human model, it is

balanced using up-vector RVs and stance hip pitch and roll perturbations as with the human

model.
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transition

DOF: 1 2:0 2:1 3 4 5 6:0 6:1 7:0 7:1 8 9 10 11:0 11:1 info

S1 0 0 0 80 -95 45 -45 0 0 15 55 -65 25 -25 0 0.1
state S2 0 0 0 80 -95 45 -45 0 0 15 55 -65 25 -25 0 0.1

S3 0 0 15 55 -65 25 -25 0 0 0 80 -95 45 -45 0 0.1
S4 0 0 15 55 -65 25 -25 0 0 0 80 -95 45 -45 0 0.1

Figure 4.17 - Robo-bird base PCG for running

Figure 4.18 - A running robo-bird

While both the robo-bird and human models are bipeds, their dynamics are different.  When

standing and walking, the human model is supported by the rigidity of its straight stance leg,

which typically has little or no freedom in the vertical direction.  In theory, no actuator forces are

required to prevent the human model from collapsing.  The leg structure of the robo-bird model is

such that actuator forces must constantly be applied even to remain standing upright.  This means

there is a significant amount of vertical compliance when moving, leading to “bouncy” motions.

As well, the base of the robo-bird model is wide enough to make standing on one foot for any

length of time difficult.  These factors make a dynamic running motion more natural than a walk

for this model.

4.6 Conclusions

In this chapter we have presented evidence that the discrete limit cycle control technique

introduced in Chapter 3 can be used to generate balanced walking motions for the human model

and a running motion for the robo-bird model.  Two choices of RV, based on the up-vector and

the swing-COM vector, were successfully applied to this end.  A torso servo was shown to be

useful in improving the aesthetics of the human model’s motion.  Finally, a running motion for
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the robo-bird motion was used to demonstrate the applicability of the control technique to a

different motion and model.  In the next chapter, we will present a number of interesting gait

variations, all of which make use of the same basic form of balance control demonstrated here.
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5.  WALKING VARIATIONS
The ability to control walking characteristics such as speed, direction, stride rate and posture is

important if a system is to be seriously considered as an animation tool.  This chapter first

introduces an approach to controlling the speed of a walk without requiring changes to the

underlying base PCG.  Next, the idea of using parameterized base PCGs is introduced and a

number of interesting variations on the basic walk are described.

The idea of parameterizing an open-loop control structure such as PCGs is not entirely new

[vKF94b].  However, the successful parameterization of dynamically unstable motions such as

walking does represent an important advance.

5.1 Speed Control

The basic balance control discussed in Chapter 3 uses fixed values of Qd for all steps of a walk

and achieves constant walking speeds.  One possible way to vary the speed of a walk is to provide

a number of base PCGs which yield various speeds and interpolate between these.  This approach

might be somewhat cumbersome, however, since it requires the animator to provide suitable base

PCGs.  An alternative is to allow Qd to vary from one step to the next instead of remaining fixed.

By varying Qd to cause the biped to speed up or slow down each step, a wide range of walking

speeds is possible without requiring modifications to the base PCG.  This approach requires that

we be able to affect the speed of the walk in a consistent manner by varying Qd.  Whether or not

this is possible depends on the choice of control system parameters (RVs, LPPs, etc.).  With the

choices described in Chapter 3, an intuitive form of control is available.  In qualitative terms, an

increase in speed can be achieved by using a more forward-leaning value for Qd and a decrease in

speed can be achieved using a more upright value for Qd.
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More formally, to control walking speed, Q̃d , a new value for Qd is computed each step by

adding a velocity feedback term to a nominal value of Qd as follows:

Q̃d = Qbias
d + kp ⋅ vd − v( ) ( 5.1)

where

Qbias
d is a nominal bias value

vd is a desired speed

v is a measure of the speed of the current step

kp is a proportional feedback gain

The bias value is required because the required Qd for a stationary walk (i.e. in-place) is not

necessarily 0.  The feedback term adjusts Q̃d  in the appropriate direction (more forward or more

upright) by an amount proportional to the error in speed.  We choose to use the distance travelled

by the pelvis over the current step as a velocity measure for v and vd.

The speed of the walk can be varied using either vd or Qbias
d , since both contribute a constant term

to the overall equation.  Fixing vd and varying Qbias
d  is akin to choosing a nominal speed and

varying the actual speed about that point by leaning more forward or more upright.

To prevent excessively large accelerations that could cause a fall, the feedback term is limited in

magnitude:

kp ∆vd ≤ ∆Qmax ,

where ∆Qmax  is the maximum allowable change in Q̃d  from Qbias
d
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Qbias
d  can be taken from any successful walk.  In theory, we could use the Qd value which gives a

stationary walk to reach any desired speed.  In practice, it may be necessary to choose a few

nominal bias values near the various desired speeds to achieve the broadest possible range of

control.  Other parameters require some trial-and-error.  kp must be chosen to relate a required

change in  speed to a suitable change in Qd.  If kp is too large, the system will be too sensitive to

small errors in speed and fall easily.  If kp is too small, the system may not respond quickly

enough to prevent a fall.  The size of the range of constant Qd values which produce successful

(constant speed) walks for the given base PCG is typically a reasonable value for ∆Qmax .

Figure 5.1 shows the nominal RV range and hip plots of a series of trials using speed control with

balance parameters based on Figure 4.15.    The trials of Figure 5.1 use a composite choice of

RVs, consisting of a forward up vector RV component and a lateral swing-COM RV component.

This is done to avoid the tightrope walking and uneven step length associated with each,

respectively.  The hold times for each time-based transition of the base PCG have been increased

from 0.2 to 0.25 to yield a natural stride rate of 1.0 steps/second.  Speed control parameters for

each control dimension are shown in Table 5.2.  A nominal desired speed of 0.4 meters per step

or 0.8 m/s is chosen.  Qbias
d  is varied to generate various speeds around this operating point.

Table 5.2 - Speed control parameters

Kp ∆Qmax Qbias
d vd

fwd 1.5 0.15 0.1 - 0.5 0.4

lat 0.5 0.05 ±0.03 0.0
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Figure 5.1 - Speed control using composite RV and stride time of 1.0
seconds.  Only select Qd values are shown on hip plot.  Other
paths are similar in direction with varying lengths. The biped
initially faces left (i.e. in the -x direction).

The resulting walks exhibit a number of desirable characteristics:

1. Applying speed control results in a wider nominal range for Qd.

2. The use of a composite RV and the desired lateral speed of 0 are both effective in

eliminating a number of the artifacts in earlier walks.  The walks generally follow a

straight line for a large range of Qd, with consistent step length from one step to

another and no tightrope walking or leg crossing.

3. A wide range of speeds is possible, with linear control of the steady-state speed about

the chosen nominal speed.  All walks begin from a stop and reach steady-state speed

within around 8 steps.

4. A very slow walk, almost in place, is possible (Qbias
d  = 0.1).  Note that this walk is

outside the linear range of control.

5. Acceleration and deceleration is possible as shown in Figure 5.4.
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Figure 5.2 - Forward velocity (m/s) versus time for velocity
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Figure 5.4 - Acceleration and deceleration
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5.2 Base PCG Parameterization

By applying the balance control of Chapter 4 to various base PCGs, it is possible to achieve

controlled variations on basic walking motions such as balanced turns, bent over walks, and

different stride rates.  A more powerful feature of these gait variations is that they can sometimes

be predictably interpolated.  That is, given two different styles of walking, based on PCGs B1

and B2, it is possible to interpolate the control in order to obtain a motion that qualitatively

interpolates the respective motions.

More precisely, the interpolation procedure can be described as follows:

Define β as the balance control process which operates on a base PCG to balance it as

described in Chapter 3.

