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ABSTRACT

Some seemingly simple behaviours such as human walking are difficult to model bedhese of
inherent instability. This thesis proposes an approach to generating balanced 3D walking motions
for physically-based computer animations by viewing the motions as a sequence of discrete cycles
in state space. First, a mechanism to stabilize open loop walking motions is presamtethis

basic “balance” mechanism is in plattee underlyingopen loop motiorcan then be modified to
generate variations on the basic walking gait. In addition to other interesting variations, the speed,
stride rate and direction of a watlan each beontrolled. These variatioran be parameterized

and potentiallyused to providdehe animated characterith the ability toperform autonomous
motions such as following a path specified by the animator. While this work is somewhat specific
to physically-based animation, some of the underlying ideas may prove useful in other disciplines

such as robotics and biomechanics.



ACKNOWLEDGEMENTS

| would like to express my thanks to all the peopleo have helped me arglpported me in my
work. My supervisors, DrMichiel van de Panne andr. EugeneFiume, have alwaysbeen
wonderfully approachable and ever helpfukheir efforts to guideme. In particularMichiel's
boundless enthusiasm never failed to motivate me in tough times (or inipesyl and Eugene’s
ability to step back and view the greater context of a probksnalways impressed and inspired
me — | hope that one day I'll develop similar skills. To my bédttf, Anastasia Cheetham, who
spent many éate night in thelab, keeping me company and helping memaintain my sanity
when pressured by deadlines, thank you a thousand fold for everythouwj! never know how
much your support and patience has meant. Finally, I'd like to tinenknembers of my defense
committee, Dr. Bruce Francis, Dr. James Stewart and Dr. Jonathan Rdseirfeareful reading

of my thesis on such short notice and for their constructive questions and comments.

| would also like to thank the ITRC and NSERC. Without their funding, this worktfenB®GP

lab in which it was done) might not exist.



TABLE OF CONTENTS

1. INTRODUCTION .o ee e 1
1.1 KinematiC APPrOaCHES . ... ettt 1
2 5 Y 0 - 0 o 2
L 3 B0aIS .t 3
1.4 ThesSiS OrgaNniZatiOn . ...ttt ettt ettt e e e ettt e e e e e et e aeeeeens 4
2. BACKGROUND . ... e e 5
2.0 DEIINITIONS. . .t 5
2.2 PrevioUS WOTK. . ... ettt 5
2.2.1 Kinematic ANIMALION. .. ...ttt e 5
2.2.2 Dynamics-based AnIMation. ... ... 7
2.2.3 Bipedal LOCOMOLION. e st e e e e e e e e e 9
2.2.4 LIMit Cycle CoNtrol .. ..o e e 12
2.3 P0OSE CONIOL. . ...t 12
2.3.1 Linear Parametric PCG Perturbations..............c.oooieiiiiiiiiii e 16
2.4 The ANIMaAtioN SY S eI, ... .ttt ettt e e e e e e aeeeens 17
2.4.1 Ground MOEL . ... 19
2.5 BIPEA MOGEIS. . ... e 20
3. DISCRETE LIMIT CYCLE CONTROL ... e 23
0 I I T = 23
3.2 Control FOrMUIALION . ... et aeens 25
3.3 Application to Bipedal LOCOMOLION .........uuiereeee it e e 31
3.4 Nominal Open-loop Contrdl MO 32
3.5 Choice of Regulation Variableg, .............ooiiiiiiiii e 37
3.6 Choice of Perturbation Parameted,............c..ooiiiiii e 40



3.7 Linear, Sampled "Balance” COoNtrol...........uueriiieiii i 46

3.7.1 DeSIred RV VAIUES ... ..ttt 47
3.7.2 Constructing and Applying the Discrete System Madel......................... 48
0 8= T 1o £ TS 1= o 1 oo 53
3.9 CONCIUSIONS . . .ttt ettt e e 56
4. BALANCED WALKING RESULTS ... e 57
4.1 Up Vector Regulation VariabIes. .........ovoeiiiiiii e eeeeae e 58
4.1.1 Other OBSErVAtIONS. ...ttt e 63
4.2 Swing-COM Regulation Variables. ... e 64
4.3 Stance-COM Regulation Variables. ... e 70
2 I 0 TS Y= Y/ [T 72
4.5 RODO-DIFd RUNNING ... ee ettt et e e e e et e e e e e e eanns 73
4.6 CONCIUSIONS. ...ttt e ettt 74
5. WALKING VARIATIONS . e 76
S0 Y 01T I 0 o 76
5.2 Base PCG Parameterization.. .........ouiueeeet et e e nees 81
5.3 Turning Perturbations. ........ooii e 82
5.3.1 Point and Path FOIOWING. ... e 87
5.4 Stride Rate PerturbDation ... .. ..ot e e 89
5.5 Other Interesting VariationsS. . .......ovuieeeeiiiiii et e e 91
5.5.1 BENE-KNEE WaAIKING « toreee e e oottt e e e e e et e et e e e e et e e e e e e 91
5.5.2 Bent-Over WalKing. . .......ceuuuii it e e e aaaaes 92
SR TG T 5 10 Td (] o R 93
5.6 CONCIUSIONS . ..ttt ettt ettt e 95
6. CONCLUSIONS AND FUTURE WORK. ... e e 96
6.1 FULUIE WOTK. ..t e e e e 97
6.1.1 Better Discrete System ModelS .........c.ooooiiiiiiiiiii 97



6.1.2 Additional Forms of LOCOMOLION . . ... e et e 98

6.1.3 Natural MOTION ... e e e 98

6.1.4 Extension to Aperiodic Motions and Further Generalization................... 98

6.1.5 AUtOMALiC SYNtNESIS. . ...\ttt 99
REFEREN CES. .. o 100
APPENDIX A — TERMS AND DEFINITIONS ... e 108
APPENDIX B — MODEL PARAMETER SCRIPTS ... 113
APPENDIX C — SAMPLE ANIMATION SCRIPT ... . e 120

vi



LIST OF FIGURES

Figure 2.1 - Animator CONrol VS @ULONOMLY . . .....ureeeeetee e e e et e e e e e e e e e eeiniaaeas 9
Figure 2.2 - A periodic PCG for a simple, planar 4 DOF biped madel......................... 13
Figure 2.3 - Typical articulated creature model used with pose control graphs.............. 14
Figure 2.4 - Rotational PD controller for pose Control. ..o 14
Figure 2.5 - Pose control graph StrUCIULES ... ..o e e e 15
Figure 2.6 - Overview of the simulation ProCESS ........vviiiie e 17
Figure 2.7 - Spring and damper ground force model (2D example).........c.covveeeeiiinan, 19
Figure 2.8 - Friction cone ground slipmodel. ... ... 20
Figure 2.9 - Complex human MOGEL.........ooiiii e 21
Figure 2.10 - RODO-bird Creature ..o ... e 22
Figure 3.1 - Passive Limit Cycle Stability. ... e e 24
Figure 3.2 - AN ACtiVe LIMit CYCle ... e e 25
T TG TG T I Yo = (= IR} £ (=] 04 27
Figure 3.4 - Linear parameters of a 1D discrete system in state space....................... 29
Figure 3.5 - Three cycles of a typical 1-dimensional system.............ccovveiiiiiiiiiiinn... 30
Figure 3.6 - Overall discrete limit cycle control structure for a walking biped................. 32
Figure 3.7 - Forward walking base PCG ... ...ooiiiiii e e e 34
Figure 3.8 - Unbalanced motion of human model..............ccoiiii e 35
Figure 3.9 - Possible walking and running SIEPS. ......vvvvvvieee e 36
Figure 3.10 - Initial configuration for simple human model................coooiiiiiiiiin. .. 37
Figure 3.11 - End-of-step sampling times@r.......... ... 38
Figure 3.12 - BalanCe RV VECIOIS.. .. .uviie ettt et ettt eeeeens 39
Figure 3.13 - Decomposition of up vector projection iINtO RVS.........covvviiii i 40