Given B1 and B2, the parameter sets defining two base PCGs, and given that β( B1 ) and

β( B2 ) are both successful (i.e. that they don't fall), we often find that the control

interpolation

β( αB1 + (1 – α)B2 )

varies smoothly with α and is qualitatively similar to what we might imagine a physically

correct motion interpolation to be, namely

αβ( B1 ) + (1 – α)β( B2 ).

There is no guarantee that any such successful interpolation exists.  In practice, however,

smoothly interpolating parameterizations can be found often enough to make them useful.
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Such parameterizations can equivalently be thought of as a linear parametric perturbation which

modifies the open-loop behaviour of a base PCG.  The perturbations are identical in form to the

balance control LPPs of Chapter 3, but differ in function.  Instead of providing step-to-step

variations for balance, the perturbations presented in this chapter are applied over a number of

steps and are used to vary the overall behaviour of a balanced base PCG in order to achieve a

different motion from the original.  By recasting the interpolation described above as an LPP, it

can then be applied directly to other base PCGs to hopefully effect a similar qualitative change in

the motion.  For example, if β( B1 ) walks straight forward and β( B2 ) turns to the right, then

∆P = B2 – B1

might be called a turning LPP and could be applied to various other basic gaits to allow them to

turn.

This is the interpretation we shall build on in the rest of this chapter.

5.3 Turning Perturbations

One important parameterized perturbation can be used to achieve turning motions.  When applied

to the base PCG of Section 3.4 and subsequently controlled for balance, this perturbation

provides a means to smoothly vary the curvature of the biped's path.  Furthermore, by applying a

simple proportional control law to determine a suitable turning rate, the biped can be made to

follow an arbitrary direction and thus the path of the biped can be controlled.

Figure 5.5 (a) and (c) show the PCG perturbation for a right turn for the human model.  The

perturbation affects only the left and right hip yaw DOFs (3:2 and 6:2).  The conceptual operation

of the perturbation is straightforward.  In order to cause the biped to turn, the foot is placed on the

ground at an angle which points toward the new direction of travel.  During the stance phase, the

hip realigns the body with the foot, which remains fixed relative to the ground.
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transition
DOF: 1 2 3:0 3:1 3:2 4 5:0 5:1 6:0 6:1 6:2 7 8:0 8:1  info

S1 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0
S2 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0

state S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S5 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0
S6 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0

(a)

transition
DOF: 1 2 3:0 3:1 3:2 4 5:0 5:1 6:0 6:1 6:2 7 8:0 8:1  info

S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

state S3 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0
S4 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0
S5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
S6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b)

S1

S2

S3

S4

S5

S6

right foot in
ground contact

left foot in
ground contact

(c)

Figure 5.5- Turning perturbations for human model with ball-and-socket hips
(DOF 3:2 and DOF 6:3).
(a) Unit-scaled right turning perturbation
(b) Unit-scaled left turning perturbation
(c) State diagram of relevant DOFs for right turning perturbation.

Feet indicate hip twist with respect to pelvis.
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For the right leg of the right turning perturbation, the initial foot rotation is performed during the

swing phase of the right leg, as shown in state 5 of Figure 5.5 (c).  During the right leg stance

phase, this rotation is eliminated.  The return rotation is done in the second stance state (S3),

thereby ensuring that the foot is planted firmly on the ground (in S2) before attempting to turn the

body.  Ground friction keeps the foot position and orientation fixed, while the torso rotates about

the leg.  The left foot performs a similar motion in its stance phase to distribute the complete

rotation evenly over both feet.  A similar and symmetric set of perturbations is used for turning to

the left.  Figure 5.6 shows the typical action of the turning perturbation.  For the sake of clarity,

the motion is illustrated for the case of a stationary stepping motion.

Figure 5.7 shows the hip plots from a set of turning trials performed using a base PCG similar to

that of Figure 3.7.  The trials use up vector RVs with Qd = [.25,0].  As can be seen, the turning

control works well for each of the three sampling strategies.  Each trial uses a different scaling of

the turning perturbation in Figure 5.5.  The largest scaling factor used which still yields forward

motion corresponds to a hip yaw of 8 degrees for each leg, giving a turning radius of

approximately 2.5 meters.  All of the walks face slightly into the centre of the circle, an effect

which is more pronounced for tighter curves.

S3 S4 S5 S6 S6 S1 S2 S3 S3

 - stance foot   - swing foot

Figure 5.6 - Typical operation of a right turn perturbation for an in-place
stepping motion.  A top view of the feet and pelvis is shown,
with the associated PCG state indicated below.

The largest scaling-factor trials attempted, corresponding to 16 degrees of right and left hip yaw,

demonstrates an interesting behaviour.  In such trials, the tendency to "lead" the turn with the
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torso rotation causes the biped to rotate about its own vertical axis more quickly than it can move

along a circular path.  As a result, it turns to face the centre of the circle.

In the F-L and L-F sampling trials, the highest turning rates eventually cause the biped to turn

around completely and walk almost straight backwards.  The turning perturbation is ineffective in

the backward walking cases because the model walks primarily on its heels.  As a result, the foot

never obtains sufficient ground reaction forces to fix the foot's orientation.
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(c) - SP sampling

Figure 5.7 - Hip plots for the most successful turning perturbation trials
over a range of scaling factors.  Qd = [.25,0] for all trials.

Not all values of Qd work equally well as Figure 5.8 demonstrates.  Linearly varying the

perturbation scaling factor still yields smooth behaviour, but not the desired results of Figure 5.7.

While this result makes it clear that some care must be taken in choosing parameters, it also serves

to illustrate the fact that reasonable choices can often be made without exploring a large parameter
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space through brute force experimentation.  Here, the clue lies in the fact that the value of

Qd=[.25,0] is around the centre of the range of nominal Qd values for the straight forward walks

of Figure 4.3.  This suggests that this value of Qd might be best for other similar PCGs.

One deficiency of the walks of Figure 5.7 is that the smallest successful turning radius is

approximately 2.5 meters.  While this is adequate for navigating the biped in a relatively open

environment, it is too large for motion in a constrained environment such as turning a corner in a

narrow corridor.
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(a)  Qd = [.2,0] (b)  Qd = [.3,0]

Figure 5.8 - Hip plots for less successful turning perturbation trials over
a range of scaling factors.
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Figure 5.9 - Turning perturbation with torso servoing applied.

Applying torso servoing during turning helps significantly, as indicated by Figure 5.9.  With

torso servoing to an angle of 5 degrees from vertical, the walk is slower and the circles can be
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tighter.  The 16 degree turning perturbations fail, resulting in a turning limit cycle of

approximately 0.75 meters in radius, a more useful lower limit in terms of the motion that can be

animated.  The walks still suffer from the biped facing too much toward the centre of the turn.

For tight turns, the biped's outside swing leg interpenetrates the stance leg in a noticeable fashion.

Nonetheless, the perturbations provide a good basis for higher level control of the biped's path.

5. 3. 1 Point and Path Following

By applying simple feedback control, the biped can be made to walk in a desired direction.

Proportional control of the angle of the current facing direction and the desired direction as given

by a target point is used to generate an appropriate turning rate.