Vii



Figure 3.15 - Typical effect of stance hip perturbations...............cccciiiiiiiiiiienn. .. 43
Figure 3.16 - Balance RV components vs linearly scaled hip pitch perturbation............ 44
Figure 3.17 - Balance RV components vs linearly scaled hip roll perturbation............... 45
Figure 3.18 - Direction of change of forward RV components with hip pitch................. 46
Figure 3.19 - Estimate of desired lateral RV components............cccvvvviiieeiiiiiiiiinnnn.. 48
Figure 3.20- Balancing process for each . Step..... ... 48
Figure 3.21 - Unobserved state problem.............c.ccooiiiiiiii 49
Figure 3.22 - Model construction and extrapolation.................cooiiiiiieee i, 49
Figure 3.23 - 2D sampling StralegieS ... .vvvie ettt e et 51
Figure 3.24 - Sampling point pitfalls in discrete model construction........................... 53
Figure 3.25 - TOrSO SEIVO ParamMeleLS. .. ...ttt ee e e e e ettt et e e e e e e e e e aneeaeees 54
Figure 3.26 - Pelvis-based up vector balance indicator.............ccoovvviii i, 55
Figure 3.27 - Falling with torso servoing enabled..............cccovii e 55
Figure 4.1 - A sequence of steps from a walking limitcycle.................ooooiiiin. 57
Figure 4.2 - Continuous-time up-vector RV component phase diagrams..................... 58
Figure 4.3 - Nominal up-vector RV target range and plan-views ...........cccoevvvvveenneen... 60
Figure 4.4 - Discrete RV values for L-F sampli@, =2,0] 62
Figure 4.5 - Discrete RV values for SP sampl@@,: [-3,0]. e 62
Figure 4.6 - Discrete RV values for L-F sampli@, =.35,0] e 62
Figure 4.7 - Step length vS Step NUMIDEL. ... ... s 64
Figure 4.8 - Continuous-time swing-COM RV phase diagrams............coooiiiiiiieneeeaeannnninns
Figure 4.9 - Swing-COM RV targetrange and hip plotS..............cooiiiiiiiii i 67
Figure 4.10 - Discrete RV values for L-F sampli@@',: [0.050]..ccciiiiii e 68
Figure 4.11 - Discrete RV values for SP sampl(@@,: [0.0,0].ccci 68
Figure 4.12 - Step length vs step number, SP sampling...............coooiiiiiiiiinn, 69
Figure 4.13 - Discrete RV values for SP sampl(@@,: [0.0£0.03].cvvveeiieeeeee e 69

viii



Figure 4.14 - Variation of stance-COM RV with stance hip pitch................................ 70
Figure 4.15 - Up vector RV range and hip plots with torso servoing enabled............... 72

Figure 4.16 - Continuous-time up vector component phase diagram with torso servoing73

Figure 4.17 - Robo-bird base PCG for running ... e e 74
Figure 4.18 - A running robo-Dird ...« oo 74
Figure 5.1 - Speed control using COmMpPOSItE RV. ... e 79
Figure 5.2 - Forward velocity (m/s) versus time for velocity feedback......................... 80
Figure 5.3 - Steady-state velocity Qgias .............................................................. 80
Figure 5.4 - Acceleration and deceleration. ........ ..o e 80
Figure 5.5 - Turning perturbations for human model with ball-and-socket.hips............. 83
Figure 5.6 - Typical operation of a right turn perturbation....................ooiiiiiiiinneen. .. 84
Figure 5.7 - Hip plots for the most successful turning perturbation.trials..................... 85
Figure 5.8 - Hip plots for less successful turning perturbation trials........................... 86
Figure 5.9 - Turning perturbation with torso servoing applied...............ccooiiiiiieaninn, 86
Figure 5.10 - POINt-TOllOWING. . ... oo e e e e 88
Figure 5.11 - Path folloWING. ... e e e eeaes 88
Figure 5.12 - Stride rate perturbation for human model with ball-and-socket hips.......... 89
Figure 5.13 - Results of applying different stride rate perturbation scalings.................. 90
Figure 5.14 - Average speed for varying stride rates..........cccvveeieiiiiiiiiiiiiiiiieeaeenn. 91
Figure 5.15 - Bent-knee perturbation for a human model...................oooooiiins, 92
Figure 5.16 - Bent-knee walking with a parameter scaling of.1.0.............cccovvvvenna. ... 92
Figure 5.17 - Bent-over walking perturbation ... 92
Figure 5.18 - Bent-0ver WalKing .........uuueiiiier e et e e e e 93
Figure 5.19 - Composite bent-knee, bent-over and bent-neck perturbation.................. 94
FIQUIE 5.20 - DUCKING: .« vt vette ettt ettt e e et ettt e e et ettt e e e e e e e e e e aaaees 94
Figure A-1 - States of a 1 degree-of-freedom swinging pendulum plotted vs.time....... 109
Figure A-2 - State-space trajectory of a simple swinging pendulum......................... 109



Figure A-3 - Reference planes of the human hody

Figure A—4 - Phases of bipedal walking and running............c.c.cooooviiiiiiiiiiiiiieeaaeenns



LIST OF TABLES

Table 4.1 - Results of first controlled step using stance-COM.RVS.................ccovvnnee. 71

Table 5.2 - Speed CoNtrol parameters ... e 78

Xi



1. INTRODUCTION

Computer animatiohas longbeen an integral part of tremulation, motionpicture, television

and consumer entertainment industries and promises to play a much greater rofaturé¢heAs

it becomes morgervasive, improvedechniques will be needed to simplify and speed up the
process of creating convincing, high quality animations. One key area of interest is the generation
of motion for various types ofcreatures and characters to lged in an animation. These
creatures are the actors of the compgtaphicsworld. The way they move andnteractwith

their environment has a great effect ovi@ver's perception of the animation, whether it appears
intentionally cartoon-like, or as amtegral part of a realistiscene. Inthe quest for tools to
generate realistimotion, one othe key directions of researdtasbeen theuse ofphysically-

based animation. This thesis presents an approaitte tgeneration of bipedal locomotion for

computer animations using physics-based simulations.

There are essentiallyvo basic modelsused inthe generation of motiofor the purpose of
animating articulatedigures: kinematic models and dynamimodels. The following brief
overview of these approaches is usdti placing the research topic dhis thesis in an

appropriate context.