The pose control applied each step including balance control is the same form as Equation 5.1.a:

( B + kturn∆Pturn ) + k1∆P1 + k2∆P2

In the case of separate left and right turning control perturbations,

kturn > 0 applies to the right turning perturbation and ∆Pturn = ∆Pturnright

kturn < 0 applies to the left turning perturbation and ∆Pturn = ∆Pturnleft

and kturn is computed according to the proportional control law:

kturn = kθ θ

where θ is the angle between the biped's current facing direction and a vector to the target point,

as illustrated in Figure 5.10.  kθ is a gain constant which determines how tightly the biped turns

for a given error in direction.  kturn is bounded to a predetermined maximum value in order to

avoid large, unstable turn rates.
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(TOP VIEW)

Figure 5.10 - Point-following.  Vector f indicates the
facing direction of the biped.  Vector t
indicates the desired direction.  f and t
are both in the horizontal plane.
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Figure 5.11 - Path following.
(a) without torso servoing
(b) with torso servoing

With this turning control, a simple form of path control can be achieved by following a suitable set

of target points in sequence.  Each time the biped approaches a target point to within a minimal

distance, the next point in sequence becomes the current target point.  Figure 5.11 shows the

results of applying this algorithm to a set of target points, both with and without torso servoing.

In both cases, the proportional constant, kθ, is chosen to give the minimum radius turn when the

facing direction of the biped is 45 degrees from the target point and has a maximum value at that
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angle.  The minimum distance to the current target point before changing to the next target point in

sequence is chosen to be slightly larger than the tightest turning diameter.  This helps avoid

scenarios where the biped indefinitely walks in circles around a target point.

transition
DOF: 1 2 3:0 3:1 3:2 4 5:0 5:1 6:0 6:1 6:2 7 8:0 8:1  info

S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .05

state S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .05
S4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .05
S6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .05

Figure 5.12 - ∆Pstriderate, stride rate perturbation for human model with ball-
and-socket hips and arms.

5.4 Stride Rate Perturbation

The stride rate perturbation can be used to vary the stride rate of the biped.  The perturbation,

shown in Figure 5.12, modifies only the hold times of particular states in the base PCG.

Applying the perturbation with a positive scaling parameter increases the hold time in each state,

resulting in a decrease in stride rate.  Applying a negative scaling parameter has the opposite

effect, decreasing the hold time in each state and the increasing stride rate.  The unperturbed walk

is a straight walk with a stride rate of 1.0 strides/second and uses torso servoing and speed control

with a composite RV3.

Figure 5.13 (a), (b) and (c) show three distinct steps in which the perturbation is applied with a

gain of –1.0, 0 and +1.0 respectively to obtain stride rates varying from 0.8 strides per second to

approximately 1.25 strides per second.  The three sequences are in fact taken from a single walk,

during which the stride rate is dynamically varied.  In this case, stride rate transitions use 3 steps

for each unit of change in the perturbation gain.

                                                

3 In this case, an up vector-based forward RV component and a swing-COM-based lateral RV component.
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(a)

(b)

(c)

t

Figure 5.13 - Results of applying different stride rate perturbation scalings.  Each
sequence indicates one full step.  Horizontal distance along the page indicates
relative stride time.

(a) kstriderate = –1 i.e. B* = B + (–1.0 · ∆Pstriderate )
(b) kstriderate = 0
(c) kstriderate = +1

As the sequences of Figure 5.13 indicate, the peak height of the swing knee in each step increases

with hold time.  This is due to an associated increase in stance hip pitch.  The increased hip pitch

is automatically introduced by the balance control in order to meet Qd at the end of each step.

Without this action the biped would fall due to leaning too far forward with larger hold times or

too far backward with smaller hold times.  The increased hip pitch gives the walk a more

mechanical, "marching" appearance at lower step rates than at higher step rates.
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Figure 5.14 - Average speed (m/s) for varying stride rates
Region A: kstriderate = 0.0
Region B: kstriderate = +1.0
Region C: kstriderate = –1.0
Region D: kstriderate = 0.0
Other regions are transition regions.

Figure 5.14 shows the average speed of the pelvis over the course of the walk which is controlled

to stay relatively constant while the biped’s stride rate increases and decreases.  A constant speed

implies that the stride length increases inversely with stride rate (and hence linearly with hold time)

for this particular perturbation.

5.5 Other Interesting Variations

PCGs varied in other ways can also be balanced successfully.  Stylistic variations can be used to

convey different moods or emotions and allow a broader range of abilities.  In some cases,

simpler variations can be combined successfully to form more complex motions.  The next few

sections provide some examples.

5. 5. 1 Bent-Knee Walking

The perturbation of Figure 5.15 generates a walk with bent knees.  While this perturbation may

not seem particularly useful on its own, it can be successfully combined with other perturbations

to generate a ducking perturbation for the biped.
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transition
DOF: 1 2 3:0 3:1 3:2 4 5:0 5:1 6:0 6:1 6:2 7 8:0 8:1  9 10 11 12 info

S1 0 0 0 -20 0 20 -20 0 0 -20 0 20 -20 0 15 -30 15 -30 0
S2 0 0 0 -20 0 20 -20 0 0 -20 0 20 -20 0 15 -30 15 -30 0

state S3 0 0 0 -20 0 20 -20 0 0 -20 0 20 -20 0 15 -30 15 -30 0
S4 0 0 0 -20 0 20 -20 0 0 -20 0 20 -20 0 15 -30 15 -30 0
S5 0 0 0 -20 0 20 -20 0 0 -20 0 20 -20 0 15 -30 15 -30 0
S6 0 0 0 -20 0 20 -20 0 0 -20 0 20 -20 0 15 -30 15 -30 0

Figure 5.15 - Bent-knee perturbation for a human model

Figure 5.16 - Bent-knee walking with a parameter scaling of 1.0

Figure 5.16 shows a sequence of steps from a bent-knee walk generated by applying the

perturbation to a basic forward walk.  The transition from the normal walk to the fully perturbed

(scaling parameter = 1.0) walk is performed smoothly over a series of 18 steps.  Qualitatively

speaking, the motion is lively and “bouncy”.  The model spends most of each stance phase

standing on its heel due to a raised stance toe (-20 degrees ankle pitch).

5. 5. 2 Bent-Over Walking

A bent-walking perturbation shown in Figure 5.17 provides yet another walking configuration.  It

consists of a relatively small bend at the waist and a larger bend in the torso, generating a slightly

hunched over, forward leaning walk.  

transition
DOF: 1 2 3:0 3:1 3:2 4 5:0 5:1 6:0 6:1 6:2 7 8:0 8:1  9 10 11 12 13 info

S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -52 -5 -42 -5 15 0
S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -52 -5 -33 -5 15 0

state S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -52 -5 -33 2 15 0
S4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -42 -5 -52 -5 15 0
S5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -33 -5 -52 -5 15 0
S6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -33 -2 -52 -5 15 0

Figure 5.17 - Bent-over walking perturbation
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(a)

 

(b) 

(c)

 

Figure 5.18 - Bent-over walking
(a) straight to bent transition
(b) walking bent-over
(c) bent to straight transition

Figure 5.18 shows the transitions into and out of the bent-over walk and a few steps of the bent-

over walk.  Both transitions are performed over two steps, with a different scaling parameter used

for each intermediate step.  The arm perturbations are included in order to make the biped's arms

appear to hang by its side in a "natural" position while the body is bent-over.  In retrospect, a

better approach would be to reduce the stiffness and damping parameters of the shoulder

actuators, letting physics determine a more appropriate arm position for the walk.  This would

require variable joint stiffness and damping parameters which are not currently supported.

5. 5. 3 Ducking

By combining the bent-knee and bent-over perturbations with an additional bend of the neck, it is

possible to form a relatively simple composite "ducking" perturbation which could potentially be
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used to avoid overhead obstacles.  Figure 5.19 shows the composite perturbation for the human

model used with the bent-over perturbation.

transition
DOF: 1 2 3:0 3:1 3:2 4 5:0 5:1 6:0 6:1 6:2 7 8:0 8:1  9 10 11 12 13 info

S1 5 40 0 -20 0 20 0 0 0 -20 0 20 0 0 -52 -5 -42 -5 15 0
S2 5 40 0 -20 0 20 0 0 0 -20 0 20 0 0 -52 -5 -33 -5 15 0

state S3 5 40 0 -20 0 20 0 0 0 -20 0 20 0 0 -52 -5 -33 2 15 0
S4 5 40 0 -20 0 20 0 0 0 -20 0 20 0 0 -42 -5 -52 -5 15 0
S5 5 40 0 -20 0 20 0 0 0 -20 0 20 0 0 -33 -5 -52 -5 15 0
S6 5 40 0 -20 0 20 0 0 0 -20 0 20 0 0 -33 -2 -52 -5 15 0

Figure 5.19 - Composite bent-knee, bent-over and bent-neck perturbation

Figure 5.20 shows the transitions to and from "ducking".  Note that while the bent-knee

perturbation was originally designed for a slower rate walk which uses speed control, it also

works well when applied to a different basic walk (bent-over) without speed control.

(a) 

(b) 

Figure 5.20 - Ducking
(a) straight to ducking transition
(b) ducking to straight transition

While the ducking perturbation is demonstrated here in an open loop configuration, one can

imagine using feedback to provide the biped with the ability to automatically duck under obstacles

in its path.
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5.6 Conclusions

In this chapter, we have shown that parameterized PCG perturbations can be used to generate a

variety of interesting gaits simply by modifying the underlying open loop control.  Smooth

transitions between motions were demonstrated and an example of the use of a simple feedback

mechanism to increase creature autonomy was given.  An approach to controlling the speed of a

walk without requiring modification of the underlying base PCG was also provided.  The basic

balance control introduced in Chapter 3 required no modification to be used successfully with

variable motions.
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6.  CONCLUSIONS AND FUTURE WORK
The initial goal of this thesis was to provide a general technique for the control of complex,

statically-unstable 3D bipedal creatures for use in physically-based animation.  For simplicity,

only cyclic motions were considered.  The proposed control formulation meets this goal by

discretizing the periodic motion into cycles and simplifying the control through the use of a limited

set of control perturbations which are used to stabilize a small set of observed variables.

The approach is general in the sense that the same control technique can be used to control a wide

variety of walking gaits for a wide range of control parameter choices.  Control of speed and

direction for a biped has been demonstrated, as well as parametric variations of a number of

walking characteristics.  By using simple feedback to drive the parameterized controllers, it is

possible to give the animated creature a greater degree of autonomy, providing the animator with

high level control.  The approach has been demonstrated for walking and limited forms of

running, using both a human model and a bird-like robot model.  We believe that the technique

will also prove to be a suitable approach to animating many other types of periodic behaviours for

a wide variety of articulated figures.

While the bipeds are not of full human complexity (which would require about 200 DOFs), they

are sufficiently complex that many other forms of control would prove computationally infeasible.

Many of the DOFs in the human body cannot act independently, for example, the vertebrae of the

spine.  The tens of DOFs in our models are sufficient to capture the gross motions of natural

bipedal locomotion with reasonable fidelity.

The primary contribution of this thesis is to illustrate that control techniques can be successfully

applied to animate creatures of high complexity.
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6.1 Future Work

A number of items remain for future work.  In particular, improved performance, other forms of

locomotion and more natural looking motion remain to be addressed. As well, extension of the

control formulation to non-periodic motions and the possibility of automating much of the design

process stand out as worthwhile avenues to pursue.

6. 1. 1 Better Discrete System Models

One of the drawbacks of the current control approach is the high computational expense of

reconstructing the discrete system model each cycle.  In the case of our bipedal control, this

results in a four-fold increase in the time required to generate the final motion.  Two reasonable

possibilities exist to reduce this cost.  Both are based on the reuse of previously computed models

rather than blind reconstruction of the model each cycle.

One approach would be to reconstruct the model only when necessary.  Once a reasonable limit

cycle has been reached, the model parameters determined through sampling remain relatively

constant from one cycle to the next.  In such cases, a fixed model may be sufficient.  By assuming

fixed model parameters and monitoring the final RV values for deviations from the limit cycle, it

seems likely that direct balance control can be achieved for much of the desired motion.  When a

limit cycle terminates, for example due to a change in base PCG, a new system model could be

constructed.

A second approach might be to construct a general discrete system model which is parameterized

with respect to the creature's initial state at the start of a cycle.  Such a model could be constructed

by generating a number of walks from various initial conditions and recording the model

parameters and initial state for each.  Once a large enough number of models have been generated,

they could be used in the form of a lookup table.  Particular models could be chosen using a

nearest neighbour approach based on the initial state of the current cycle.  The number of different
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models generated should be sufficiently large to span a reasonable domain of initial states.  A

general model like this could incorporate varying terrain or other environmental state information

in order to allow a wide range of behaviours.

6. 1. 2 Additional Forms of Locomotion

A number of features need to be added to the system for it to be truly useful as a generic biped

animation system.  First, other common forms of bipedal locomotion such as skipping and

hopping would be necessary, as well as transitions between the various types of gaits.  A second

desirable feature not yet explored is the ability to generate robust locomotion over varying terrain.

Finally, it should be possible to parameterize a controller with respect to various model properties

such as mass and dimensions.  We believe that it is possible to implement such features within the

proposed control structure.

6. 1. 3 Natural Motion

The motions obtained to date using our technique do not yet represent convincing human motion.

This is primarily due to the use of simple base PCGs.  One possible way to achieve more natural

motion might be to fine tune a suitable open-loop motion based on motion capture data.  While we

are convinced that more natural looking motion can be attained with a reasonable amount of extra

effort, this remains to be demonstrated.

6. 1. 4 Extension to Aperiodic Motions and Further Generalization

While this thesis has focused on cyclic motions, a similar approach might be suitable for

controlling aperiodic motions.  Such motions would include standing up, sitting down or

throwing a ball at a target. Other useful acyclic motions might include transitions into and out of

cyclic motion and dynamic balancing in place, stepping only when necessary.  A unified control

technique for both periodic and aperiodic motions would be quite useful, since animators typically

require the ability to freely move between the two as needed.
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6. 1. 5 Automatic Synthesis

Another possible direction for future work is toward automatic controller synthesis.  While the

base PCGs, RVs and LPPs for the motions given throughout this thesis were designed by hand,

they should ideally be automatically generated.  Previous use of pose control has been directed

primarily toward such automatic synthesis of motion controllers [vKF94] [vKF94b] [vL95].

Most of these attempts deal with relatively simple, statically-stable creatures.  The problem of

automatic synthesis of control for statically unstable 3D systems is a difficult one.  In [vL95], van

de Panne and Lamouret propose the use of external guiding forces to initially generate cyclic

PCGs, followed by two subsequent phases which reduce the forces and then attempt to eliminate

them respectively.  While the motions generated by the second phase are significantly more natural

looking than the initial PCGs, they are not fully realistic in the sense that the creature's actuators

do not drive the motion unassisted.  The final phase, removal of external forces, is not always

successful and can be very computationally expensive.

Rather than attempting to directly synthesize the entire PCG in this way, it might be possible to

automatically synthesize various control components for our system.  The two most likely

candidates are the base PCG and the fixed PCG perturbations (LPPs).  Base PCGs for various

interesting motions might be synthesized using van de Panne's first two phases and then stabilized

using the balance control presented in this thesis.  LPPs might be synthesized using a more

traditional generate, test, and refine process such as that used for simple, statically stable systems. 
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APPENDIX A –  TERMS AND DEFINITIONS

Robotics and Systems Control

Articulated Figure  – A set of rigid body segments connected by rotary joints.