1.1 Kinematic Approaches

The most straightforward methotbr character animation ikinematicin nature. Kinematic
animation is concerned only with the specification of joint angles and angular velocities over time.
It does notdealwith the forces and torqueacting on or within a creature or their effect on the

creature's motion.
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Motion capture is a special case of the kinematic approach in which the joint angles and/or velocity

data aremeasured from aeal motionand then re-used on amimatedcharacter. The most
common way of capturing a motion at present is to attach a series of markers to various points on
the subject's body and to use multiple video cameras or other sensory devices to record the motion
of the markers. The subject'smotions are mapped directbnto the animatedharacter, thereby
ensuringthat the animated motion will realistic. Theability to modify, blend and transition
between pre-recorded motions is important to provide the animator with sufficient control over the
final motion. However, results based on modifications of captured matrensot guaranteed to

remain realistic.

1.2 Dynamics

An alternate approach toward providing realism isube of physically-based animation. In this
scheme, motionsre the result of physicaimulations, whichinclude detailed modeling of

internal and externdbrces andtorques,the creature’'s masand moments of inertia, and its
interaction with the environment. All these parameters affect theréisalt, asheywould in the
realworld. The essence dhis approach is to ensurealism by constraining the motion of the
system to abide by the laws of physics. Dynamics-based animation has the advantage that the task
of ensuring that motion is physicaltgalistichasbeen automated. The animai®yr in principle,

free to applyhis or herabilities to the more artistic aspects of the animgbimtess. Note that

"realism” in this context refers to behaviour consistent weimaullated model of the realorld.

Similarity to the real world depends completely on the fidelity of this model.

This approach introduces new artthllenging problems to be solved in order to bepraictical
use. First, incorporating dynamics effects involves the integration of the equations of motion over
time, and has historically been computationally expensive for all but the most sinppbstiems.
While it seemsthat no amount of computingower is truly enough, efficient simulation

algorithms and faster hardwaaee beginning tdoring the simulation of complexystems of
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interest to animators into the realm of real-tipggformance. A second problem, whigmains

largely unsolved, is often called tbentrol problemof dynamic animation. Brieflgtated, in the

context of computer animation, the control problem is:

Given a creature, an environment and a desired motion specifitheé bBypimator, what
are the controforces and torques required to achi¢giwe desired motion or alose,

physically-realistic approximation?

While the incorporation of dynamics in the generation of computer animaid@igeen a topic of
significant research interefir approximately a decad@&G85] [WB85] [Wil86], it is only now
beginning to play a morgeriousrole in commercial computer animatisgstems. Adynamics
simulator isnow apart of one of thenost popular computeanimation packageflias]. The

delay is due to both the performance issues and a lack of suitable solutions to the control problem.

This thesis provides an approach to solving the control problem for bipedal locomotion.

1.3 Goals

The primary goal othis thesis is to provide a technigt@ the animation of physically-based
bipedal locomotion. More specifically, we present a control solutidor articulatedfigures
performing cyclic motions such as walking. Aperiodic motions such as sitting down and standing

up are not addressed.

Within this context, this thesis has a number of more specific objectives:
» The techniqueshould work forstatically unstable articulatddyures. Thismeans that it
must provide some form of ongoing corrective control actions.
» The basic approackhould begeneral innature, allowing for a wideariety of periodic

motions without changes to the basic control structure.
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» The approactshould work forcreatures of reasonable complexity without making any

fundamental assumptions about the creature's structure. In particular, it sHeakt be
suitable for animating a human model with tens of degrees of freedom (DOFs).

» The control representaticshould berelatively compact, and flexible enough to allow
straightforward specification of walking variations.

« If desired,the motionshould exhibit autonomy. For exampleéhe animator might be
allowed to specify the start and end points of a walk rather than being required to specify

the placement of the foot for each step.

Two desirable objectives which we do rditectly addressare "naturalness” ofthe resulting
motion (as opposed to physicatalism) and interactivity. While both of these features are
important to have in an animation system, the problem of generating bipedal locomotion subject to
the abovegoals is a sufficiently challenginmtermediategoal. Neverthelesghe proposed
techniqueaffords the animator the freedom to potentially obtain natural looking motions with
reasonable additional effort compared to generating lcasicse motions. As well, egpted
increases in computer performance aer next year otwo promise tanake interactivaise of

the system a realizable goal.

1.4 Thesis Organization

This thesis is divided into 6hapters. Chapter 2 summarizes th@evious related work and
presentsthe backgroundmaterialnecessary to understatite chaptersvhich follow. It also
provides an overview of owmnimationsystem. Chapter 3 disasseshe underlying principle of
our control approach. It further describédse general control structure and its application to the
generation of balancedyclic locomotion. Chapter 4 preserite basicresults of applying the
control formulation to bipedalvalking. Chapter 5 describes further resuits variations on
walking gaits. The ability to have the walking biped follow a desired patsisdemonstrated.
Finally, Chapter 6 concludes thikesis and discusses a humber of possible diredtorigture

work.



2. BACKGROUND

This chaptempresentshe background information required to understdaigr chapters in the
thesis. Firstijmportant definitions aréntroduced. Previous leged work is then reviewed,
followed by a description ahe underlying control representation which our balanceontrol

approach is based. Finally we describe our animation system and our biped models.

2.1 Definitions

A number of important terms and acronyms are used throughotltetbis. Their definitions and
descriptions can be found in Appendix A. The majority of the terms are comomedgerms in
the robotics and biomechanics literaturdlore in-depth information can b&ound in [HR86],

[SV89], [Fr86] and [IRTS1].

2.2 Previous Work

Bipedal locomotion is a topic of interest to a numbedistiplines. This section describes a
representativesubset ofthe work in thesefields. First, weprovide an overview othe various
approaches to motion generation in computer animation. This is followed by discussiork of
specific to bipedal locomotion in computer animation, biomechanics and robéiitally, some

relevant work in the control literature is addressed.

2.2.1 Kinematic Animation

Research in computer animatibasevolved significantly in its relativelghort life span. The
earliest approaches to computer animatime keyframing a technique based oclassical
animation. In keyframinghe configuration of th@nimated objects atarious points irtime is
specified by the animator and the computer generates the in-between dsangdsear or other

forms of interpolation. Irearly systems,specification of keyframes required the animator to
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directly manipulate the DOFs of an objgbez68, BW71,Csu71l, KB84, Stu84MTT85Db,

SB85, Las87]. Later systemsallowed the animator to specify tipesition of specific points on
the objects being animated (such as a hand or foot ) and used inverse kinendatiesrime the
appropriate valuefor the creature'sinternal DOFs[KB82] [GM85] [BMW87]. Procedural
descriptions of motionpften based on real-worldataand observationscan beused tomodel
very specific classes of movemeasffectively "programming'the animated movement [Zel82]
[GM85]. In all cases, the quality of the resulting motion is heavily dependeheability of the
animator who is responsible for ensurinipat the perceivedlynamics of the motion are
appropriate. This is a task which requires significant skillpotentially distracts thanimator

from the primary task at hand, but it also allows him or her complete artistic control.