Degrees of Freedom (DOFs) – The set of variables required to fully specify a creature's

position and orientation in free space.  A single rigid body in free space has six

degrees of freedom, three for position and three for orientation.

Kinematics – Computation of the absolute position of all parts of a creature, given the

relative joint angles.  In animation, kinematics typically refers to the specification or

manipulation of the joint angles and velocities without regard to physics.

Inverse Kinematics – Computation of the intermediate joint angles from absolute

positions.  For example, computing the angles of leg joints needed to place a foot in

a particular position.

Dynamics – Computation of the accelerations of the links of an articulated figure using the

laws of physics.

Inverse Dynamics – Computation of the torques and forces required to be applied to a body

to achieve desired accelerations.

Centre of mass (COM) – The single point on a body through which a linear force can be

considered to act, defined as:

 x =
x dm

mass
∫

M

where M is the total mass.

System state – The set of variables required to fully specify the position and velocity of

every point on an object.  The system state of an object consists of its degrees of

freedom and their derivatives. Figure A–1 shows the two components of the state for
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a simple swinging pendulum plotted with respect to time.  The two near-sinusoidal

curves are out of phase since the peak joint velocity occurs when the joint angle is

zero and the peak angle occurs when the velocity is zero.

θ

θ

t

t

θ·

Figure A–1 - State vs time for a 1 degree-of-
freedom swinging pendulum plotted
vs time.

State space – The set of all possible values of the state of an object.  A trajectory through the

state space of an object describes its motion.  Figure A-2 shows the state space

representation of the trajectories of Figure A–1.

Limit cycle  – A periodic, cyclic trajectory through state space.  The trajectory in Figure A-2

is an example of a limit cycle which represents the periodic motion of a simple

pendulum.  Throughout this thesis, the term limit cycle is used to refer to cyclic,

periodic motion in part of the state space rather than strictly applying to the full state

space.

θ·

θ

Figure A–2 - State-space trajectory of a simple
swinging pendulum.
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Biomechanics

Anthropomorphic  – Human-like in structure.

Sagittal Plane – A reference plane on the human body.  See Figure  A-3.

Coronal or Frontal Plane – A reference plane on the human body.  See Figure  A-3.

Transverse Plane – A reference plane on the human body.  See Figure  A-3.

fwd
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Double-stance – The phase of a walk during which both feet are in contact with the ground.

Figure  A-4 shows the phases of a bipedal walk.

Single-stance – The phase of a walk or run during which only one foot is in contact with

the ground.  See Figure  A-4.

Right foot
contact

Left foot
contact

Double support

Single support

time

Right foot
contact

Left foot
contact

Flight

Single support

time

(a) (b)

Figure A–4 - Phases of bipedal walking and running.  Solid lines
indicate the times that the associated foot is in contact
with the ground.

(a) walking
(b) running

Computer Animation

Motion capture - A technique, used to animate computer generated characters, in which the

motion of the animated character is taken from a real world source such as a person

walking.  Modern forms of motion capture typically use markers attached to the

subject’s body which are tracked by a sensing device (e.g. an IR camera).

Rotoscoping - A form of motion capture in which motion data is taken from pre-recorded

live images such as film or video.

Thesis Related

Pose Control Graph (PCG) – A type of finite state machine which specifies a set of

desired poses over time.  Each desired pose specifies a set of desired joint angles for

the articulated figure being animated.
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Base Pose Control Graph – A pose control graph used to provide the basic cyclic control

for a desired periodic motion.

Regulation Variable (RV)  – A scalar function of system state chosen to represent a key

feature in the overall motion of an articulated figure.  A set of regulation variables

essentially form a reduced order model of the system.  Regulation variables are

controlled in order to achieve some desired change in the overall motion for a figure.

Qd is used to denote the desired (or target) value of an RV. Q* represents the final

controlled value of the RV.

Linear Parametric Perturbation (LPP)  – A fixed PCG multiplied by a scaling factor and

added to a base PCG.  LPPs are used to achieve desired changes in the regulation

variables or variations in the overall motion of the base PCG.

Superposition (SP) sampling – A sampling strategy for constructing a model to balance

one step of a walk.  Using SP sampling, the biped is balanced in the sagittal and

coronal planes independently and then the results are combined.

Forward-then-lateral (F-L) sampling – A strategy for constructing a model to balance

one step of a walk.  Using F-L sampling, the biped is first balanced in the sagittal

plane and then the results of this operation are used to balance the biped in the

coronal plane.

Lateral-then-forward (L-F) sampling – A strategy for constructing a model to balance

one step of a walk.  L-F sampling is similar to F-L sampling except that the biped is

balanced first in the coronal plane and then in the sagittal plane.
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APPENDIX B –  MODEL PARAMETER SCRIPTS

#-----------------------------------------------------------------------------
#
# file:  human.bones
#
# Skeleton for human model with feet, arms and 2-link torso.
# All joints are 1 DOF, except for hips (3 DOF) and ankles (2 DOF).
# Mass and inertia data from Wooten & Hodgens
#
# Body axes:  forward -> -1,0,0   (-ve x-axis)
#             right   -> 0,0,-1   (-ve z-axis)
#             up      -> 0,1,0    (+ve y-axis)
#
# Joints:  (z - pitch, x - roll, y - yaw)
#   waist-z,spine-z,neck-z,lhip-x, lhip-z, lhip-y, lknee-z, lankle-z, lankle-x
#                          rhip-x, rhip-z, rhip-y, rknee-z, rankle-z, rankle-x
#                          lshoulder-z, lelbow-z, rshoulder-z, relbow-z
#
#
# Model construction commands:
# ----------------------------
#
#    bone <#>
#        Creatues a new bone.  Bones can have many rigidly attached segments.
#    seg <x1>,<y1>,<z1> <x2>,<y2>,<z2>
#        Adds a segment to the current bone.
#    cofm <x> <y> <z> <rx> <ry> <rz>
#        Specifies the centre of mass for the current bone.
#    mass <mass>
#        Specifies the mass for the current bone.
#    iner <ix> <iy> <iz>
#        Specifies the moment of inertia for the current bone about major axes
#    mon <x>,<y>,<z>
#        Specifies a monitor point
#    hinge <bone#> <x>,<y>,<z> <ax>,<ay>,<az>
#        Specifies a 1 DOF hinge at x,y,z with axis ax,ay,az
#    uhinge and ghinge
#        Similar to hinge but specify 2 DOF and 3 DOF respectively
#        and take 2 and 3 hinge axis arguments respectively.
#    kpd hinge <parent bone #>:<DOF#>   <Kp>  <Kd>
#    mon <x>,<y>,<z>
#        Adds a new monitor point at x,y,z.  Monitor points are points of
#        interest on the creature.  They are the only parts of a creature
#        which are experience ground forces.
#
#-----------------------------------------------------------------------------

### STRUCTURE + LINK PARAMETERS  --------------------------------------------

bone 1                                              # pelvis
seg  0,0.95,0.12  0,0.95,-0.12                      #  - add a bone segment
mass 16.61                                          #  - bone mass
iner 0.23  0.16  0.18                               #  - major axis inertias
cofm 0  0.98  0                                     #  - bone COM position
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bone 2                                              # lower torso
seg 0,1.02,0  0,1.35,0
mass 19.5133
iner 0.4867  0.17427  0.42
cofm -0.03  1.3112  0
hinge 1  0,1.0202,0  0,0,1                          # waist - 1 DOF (pitch)

bone 3                                              # upper torso
seg 0,1.35,0  0,1.505,0
mass 9.7567
iner 0.2433  0.08713  0.21
cofm -0.03  1.4275  0
hinge 2  0,1.35,0  0,0,1                            # spine - 1 DOF (pitch)

bone 4                                              # head
seg 0.02,1.57,0  0.02,1.80,0
mass 5.89
iner 0.03  0.023  0.033
cofm -0.01  1.70  0
hinge 3  0.0478,1.5052,0  0,0,1                     # neck - 1 DOF (pitch)

bone 5                                              # left upper leg
seg 0.00478,0.9629,0.0932 0.00478,0.5197,0.09091
mass 8.35
iner 0.15 0.025 0.16
cofm 0 0.80 0.09
ghinge 1 0.00478,0.9629,0.0932 1,0,0 0,0,1 0,1,0    # hip - 3 DOF
                                                    #       (roll, pitch, yaw)

bone 6                                              # left lower leg
seg 0.00478,0.5197,0.09091 0.03348,0.09164,0.0837
mass 4.16
iner 0.055 0.007 0.056
cofm 0 0.35 0.07
hinge 5 0.00478,0.5197,0.09091 0,0,1                # knee - 1 DOF (pitch)

bone 7                                              # left foot
seg -0.10,0,0.0837 0.07,0,0.0837
mass 1.20
iner 0.0018 0.0070 0.0075
cofm -0.03 0.02 0.08
uhinge 6 0.03348,0.09164,0.0837 0,0,1 1,0,0         # ankle - 2 DOF
                                                    #         (pitch, roll)

bone 8                                              # right upper leg
seg 0.00478,0.9629,-0.0932 0.00478,0.5197,-0.09091
mass 8.35
iner 0.15 0.025 0.16
cofm 0 0.80 -0.09
ghinge 1 0.00478,0.9629,-0.0932 1,0,0 0,0,1 0,1,0   # hip - 3 DOF
                                                    #       (roll, pitch, yaw)

bone 9                                              # right lower leg
seg 0.00478,0.5197,-0.09091 0.03348,0.09164,-0.0837
mass 4.16
iner 0.055 0.007 0.056
cofm 0 0.35 -0.07
hinge 8 0.00478,0.5197,-0.09091 0,0,1               # knee - 1 DOF (pitch)

bone 10                                             # right foot
seg -0.10,0,-0.0837 0.07,0,-0.0837
mass 1.20
iner 0.0018 0.0070 0.0075
cofm -0.03 0.02 -0.08
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uhinge 9 0.03348,0.09164,-0.0837 0,0,1 1,0,0        # ankle - 2 DOF ankle
                                                    #         (pitch, roll)

bone 11                                             # left upper arm
seg 0.0289,1.4203,0.1847 0.0287,1.1491,0.2102
mass 2.79
iner 0.025 0.005 0.025
cofm 0 1.34 0.21
hinge 3 0.02,1.4203,0.1847 0,0,1                    # shoulder - 1 DOF (pitch)

bone 12                                             # left lower arm
seg 0.0287,1.1491,0.2102 0.0287,0.85,0.2302
mass 1.761
iner 0.0066 0.0018 0.0080
cofm 0.0287 1.03 0.222
hinge 11 0.0287,1.1491,0.2102 0,0,1                 # elbow - 1 DOF (pitch)

bone 13                                             # right upper arm
seg 0.0289,1.4203,-0.1847 0.0287,1.1491,-0.2102
mass 2.79
iner 0.025 0.005 0.025
cofm 0 1.34 -0.21
hinge 3 0.02,1.4203,-0.1847 0,0,1                   # shoulder - 1 DOF (pitch)

bone 14                                             # right lower arm
seg 0.0287,1.1491,-0.2102 0.0287,0.85,-0.2302
mass 1.761
iner 0.0066 0.0018 0.0080
cofm 0.0287 1.03 -0.222
hinge 13 0.0287,1.1491,-0.2102 0,0,1                # elbow - 1 DOF (pitch)

### JOINT STRENGTH (Kp & Kd) PARAMETERS  ------------------------------------

kpd hinge 2:0  2000 100                             # waist pitch (z)
kpd hinge 3:0  2000 100                             # spine pitch (z)
kpd hinge 4:0   100  10                             # neck pitch (z)

kpd hinge 5:0   900  30                             # left hip roll (x)
kpd hinge 5:1  1275  60                             # left hip pitch (z)
kpd hinge 5:2  1275  60                             # left hip yaw (y)

kpd hinge 6:0  1275  60                             # left knee pitch (z)

kpd hinge 7:0   170  17                             # left ankle pitch (z)
kpd hinge 7:1   170  17                             # left ankle roll (x)

kpd hinge 8:0   900  30                             # right hip roll (x)
kpd hinge 8:1  1275  60                             # right hip pitch (z)
kpd hinge 8:2  1275  60                             # right hip yaw (y)

kpd hinge 9:0  1275  60                             # right knee pitch (z)

kpd hinge 10:0  170  17                             # right ankle pitch (z)
kpd hinge 10:1  170  17                             # right ankle roll (x)

kpd hinge 11:0  100 10                              # left shoulder pitch (z)
kpd hinge 12:0   50  5                              # left elbow pitch (z)

kpd hinge 13:0  100 10                              # right shoulder pitch (z)
kpd hinge 14:0   50  5                              # right elbow pitch (z)
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### MONITOR POINTS  ---------------------------------------------------------

                                                    # up vector monitor
                                                    # points (lower torso):
mon 0,1.1,0                                         #  1 - origin
mon 0,1.3,0                                         #  2 - "up"
mon 0,1.1,-.05                                      #  3 - "right"

                                                    # swing/stance COM points:
mon 0.03348,0,0.0837                                #  4 - left mid-foot
mon 0.03348,0,-0.0837                               #  5 - right mid-foot

                                                    #      left foot:
mon -0.10,0,0.05                                    #  6 - inside ball of foot
mon 0.07,0,0.05                                     #  7 - inside heel
mon 0.07,0,0.13                                     #  8 - outside heel
mon -0.10,0,0.13                                    #  9 - little toe

                                                    #      right foot:
mon -0.10,0,-0.05                                   # 10 - inside ball of foot
mon 0.07,0,-0.05                                    # 11 - inside heel
mon 0.07,0,-0.13                                    # 12 - outside heel
mon -0.10,0,-0.13                                   # 13 - little toe

mon 0.00478,0.5197,0.09091                          # 14 - left knee
mon 0.00478,0.5197,-0.09091                         # 15 - right knee

mon 0.02,1.80,0                                     # 16 - head

                                                    # pelvis-based up vector &
                                                    # torso servo mon points:
mon 0,0.95,0                                        # 17 - origin
mon 0,0.97,0                                        # 18 - "up"
mon 0,0.95,-.02                                     # 19 - "right"
mon 0,0.95,+.02                                     # 20 - servo axis (local)
mon 0,1.1,+.05                                      # 21 - torso axis

set up_mon 1,2,3                                    # up vect mon points
set cofm_mon 5,4                                    # initial swing,stance feet
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#-----------------------------------------------------------------------------
#
# file:  robo-bird.bones
#
# Skeleton for bird-like robot model with feet, body and large head.
# All joints are 1 DOF, except for hips (2 DOF) and ankles (2 DOF).
# Mass and inertia parameters calculated automatically using density of
# 1.0 g/cm 3̂
#
# Body axes:  forward -> -1,0,0   (-ve x-axis)
#             right   -> 0,0,-1   (-ve z-axis)
#             up      -> 0,1,0    (+ve y-axis)
#
# Joints:  (z - pitch, x - roll, y - yaw)
# neck-z, rhip-x, rhip-z, rknee1-z, rknee2-z, rknee3-z, rankle-z, rankle-x
#         lhip-x, lhip-z, lknee1-z, lknee2-z, lknee3-z, lankle-z, lankle-x
#
#-----------------------------------------------------------------------------