Rotoscoping and motionapture are techniques commonlyed toobtain kinematic datérom
real-world sources. Directly recording a phenomenon to baimated guarantees realistic and
natural-lookingmotion. Specialized hardware is generafigquired, but suchequipment is
becoming more accessible. A number of problems with this approaké the investigation of

other motion generation techniquessirable. Firstcaptured motions arkmited to real-world
motions that can easily be recorded. Essentially, motion capture has many of the same restrictions
as live actors. Also, approaches to parameterizing captured motions often producéhetsariés

no longer fully realistic. Physical constraint violatiossich as groundnterpenetration and
sliding are common examples &dilure. While solutions to enforcing such constraints for
particular classes of motion have been demonstrated [BMTTE@93], no general solution
currentlyexists. More recent parameterizati@pproaches seem oriented toward more broadly
modifying captured motions and are likely to have sinplablems [BW95] [WP95JUAT95].

Finally, captured motions cannot easily be modifiedréspondrealistically to environments
different from the one in which they are obtained. Varying terrain and collisions are two examples
of such potentially desirable changes. As the demand for fully interactive environments increases,

this issuebecomes more important. tacentyearsthe interactive home-entertainmentustry
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has begun to exceed the motion picture industry in consumer revehoday'sinteractive video

games are being made with the same effofbwsbudget movies, incorporatir@pmplex sapts

and storylines, well-known actors, and mixing real and computer-generated imagery [Sni95].

2.2.2 Dynamics-based Animation
The techniquesised tointegrate physicsinto the generation of computer animations can be

divided into two basic approachésjectory-basecndcontroller-based

Trajectory-based techniquesch as [WK88], [BN88], [Coh924nd [LGC94]attempt tofind a
physically realistic or near-realistic trajectdrpm one point inthe state space of a creature to
another. Since thesystemsare typically highly underconstrainedthe trajectory is usually
optimized in some way, for example for smoothness, minimum control energiiatum time.

A disadvantage of the technique is thateav trajectory must be generatéat eachnew desired
instance ofmotion. Also,interactions withthe environmensuch as collisions anfiiction are

often difficult to properly incorporate into the dynamics specification. One decided advantage of
trajectory-based techniques is that they relate well to keyframing. The animator can control details
of the end resulthroughthe specification of keyframes and other trajectory-ba&sedtraints.
Trajectory-based techniques are also able to find the most physically plausible solution, even if no

completely physical solution is possible.

In the controller-based approach, a dedicatedroller or control algorithmis used taactivate the
simulated muscles of a creature, causing it to perform some motewti@n within a simulated
environment. The use of such controllers has a numbernd¥antages ovehe trajectory-based
approach. Imanycasesgcontrollers can belesigned to beeusableand composablgvan89]
[Hod91] [SC92]. Reusability implies that a controller can be used to achieve a given motion with

a variety of initialstates. Composability implies that sequence of motions can be generated by
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switching between several controllers over tirpessibly subject to some form of transition

requirements.

Early versions of controllers for animation used force and torque functions, specified either by the
user[Wil86] [AGL87] [FW88] or based on measured or obserdath [MZ90][Mil88]. Other
controllers arébased orstatemachines, dividinghe motion into a number gfhases,each of

which is represented by a single state. Controdezslesigned by hand in many ca$Bs$191]

[SC92] [HSL92] [H+95]. Hand-designed controllers requitke use of carefully chosen

parameters to simplify the control program and are typically specific to a particular type of motion

(e.g. hopping).

Controllerscanalso beautomaticallysynthesized. Automatic synthesis uses variowstochastic
search strategies to explore the spacposkible controllers [VFO3VKF94] [VKF94b] [vL95]
[NM93] [A+95] [SIm94] [GT95]. Each controller is assigned a fitneaie which characterizes
its "goodness"and a mechanism is providddr keeping and refininggood controllers and
eliminating poor ones. In [Sim94], the structure of the creature itself is allowed to evolve| as
as thecontroller. Currentautomatic synthesistechniques ardest at finding controllers for
relatively stable creatures and motions such as a crawling ant or motion in gkingle This is
because they rely on the fact thag@od first guessan be stochastically determinedth a
reasonable amount of computation. A relatively smooth fithess function itypisally required
to allow incrementaprogress toward aacceptablesolution. Unstable motions such lasman
walking do not meet these requirements since the solution space is exceedingly small compared to

that of a more stable creature and motion, especially when motion in 3 dimensions is desired.

The use ofmotion controllers increases the autonomy of the creature being animated, thereby
requiring lessdirect animator intervention as compared to kinemam trajectory-based

approaches. The cost of this increased autonomy is in the degree of ttentmoimatohas over
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the final motion. Allowing the animator to specify that the biped "“foltbat taxi" oftenremoves

the animator's choice of which precise pathake. The tradeoff between autonomy and degree
of animator control is illustrated in Figure 2.1.

A v® Keyframing

A . [ J
nimator Motion capture

Effort

® Autonomous Characters
|

Animator
Control

Figure 2.1 - Animator control vs autonomy

2.2.3 Bipedal Locomotion

The animation of bipedal locomotion has long been a topic of fascination to many. Zeltzer [Zel82]
presents a hierarchical task-oriented animation system in which the low-level walking motions are
implemented kinematically, based on measured human data. Girard and Maciejewski [GM85] use
rules associated with dynamics (rather than dynamics simulatmm&)rso motion and inverse
kinematics forleg motion to generate one of thest non-rotoscopednatural lookingwalks.
Bruderlin and CalverfBC89] break eaclstep into a number of kinematically-definedbphases
based on knowmuman gait mechani@nd usesimplified dynamics simulation to generate the
motion in between each subphase. By allowing the user to vary a nungadtr ddterminantsa

wide variety of natural-looking walks can be generated. Since in this apptieaatynamics are
highly constrainedreplacing the dynamic interpolatiomith kinematic interpolatioiBC93] is

found togive results osimilar quality while increasing performance significantly, allowgagt
parameters to be adjusted interactively. This work currently reprdbendtate-of-the-art in real-

time, parameterized kinematimodels of natural looking human walkingotion. A similar
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techniquehas alsabeen applied to humamnning [BC96]. Badler [BPW93] usesprimarily

kinematic techniques as well astoscopeddatawith dynamic enhancements to mske many
human motions and behaviours. BouMagnenat-Thalmann and Thalmann [BMTT90] and Ko
and BadlefKB93] presenttechniques to generalizetoscoped or motion captured walkidgta
to other subjects and step lengths while reducingliorinating theresulting groundconstraint

violations.

Raibert andHodgins [RH91] usdull dynamical simulatiorwith robust hand-crafted hopping

control to attain various bounding gaitfor biped and quadruped robatodels. As well, a
similarly controlled planar kangaroo model is shown to compare well to its real-world counterpart.
Stewart and Cremer [SC92] use their flexible constraint-based approach to generate fully dynamic
3D bipedal walking ortevel terrainand up a flight ofstairs. One othe requiredconstraints,
however, is a @WOF "magneticboot” onthe stancdoot. Van de Panne;iume and Vranesic
[VFV92] use optimal state-space control tables to contwalking onlevel terrainand up and

down ramps, smooth curved surfaces and stairs for a planar biped model. This approach requires

a suitable control decomposition to make the generation of the state-space controllers tractable.

Auslander et al. demonstraaetomaticsynthesis ofnteresting 2D bipedal walking and tumbling
motions but meet with difficulty in theinitial attempts to extenthis approach directly to 3D
[Aus+95]. Van de Pannand Lamoureproposethe use of guidingexternalforces toinitially

attain reasonable controllers using similar automatic synthesis [VL95]. The forces are then reduced
in a number of steps andan sometimes be entirely eliminated to yieldully-balanced,
automatically synthesized motion. Examples of humanvalking, skippingand running and
walking over varying terrain for a simple 3D biped are given. One difficulty with this approach is
that the removal ofjuiding forces must be performedcrementallyover the entire motion
sequence (for exampleachstep of awalk). This processthat can become prohibitively

expensive fomore complexcreatures. Hodgins et al. [H+95] show how Raibert's hopping
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principles along with varioukorms of additional control can be applied tonning for afully-

dynamic,complex humammodel. The ground model for the runner uses a DOF constraint

which allows motion only in the body’s pitch DOF.

Legged locomotiorhas alsoreceived significant attention in thebotics and biomechanics
literature. Research in the biomechanics literature is directed pritaviéyd gait analyss. Of
particular interest is the efficiency of natural motion in humans and animals [McM84] [Ale84] and
the identification ofvariousdeterminants ofait and their role in normal and pathological gaits
[TT76] [SCD80] [MM80] [IRT81] [SSH82] [PB89]. To this end, anumber of dynamic
locomotion models have begmoposed [VJ69]MM80] [McM84] [Tow85] [PB89]. These
approaches generallyjyake assumptiongvhich limit their usefulness for animation.Typical
assumptions include a simplified biped model and/or motion only in a Plared] [TT76]
[Tow85] [McM84] [PB89]. Some only considethe open-loop motion over one @awo steps
[TT76] [McM84] [PB89].

The robotics literature has more in common withthe goals of physically-basedomputer
animation than biomechanidees. It has as awmbjective thesynthesis oflegged locomotion,
rather than analysis. While some works present only simulation results andirofiiensent real
robots, all systems, of necessity, incorporate some form of forward dynaktérs, approaches
propose various reduced-order models floe equations of motion and rely on reference
trajectories, typicallypasedeither on the motion of an inverted penduluFMB4] [MS84]
[KKI9O0] [KT91] or on measured humadata[VS72] [HF77]. As with biomechanics, the
complexity of the locomotion problem is often redudbdough the use of simplified biped
models. Constrainingiotion to the sagittablane, is perhapte most common simplification
[HF77] [FM87] [KKIQO] [KT91] [CHP92]. Anumber of approachesdeal only with statically
stable walking motions in whicthe biped is balanced atl points inthe walk cycle [HF77]

[Z2S90] [SZ92]. While such motions may be quite useful for a robot due to their inherent stability,
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they are oflessinterest toanimators. Miura and Shimoyama present a stilt-leg bipleat walks

dynamically in 3D on point fegiMS84]. Takanishi etl. [TIYK85] acheve a dynamidut very

rough, lurching 3D walk for a robot with anthropomorpHegs. Furusho & San@FS90]
demonstrate thase of sensor-basddedback to produce smoother motions from a singjét.

Raibert etal. [Rai+84] present aelegantthree-way decomposition of control to accomplish
robust one-legged hopping in three dimensions which is later extended to bipedal and quadrupedal

models using the notion ofvértual leg[Rai86] [Rai86b].

2.2.4 Limit Cycle Control

A number of papers viewipedal walking andunning motions ad#imit cycles in statespace.

These are most closely related to @k in this thesis. McGeer [McG89] [McG90] [McG90b]
demonstrates that various forms of passive legged locomotion, such as walking with and without
knees and running can exist as natural modes of a mechanical device. By using Neettwus

to search for motions whidmave identical initialand final system statesstable gaits could be
found for a system which uses onlgmall downhillslope as a source of energy. Katoh and
Mori [KM84] use high-gain PD control to drivelaped’'smotion toward a prescribegyclic state

space trajectory. Hmam and Lawrence [HL91] use nonlinear feedback control to drive a running
biped onto a prescribed trajectomhich is based othe passive motion othe system. The
feedback is used to improve the robustness of the system to perturbation.lafieéetse works

use very simple biped models and all three assume strictly planar dynamics.

2.3 Pose Control

The fundamental control representatiged throughout this thesistise posecontrol graph, or
PCG [vKF94]. Figure 2.2 shows a typical PCG, which iem=saly a specialized type of finite
state machine Posecontrol provides @ompactway to specifythe torques to beapplied to an
articulatedfigure in order taattain adesired motion. Each state in th®CG specifies a set of

desired joint angles for the creature with respect to some fixed refgresitien, called adesired
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pose and transition information. pose tablds a sequential list of eadtesired pose and its

transition information. Figur@.3 illustrates dypical creaturavhich might be controlledusing

pose control graphs.

(a)
DOF right right left left transition
hip knee hip knee info
S1 0 0 -90 90 0.2
S2 0 0 -45 0 0 L
state S3 -90 90 0 0 0.2
S4 -45 0 0 0 0 R
(b)

Figure 2.2 - A periodic PCG for a simple planar, 4 degree of freedom biped model
(a) State diagram form.

(b) Pose table form. All DOF values are in degrees relative to a
reference position with straight, vertical legs and upright torso.
Time-based transitions are in seconds. For sensor-based
transitions, L - left foot sensor, R - right foot sensor.
While pose control appears similar to keyframing, two distinctions should be emphasizsd.
the PCG determines tlaesiredjoint angles,and not theactual joint angles. The jointsmust be
driven toward the desired angles through the usel@fidevel control mechanismSecond, the
poses daot specify thecreature's positiomnd orientation with respect tbe world frame of

reference. Instead, these are determined by the creature's interaction with its environment.
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o — rotaty joint

Figure 2.3 - Typical articulated creature model used with
pose control graphs

In our implementation, joint angles are driven toward their desired values by joint atbuqies

generated according to the following proportional-derivative (PD) control law:
T = Kp [{Bgesired — 6) — kg [P
wherer is the control torque applied at the joifits the current joint angléeqreg IS the desired

joint angIeG is therelative angular velocity of the rigichks connected byhe joint andk, and

kg are proportional and derivative control constants.

ekdkp

Figure 2.4 - Rotational PD controller for pose control

ko andky specify the strength of a rotational spring aaghper pair which acts aise "muscle”
controlling the joint, as indicated in FiguPe4. While this is a simplemodel, it issufficient for
our purposes in that it ensures that antgrnal controfforcesareused togenerate thereature's

motion. The actuator PD gain constants are held fixed for each joint and are considered to be part

of the model specification.

The low-level mechanisnfior driving individual DOFs to their desired angles incorporates

feedback, and is thus an example of closed loop control. Thegdusscontrol mechanisndoes
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not make use of anyother feedback to correct or adjust the overall motion ofcteature.