### STRUCTURE + LINK PARAMETERS  --------------------------------------------

# the words "left" and "right" may be backwards in the descriptions below.

bone 1                                              # body
   # x-aligned segments
seg 1.0,-0.4,-1.5 -4,-0.4,-1.5
seg 1.0,-0.4,1.5 -4,-0.4,1.5
seg 1.0,0.8,-1.5 -4,0.8,-1.5
seg 1.0,0.8,1.5 -4,0.8,1.5
   # z-aligned segments
seg 1.0,0.8,-1.5 1.0,0.8,1.5
seg 1.0,-0.4,-1.5 1.0,-0.4,1.5
seg -4,-0.4,-1.5 -4,-0.4,1.5
seg -4,0.8,-1.5 -4,0.8,1.5
   # y-aligned segments
seg 1.0,-0.4,-1.5 1.0,0.8,-1.5
seg 1.0,-0.4,1.5 1.0,0.8,1.5
seg -4,-0.4,-1.5 -4,0.8,-1.5
seg -4,-0.4,1.5 -4,0.8,1.5

bone 2                                              # head
   # x-aligned segments
seg 0.5,1.5,-1.75 -6.0,1.5,-0.9
seg 0.5,1.5,1.75 -6.0,1.5,0.9
seg 0.5,5.5,-2.25 -4.5,5.5,-1.25
seg 0.5,5.5,2.25 -4.5,5.5,1.25
   # z-aligned segments
seg 0.5,1.5,-1.75 0.5,1.5,1.75
seg 0.5,5.5,-2.25 0.5,5.5,2.25
seg -6.0,1.5,-0.9 -6.0,1.5,0.9
seg -4.5,5.5,-1.25 -4.5,5.5,1.25
   # y-aligned segments
seg 0.5,1.5,-1.75 0.5,5.5,-2.25
seg 0.5,1.5,1.75 0.5,5.5,2.25
seg -6.0,1.5,-0.9 -4.5,5.5,-1.25
seg -6.0,1.5,0.9 -4.5,5.5,1.25
hinge 1 -2.3,1.0,0 0,1,0                            # neck - 1 DOF (yaw)

bone 3                                              # right leg bone1 (upper)
seg 0,0,-2.5 -3,0,-2.5
uhinge 1 0,0,-2.5 1,0,0 0,0,1                       # hip - 2 DOF
                                                    #       (roll, pitch)
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bone 4                                              # right leg bone2 (mid1)
seg -3,0,-2.5 -3,-4,-2.5
hinge 3 -3,0,-2.5 0,0,1                             # knee1 - 1 DOF (pitch)

bone 5                                              # right leg bone3 (mid2)
seg -3,-4,-2.5 -3,-9.5,-2.5
hinge 4 -3,-4,-2.5 0,0,1                            # knee2 - 1 DOF (pitch)

bone 6                                              # right leg bone4 (lower)
seg -4.8,-9.5,-2.5 -1.3,-9.5,-2.5
hinge 5 -3,-9.5,-2.5 0,0,1                          # knee3 - 1 DOF (pitch)

bone 7                                              # right foot
seg -4.1,-10.4,-2.5 -7.6,-10.4,-2.5
seg -5.6,-10.4,-3.9 -5.6,-10.4,-1.1
uhinge 6 -4.8,-9.5,-2.5 0,0,1 1,0,0                 # ankle - 2 DOF
                                                    #         (pitch, roll)

bone 8                                              # left leg bone1 (upper)
seg 0,0,2.4 -3,0,2.4
uhinge 1 0,0,2.5 -1,0,0 0,0,1                       # hip - 2 DOF
                                                    #       (roll, pitch)

bone 9                                              # right leg bone2 (mid1)
seg -3,0,2.5 -3,-4,2.5
hinge 8 -3,0,2.5 0,0,1                              # knee1 - 1 DOF (pitch)

bone 10                                             # left leg bone3 (mid2)
seg -3,-4,2.5 -3,-9.5,2.5
hinge 9 -3,-4,2.5 0,0,1                             # knee2 - 1 DOF (pitch)

bone 11                                             # left leg bone4 (lower)
seg -4.8,-9.5,2.5 -1.3,-9.5,2.5
hinge 10 -3,-9.5,2.5 0,0,1                          # knee3 - 1 DOF (pitch)

bone 12                                             # left foot
seg -4.1,-10.4,2.5 -7.6,-10.4,2.5
seg -5.6,-10.4,1.1 -5.6,-10.4,3.9
uhinge 11 -4.8,-9.5,2.5 0,0,1 1,0,0                 # ankle - 2 DOF
                                                    #         (pitch, roll)

### JOINT STRENGTH PARAMETERS  ----------------------------------------------

kpd hinge 2    1000 33                              # neck pitch (z)

kpd hinge 3:0  1000 33                              # right hip roll (x)
kpd hinge 3:1  1000 33                              # right hip pitch (z)

kpd hinge 4    1000 33                              # right knee1 pitch (z)
kpd hinge 5    1000 33                              # right knee2 pitch (z)
kpd hinge 6    1000 33                              # right knee3 pitch (z)

kpd hinge 7:0   100  1.5                            # right ankle pitch (z)
kpd hinge 7:1   100  1.5                            # right ankle roll (x)

kpd hinge 8:0  1000 33                              # left hip roll (x)
kpd hinge 8:1  1000 33                              # left hip pitch (z)

kpd hinge 9    1000 33                              # left knee1 pitch (z)
kpd hinge 10   1000 33                              # left knee2 pitch (z)
kpd hinge 11   1000 33                              # left knee3 pitch (z)
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kpd hinge 12:0  100  1.5                            # left ankle pitch (z)
kpd hinge 12:1  100  1.5                            # left ankle roll (x)

### MONITOR POINTS  ---------------------------------------------------------

                                                    # right foot
mon -3.8,-10.4,-3.9                                 #  1 - right/back
mon -3.8,-10.4,-1.1                                 #  2 - left/back
mon -7.6,-10.4,-3.9                                 #  3 - right/front
mon -7.6,-10.4,-1.1                                 #  4 - left/back

                                                    # left foot
mon -3.8,-10.4,3.9                                  #  5 - left/back
mon -3.8,-10.4,1.1                                  #  6 - right/back
mon -7.6,-10.4,3.9                                  #  7 - left/front
mon -7.6,-10.4,1.1                                  #  8 - right/front

                                                    # falling & up vect mons:
mon -5.5,2,0                                        #  9 - nose
mon 1,2,0                                           # 10 - up vect origin
mon 1,3,0                                           # 11 - up vect "up"
mon 2,2,0                                           # 12 - up vect "right"
mon 1,2,0                                           # 13 - body

                                                    # swing/stance COM points:
mon -4.8,-10.4,-2.5                                 # 14 - right foot COM mon
mon -4.8,-10.4,2.5                                  # 15 - left foot COM mon

set up_mon 10,11,13                                 # up vect monitor points
set cofm_mon 15,14                                  # initial swing,stance feet

kpd mon 14 0 0                                      # no gnd force on cofm_mon
kpd mon 15 0 0                                      # no gnd force on cofm_mon
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APPENDIX C –  SAMPLE ANIMATION SCRIPT