Therefore, we will refer to pose control using a fixed PCG as being a foapeof loopcontrol.

Our definition is one of convenience and is appropriate since we choose to use pose control as our
fundamental representation. In essence, the local closed loop control at the jeatsdsas part

of the system being controlled rather than part of the controller itself. In this cahbeet loop

refers to feedback used to modify the desired joint angle parameters of the PCG.

Thetransitions betweethe states of 8CG are based on a fixedhold timeand/or aresensor-
based A hold-time transition occurs after a speciftede haselapsed in the associatethte. A
sensor-basedransition occurswhen a particular binarysensor turns "on", otakes place
immediately if the sensor is already on upon entering the stateoniyhdéorm of sensors used in
this work are ground contact sensorstimacreature's feet, whicre considered to be avhen

the foot is in contact with the ground.

080 OO0 d%@gg@

(a) (b) (©)
Figure 2.5 - Pose control graph structures

(@) cyclic

(b) aperiodic

(c) composite
PCGsmay beperiodic aperiodic or composite(see Figure2.5).  Aperiodic PCG isone in
which the state machine y/clic. In thisform, the desiredoosesare perfectlyperiodic. The
actual motion and the applied torques need not be so; they do not typically repeat from one cycle to
thenext. As discussed in [VKF94¢reatures controlledsing periodic PCGs are analogous to
simple windup toys. AmperiodicPCG is achain ofsuccessivgoses,useful for performing a

single motion instance, such as recovering after a fall. A compeGi& is anore general form

of state machine composed of periodic and aperiodic PCGs.
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While pose controllergan be automaticallgynthesized with reasonable efficienoy relatively

simple creatures and motioh&KF94], they work best fornaturally stable motions. The base
pose controllers presented in this thesis reasonably complex and halebeen designed by
hand. The possibility ofusing automaticsynthesis withthe control techniques described is

discussed later as future work.

To achieve the types of motions we are interested in, it is necessary to adjg§&t®uoperform
appropriate corrective actions on each cycle. An approach to the selection of these control actions
is one of the key contributions diiis thesis. Adjustments to thd?CG are accomplished by

applying linearly scaled perturbations to the PCG joint parameters during each cycle of motion.

2.3.1 Linear Parametric PCG Perturbations

To distinguish between the PCG providing our basic motiortlagerturbations we apply to it,

we will introduce the notion of lsase PCGA basePCG is a poseontrol graph which provides

the fundamental cyclic motion of the creature we are trying to aninkaie.example, irthe case

of walking, the basePCG might consist of aeft step followed by a righstep. Ideally, the
execution of a baseCG from a suitablenitial statewould result inthe desired motiorfe.g. a

walk). Howeverthe creatures we are interested in animatinguastable. The periodicopen-

loop actions ofthe basePCG invariably results inthe creaturefalling. In order togenerate
balanced locomotion, additional control must be provided. Chapter 3 introduces one approach to
providing suchadditional control, which useshe notion oflinear parametric perturbations

(LPPs), which we define below.

We begin by defining eelative PCG, which describes a changehe posecontrol to be applied
to a creaturetypically used toeffect a desired changenaotion. Consider a badeCG, B, to

which we add a relative PC@P, scaled by an arbitrary scalar constant,

C=B +kAaP.
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k-AP is a linearly parameterized control perturbatidmerethe parametek is ascaling factorof

AP. The PCGS$, AP and the overall controf;, are each similar iform to Figure2.2 (b). The
addition operation denotes the addition of teeresponding desiregint angle and holdime
parameters of two PCG pose tableggfialdimensions. Scalar multiplication is applied &ach
desired joint angle and hold-time parameter 8fGG pose table. Sensor-basehsitions in a
perturbed PCG remain unaltered. As an example, an LPP could be used toraatura’s head

to look in a particular direction or ®ay "no". Toaccomplishthis, AP might bechosen to vary
only the desired angle of the neck &nslould be chosen to turn the head to the right or left by the

desired amount.

A variety of LPPs will be used in Chapters 3 and $hasmechanism to provideur biped with

basic balance control and additional gait variations.

creature
definition

control
script

dynamics simulator simulator
compiler source executable

code

balanced

Figure 2.6 - Overview of the simulation process

2.4 The Animation System
Figure 2.6 provides an overview thfe process ofyenerating a physically-based animation with
our systembpeginning with a creature definition and a consilipt. The creature definition is

used by a dynamicsompiler to generate codehich solves andntegrates the equations of
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motion. The dynamicscode, together with codemplementing theground modelbasic pose

control and the &ance control formulation of Chapter 3 is then compiled into the simulator
executable. The control scriprovides the particular control parameteffer the desired
simulation. Sample control scripts can be found in Appendices B afdth€ primaryoutputs of
each simulation are the final balanced motion of the creatuta¢he aperiodi®CG which was
ultimately responsible fogeneratingt. Notethat theresulting aperiodid®®CG output provides
open loop control. It is therefore only reusable givemdantical initialstate. In essence it is a

record of the applied control actions for the motion, already complete with feedback actions.

The dynamics compileused is acommercially availablesoftware package [SDFAST]. The
animation environment currentigupportsthe simulation and control of a singkticulated
creature consisting of rigid links in a tree structure with rotary joints of up®R eachand no
joint limits. Each DOF has individual PD constants whieimain fixedfor the entire simalation.

Collision forces due to interpenetration of the links of the articulated figure are not simulated.

The equations of motion are integratesing afixed time step, fourth ordeRunge-Kutta
integrator which is part of the dynamics compgeftware. Performance of the simulator varies

with model complexity with the most complex human model (described in S@ckprequiring
approximately 1 minute of wall clodime tocompute 1second ofsimulated motion on a Sun
Sparkstation 10. The use of a fixed integration time step b@miéicant impact on performance

since the worst-casg@.e. smallest)time step forthe complete simulatiomust beused. It is
estimated that the use of a variable integration time step could improve performance by a factor of
5-10. Recorded simulation results can be played baokairtime on a SilicoiGraphics Indigd
Workstation withGR3-XZ graphics hardwareDisplay functionsare implementedising the

using the SGI-GL graphics library.
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2.4.1 Ground Model

The groundreactionforces are modeledor all simulations using a spring amthmpermodel.
Figure 2.7 illustratethe modelfor a 2D system. Ground forcese applied taspecific, pre-
definedmonitor pointson themodel. The ground forceexerted on a monitquoint, M, which

has penetrated the ground surface are:
F=k, (P~ M)~k M

whereF is the ground reaction forckl, is the position othe monitorpoint, M is its velocity,P

is the initial point of contactwith the ground,andk, and ky are proportional and derivative

constants defining the stiffness and damping properties of the ground (see Figure 2.7).

ground

Figure 2.7 - Spring and damper ground force model (2D example)
L - alink of the creature
M - a monitor point attached to link L
P - point of initial contact of M with ground plane
Fx - simulated ground forces in x direction
Fy - simulated ground forces in y direction