#-----------------------------------------------------------------------------
#
# file: human-walk-trials.script
#
# Script to perform basic walking trials
#
#   Perform balance trials with up vector RVs
#   Trials use Q_d from [0.1,0] to [0.5,0] (Q_d = [Q_d_fwd,Q_d_lat])
#
# balance <#strides> <Q_tol1> <K1_max> <K1_sample> <RV1>:<elem1>   \
#                    <Q_tol2> <K2_max> <K2_sample> <RV2>:<elem2>
#
#     <max_strides>    - desired # of strides
#
#     <Q1_tol>         - max. tolerable error in Q for 1st control dimension
#     <K1_max>         - max final perturbation scaling (dim 1)
#     <K1_sample>      - sample scalings (+/- K1_sample) (dim 1)
#     <RV>:<elem>      - RV type and component
#                          type:
#                              0 -> up vector
#                              1 -> stance-COM vector
#                              2 -> swing-COM vector
#
#                          component of RV
#                              0 -> forward component
#                              1 -> lateral component
#
#     <Q_tol2>, <K2_max>, <K2_sample>, <RV2>, <elem2> as above but for 2nd
#     control dimension.
#
#-----------------------------------------------------------------------------

< human.bones

set kfspring 25000                                    # floor stiffness (Kp)
set kfdamp    1500                                    # floor stiffness (Kd)

set sddt 0.00025                                      # simulation time-step

# base PCG for walking

set pcstates 6

posecycle poses 0
5 0 0   0 -50 0 60 -5 0   0 -10 0  0  0 0     7  0  -3  0    5    5 # r-foot
5 0 0   0 -50 0 60 -5 0   0 -10 0  0  0 0     7  0 -12  0        .2
5 0 0   0 -20 0  0  5 0   0 -10 0  0  0 0     7  0 -12 -7        .2
5 0 0   0 -10 0  0  0 0   0 -50 0 60 -5 0    -3  0   7  0    4    5 # l-foot
5 0 0   0 -10 0  0  0 0   0 -50 0 60 -5 0   -12  0   7  0        .2
5 0 0   0 -10 0  0  0 0   0 -20 0  0  5 0   -12 -7   7  0        .2

set hinit 0,0,0,0,0,0,0,0,0,-5.1,-20,0,50,0,0,0,0,0,0 # initial pose
                                                      # all velocities are 0
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# ----- forward then lateral (F-L) 2d control

# hip pitch perturbations:

posecycle poses 1                                     # right hip pitch
0 0 0    0 0 0 0 0 0    0 1 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 1 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 1 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0

posecycle poses 2                                     # left hip pitch
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 1 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 1 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 1 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0

# hip roll perturbations:

posecycle poses 3                                     # right hip roll
0 0 0    0 0 0 0 0 0    1 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    1 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    1 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0

posecycle poses 4                                     # left hip roll
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    1 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    1 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    1 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0

# balance trials

set showfile basic-walk_upvect_FL_Q=[.1,0].out
set Q_d 0.1,0
balance 30 1 180 5 0:0 1 180 1 0:1

set showfile basic-walk_upvect_FL_Q=[.15,0].out
set Q_d 0.15,0
balance 30 1 180 5 0:0 1 180 1 0:1

set showfile basic-walk_upvect_FL_Q=[.2,0].out
set Q_d 0.2,0
balance 30 1 180 5 0:0 1 180 1 0:1

set showfile basic-walk_upvect_FL_Q=[.25,0].out
set Q_d 0.25,0
balance 30 1 180 5 0:0 1 180 1 0:1

set showfile tbasic-walk_upvect_FL_Q=[.3,0].out
set Q_d 0.3,0
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balance 30 1 180 5 0:0 1 180 1 0:1

set showfile basic-walk_upvect_FL_Q=[.35,0].out
set Q_d 0.35,0
balance 30 1 180 5 0:0 1 180 1 0:1

set showfile basic-walk_upvect_FL_Q=[.4,0].out
set Q_d 0.4,0
balance 30 1 180 5 0:0 1 180 1 0:1

set showfile basic-walk_upvect_FL_Q=[.45,0].out
set Q_d 0.45,0
balance 30 1 180 5 0:0 1 180 1 0:1

set showfile basic-walk_upvect_FL_Q=[.5,0].out
set Q_d 0.5,0
balance 30 1 180 5 0:0 1 180 1 0:1

# ----- superposition (SP) 2d control
#
# Use same perturbations as F-L since order of
# perturbations doesn’t matter for superpos.

# balance trials

set superposition true

set showfile basic-walk_upvect_SP_Q=[.1,0].out
set Q_d 0.1,0
balance 30 1 180 5 0:0 1 180 1 0:1

set showfile basic-walk_upvect_SP_Q=[.15,0].out
set Q_d 0.15,0
balance 30 1 180 5 0:0 1 180 1 0:1

set showfile basic-walk_upvect_SP_Q=[.2,0].out
set Q_d 0.2,0
balance 30 1 180 5 0:0 1 180 1 0:1

set showfile basic-walk_upvect_SP_Q=[.25,0].out
set Q_d 0.25,0
balance 30 1 180 5 0:0 1 180 1 0:1

set showfile tbasic-walk_upvect_SP_Q=[.3,0].out
set Q_d 0.3,0
balance 30 1 180 5 0:0 1 180 1 0:1

set showfile basic-walk_upvect_SP_Q=[.35,0].out
set Q_d 0.35,0
balance 30 1 180 5 0:0 1 180 1 0:1

set showfile basic-walk_upvect_SP_Q=[.4,0].out
set Q_d 0.4,0
balance 30 1 180 5 0:0 1 180 1 0:1

set showfile basic-walk_upvect_SP_Q=[.45,0].out
set Q_d 0.45,0
balance 30 1 180 5 0:0 1 180 1 0:1

set showfile basic-walk_upvect_SP_Q=[.5,0].out
set Q_d 0.5,0
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balance 30 1 180 5 0:0 1 180 1 0:1

set superposition false

# ----- lateral then forward (L-F) 2D control

# hip roll perturbations:

posecycle poses 1                                     # right hip roll
0 0 0    0 0 0 0 0 0    1 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    1 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    1 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0

posecycle poses 2                                     # left hip roll
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    1 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    1 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    1 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0

# hip roll perturbations:

posecycle poses 3                                     # right hip pitch
0 0 0    0 0 0 0 0 0    0 1 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 1 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 1 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0

posecycle poses 4                                     # left hip pitch
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 0 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 1 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 1 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0
0 0 0    0 1 0 0 0 0    0 0 0 0 0 0   0 0   0 0   0

# balance trials

set showfile basic-walk_upvect_LF_Q=[.1,0].out
set Q_d 0.1,0
balance 30 1 180 1 0:1 1 180 5 0:0

set showfile tbasic-walk_upvect_LF_Q=[.15,0].out
set Q_d 0.15,0
balance 30 1 180 1 0:1 1 180 5 0:0

set showfile basic-walk_upvect_LF_Q=[.2,0].out
set Q_d 0.2,0
balance 30 1 180 1 0:1 1 180 5 0:0

set showfile basic-walk_upvect_LF_Q=[.25,0].out
set Q_d 0.25,0
balance 30 1 180 1 0:1 1 180 5 0:0
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set showfile tbasic-walk_upvect_LF_Q=[.3,0].out
set Q_d 0.3,0
balance 30 1 180 1 0:1 1 180 5 0:0

set showfile basic-walk_upvect_LF_Q=[.35,0].out
set Q_d 0.35,0
balance 30 1 180 1 0:1 1 180 5 0:0

set showfile basic-walk_upvect_LF_Q=[.4,0].out
set Q_d 0.4,0
balance 30 1 180 1 0:1 1 180 5 0:0

set showfile basic-walk_upvect_LF_Q=[.45,0].out
set Q_d 0.45,0
balance 30 1 180 1 0:1 1 180 5 0:0

set showfile basic-walk_upvect_LF_Q=[.5,0].out
set Q_d 0.5,0
balance 30 1 180 1 0:1 1 180 5 0:0