The ground reaction forces are bounded gbahthe vertical component &ways positive, thus
never allowing the dampintgrm to impede the lifting of théoot. Monitor point slippage is
implementedusing a Coulombriction model, which is used ttmit the tangent of theground

reactionforce. Slippage is allowedvhenthe ratio of the verticahnd tangenforces exceeds a

specified limit as illustrated in Figu2z8 forthe 2Dcase. Slippage is simulated by moving the

point of initial contactP, to be directly above monitor point.
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Figure 2.8 - Friction cone ground slip model (2D example)
L - alink of the creature
M - a monitor point on link L
C - boundaries of a friction cone for a ratio of 1.0
P - point of initial contact of M with ground plane
P” - new "point of initial contact”" of M with ground
plane after slipping is applied

No otherground forcesare applied to the creature to constrain movement irdaagtion. The

foot may be in full or partial contaetith the ground,depending on which monitor poirdgse in

ground contact. It isree topitch, roll and yaw and to slip withinthe described constraints
provided by the friction cones. This contrasts with many approaches in animation and in robotics,
which useplanar dynamics oplacelessrealisticconstraints orthe motion of thefoot while in

contact with the floor [HF77, FM87, KKI90, KT91, CHP92,VFV92, SC92, Hod+9].

2.5 Biped Models

The most complex human model used, shown in Figure 2.9, has 19 degrees of frefdting
ball-and-sockehips, 2DOF ankles and a jointetbrso. All other joints are modeledsing 1
DOF. Mass andnertia parameters are realisfmr a human model and arf'om taken from
[WH95]. Several other simpler human models with fewer D@fesalso used throughout our
experiments in order to reduce simulation time requirements. The simplest of theseDitiSs] 2
with 2 DOF hips (pitch and roll but ngyaw), no armsand a rigidtorso which incorporates the

mass and inertia parameters for fixed arms in the reference position of Figure 2.9.
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(@)

[J O []—rotary joints

09,11
13

3600

O
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(b)

— rotary joint axes

Degrees of Freedom

— O NEF— O
1

o
1

- waist pitch (sagittal plane)
- neck pitch (sagittal plane)

- left hip roll (coronal plane)

- left hip pitch (sagittal plane)
left hip yaw (transverse plane)
- left knee pitch (sagittal plane)
- left ankle pitch (sagittal plane)
- left ankle roll (coronal plane)

- left shoulder pitch (sagittal plane)
left elbow pitch (sagittal plane)

0 -

1 -
6:2 -
7 -
8.0 -
81 -
11 -

12 -

13 -

Figure 2.9 - Complex human model
(@) front view (reference position)
(b) left side view (reference position)
(c) typical pose (with monitor points shown)
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(©)

o — monitor points

right hip roll (coronal plane)

right hip pitch (sagittal plane)
right hip yaw (transverse plane)
right knee pitch (sagittal plane)
right ankle pitch (sagittal plane)
right ankle roll (coronal plane)

right shoulder pitch (sagittal plane)
right elbow pitch (sagittal plane)

mid-back pitch (sagittal plane)

A second model has a bird-like structure similar to the biped All-terrain Scout Vehicle (ASV) robot

in the motion picture "The Empire Strikes Back". The robo-bird creadtimyn in Figure2.10,
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has 15 degrees of freedoig¢luding 2 DOF hips and 2DOF ankles. The models do not

incorporate any physical joititnits. Dimensions, mass argertia parameterir both models

can be found in Appendix B.

These models are quite complex compared to much of the previous work on bipedal systems
which have often assumed very simple bipedal models. In the next chapter, we will present an
approach to generating animations of balanced motion for these creatures, which represents one of

the major contributions of this thesis.

7.8 —
(] 1
3,8 2,7
o[ ] [ a4 1m 490)
10,11 5,6 611 |s10
o © (OFO—
(@) (b) (€)
(1O |-rotary joints —rotary jointaxes o — monitor point

Degrees of Freedom

1 - neckyaw (transverse plane)

2:0 - right hip roll (coronal plane) 7:0 - left hip roll (coronal plane)

2:1 - right hip pitch (sagittal plane) 7:1 - left hip pitch (sagittal plane)

3 - right kneel pitch (sagittal plane) 8 - left kneel pitch (sagittal plane)
4 - right knee2 pitch (sagittal plane) 9 - left knee2 pitch (sagittal plane)
5 - right knee3 pitch (sagittal plane) 10 - left knee3 pitch (sagittal plane)
6:0 - right ankle roll (coronal plane) 11:0 - left ankle roll (coronal plane)
6:1 - right ankle pitch (sagittal plane) 11:1 - left ankle pitch (sagittal plane)

Figure 2.10 - Robo-bird creature
(a) front view (reference position)
(b) left side view (reference position)
(c) typical pose (with monitor points shown)
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3. DISCRETE LIMIT CYCLE CONTROL

This chapter describes ohasic control approach and its application to the generation of bipedal
walking motions. Section3.1 begins by describinghe notion oflimit cycles, on which our
control formulation is based. Next, Section 3.2 presents the overall control strategy and develops
a discrete systetrmodel to beused with a number of user-specifigohtrol elements to stabilize
periodic open-loop matns. Section3.3 discusseshe application ofthis control system to
bipedal walking. The underlying open-loop control, which serveledsasis for a desired gait,

is discussed irBection3.4. Sections3.5 and 3.6 then go on to describe various possible
observed and controlled variables for walking. SecBighprovidesdetails on the application of

the control elements introduced in earbexctions tadhe generation of balancedalks. Finally,

minor variations on the basic control which are of particular use in improving the aesthetics of the
human model’s motion are described in SecBo8. While the basic formulation is applied to
bipedal walking, it is not inherently tied to any particular model or motion and could potentially be
applied to the generation of limit cycles in other types of animated figures. Sdivmetefms we

define in this andubsequent chapteinave different meanings in the context of control system
theory. While we makeefforts to avoidsuch conflicts, wehave chosen to sometimgs/e
preference to the colloquial usage of terms. Our relaxed definitiorirait &ycle is one example

of such usage.

3.1 Limit Cycles

One common characteristic of many non-linear dynamical systems is the existence of system-wide
limit cycles A limit cycle is aperiodic, cyclic trajectorythroughthe state-space of system.

Strictly speaking, a limit cycle involves the full state of slystem. Howevenyithin the context

of this thesis we will use a relaxed definition in which only part of the full system statecyolest
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periodically. This definition is one of convinience since it allows periodic locomsetich as

walking or running to be discussed in terms limit cycles.

perturbation perturbation

L. t.

State space State space

(@) (b)
Figure 3.1 - Passive Limit Cycle Stability

(a) Passively stable
(b) Passively unstable

Limit cycles may bestableor unstable A stable limit cycle is one in which slight perturbations to
the state-space trajectory are driven back intdirtiecycle as indicated in Fige 3.1 (a). An
unstablelimit cycle is one in which slight perturbations the trajectory result in the system
deviating further from the limit cycle as shown in Figure 3.1 (b). Wecalilllimit cycles that do
not require explicit control forces toaintain thenpassivelimit cycles. Notehatthis definition
does nofpreclude a system withctive components (motors etc.) froexhibiting passivdimit

cycles. A motorized or windup toy is an example of such a system.

We wish to attain similar stablenit cycles with passively unstable bipedgkstems byapplying
suitable control forces to periodically drive tegstem back into aactive limit cycle. Wedefine
anactive limit cycle asonethatrequires corrective contrébrces to beapplied to thesystem for

the explicit purpose of maintaining the cyclic trajectory. Figure 3.2 illustrates this idea.
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corrective
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State space

Figure 3.2 - An Active Limit Cycle

3.2 Control Formulation

The problem of choosing appropriate control perturbations to driventhie stateof a system to a
desired value is a difficutbne. Assuming a solution does exigihe number of parameters to be
determined is largéor all but very simplesystems (a fewDOFs orless). Non-linearities in a

system mean that over the course of a full cycle even small perturbations of certain state variables
can cause large changes in final state and/or result in almogtlecatall. For example, amall

change in the roll angle of the ankle irwalk might causehe nextfoot to missthe ground

completely.

The essence of our control approach is to begin with a passively unstable system, diseretize it
individual cycles and stabilizeach cycle inturn. Each cycle is stabilized bagpplying control
perturbations which drive its final state to a suitable state from which to begin the next cycle. The
motivation for using adiscrete version ofhe system isthat the discretelynamics are much
simpler to model than the obnuous system and therefore, simplerctmtrol, as weshall see

shortly.
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The continuous dynamisystem which we eventually wish tmntrol can be modelled by the

following system state equation:
x(t + At) = V(x(t), U). (3.1)

wherex is the system state akdis a set of applied control forces defined ovgrHAL].

V is a highly complex functionvhich involvesthe integration of thdéorward dynamics of the
animated model over time and includes the effect of both internal and external appksdsuch
as gravity, ground collisions, and muscular corfinotes. Instead of workinglirectly with this
complex continuous system, we assuima a strictly cyclic motion islesired and discretize Eq.

3.1 into individual motion cycles to obtain
xi+1=9(%, Uj). (3.2)

Here, the subscripti denotes theycle number. U; is the set of time-varying contrébrces
applied over the ith cycle. The functigns a special case & in whichthe sample times are not
necessarily regular depending on the definition of a motioycle. For examplethe end of a
motion cycle could be defined as the time of a particular transition in a state machine. We further
assumethat auser-supplied open loop controllégNom produces anear-cyclic motionwhen
applied to the system being controlled. To dtive final motion into aycle, additional control

forces are required. We denote these forcdﬂﬁs which arethe control perturbations required

to drive each cycle of the nominal motion, toward a limit cycle. The discrete system then becomes

Xi+1= 9%, U™ +AU] ). (3.3)

whereAUi* are still to be determined. Figure 3.3 illustrates this discrete dynamical system.

1 Note that strictly speaking, g is a different function éach cyclesince the size of the interval over which it is

defined may vary from one cycle to the next.
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Figure 3.3 - Discrete System
Xi initial state of the ith cycle/final state of the (i-1)th cycle
xi+1 final state of the uncontrolled ith cycle

xi*+1 final state of the controlled ith cycle/initial state of the (i+1)th
cycle

unom pasic cyclic control

AUi* computed control perturbation for ith cycle

We will furthermore choose texpresshe corrective contrdorces, AU; , as the lineasum of

several “basis” corrective actions:

N
U = UM+ Sigau; = u™M+Ke AU (3.4)
j=1
whereAUj are fixed control perturbations which are defined over a cyclkijaaltdz linear scaling
factors applied t«AUj. K; is thevector of perturbation scaling factors ahld is a vectowhose

elements are the fixed contr}mderturbationsAUj, whichremain the samffom onecycle to the

next. N is the dimensionality of ourontrol system and iequal to the number of state variables

which we wish to observe (and control).

Rather than using the complete system state, we choose to work with a small nuedpdatbn

variables(RVs). Regulation variables are a projection of fystemstate and are thebserved
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part of state irour control system. Using aeduced set of state variables greatly reduces the

computational effort required to construct a model of the discrete system. We @iltasienote

the vector of RVs and defingXx) to be the projection function such that

Q=Yy(¥. (3.5)

Note that choosing to workstrictly in the reduced state space carriesitthigit assumption that
controlling the reduced state is sufficient to control the compiettemstate in a desireabigay.

For this to holdy (x) andAU must be chosen appropriately. However, there iguamanteghat

such an appropriate choice exists.

Replacing the full state ieq. 3.3 with the reducedstate, Q, and substitutingthe control

formulation of Eq. 3.4 yields the reduced-order system which we will control directly:
Q1 =h(Q., UMM +K; + AU) (3.6)

For a given cycleQ;, UNOM andAU are treated as apriori information. el useQ,; = h(K)

as a convinient short form of Eq. 3.6 when we are interested in discussing only the effemt of

the system.

Eq. 3.6 can be restated as

Q+1=Q M +AQ .1 =h(Q, U™ +K; « AU) (3.7)

where Qnom = h(Q , u”°m) (3.8)

We choose t@pproximate theesponse of this systeabout the nominal operating poi@fom

(whereK=0) using the following linear predictive model:

AQuq = JK; (3.9)
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Jrelates the change @+1 over a single cycle to the applied perturbation scaing,

Figure 3.4 illustrates the relationship between the parameters of the linear model and the perturbed
system's cyclic motion in state space for a 1D system. In this exahwl@ear predictive model
is constructed using tweample points o+ 1 = h(k), corresponding tapplied perturbation

scalings ofk; andky. The figure illustratethat we can predigand hence controthe value of

Qi+1.

RV ;
imension . '
dimensio ' Qivg

Figure 3.4 - Linear parameters of a 1D discrete system in state space.
Here,Ak = ko —kq
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Evidence supporting the use of a linear discrete system model for bipedal control and the details of

model construction are presentater in thethesis (Sectior8.6), after the particular choices of

RVs and LPPs have been described.

The key tousing the linear predictive moddbr determining the correct control action is the
following. Once the lineadiscrete systermodelhasbeenconstructedthe control perturbation

scalings required to driv@j+1 to a desired value, can be computed using the inverse model:
K; = J37aQd, (3.11)
whereA Qq,l = Qnom_ Q‘ll, the desired change the RVswith respect taQ"om for the current

cycle.

Figure 3.5 shows the limit cycle viewed as state trajectory with respect to time. Three consecutive
controlled cycles of a 1D discrete system are shown in this diagranthe cycle period; is the
perturbation scaling for cycleandV; is the resulting state trajectoigr cyclei. In this example,

(ﬁl, the desired RV value for each cycle, is held constant for all three cycles.

\ﬁt) YOV, (UOM + Ky - AU))

Y(V,(Unom)) Y(V3(Unom)
\ d ‘ \/, SNl =e ~\ - |
d /\ \/‘\ == /_\ y
Q " \_/ \_/\ N
/ RN -- / / Qg
y(V,(Unom)) C WV, (UMM + k- AU)) Y(V35(UMOM + kg AU))
' y >t
T 2T 3T
CyC|e 1 CyCIe 2 Cyc|e 3

Figure 3.5 - Three cycles of a typical 1-dimensional system.
In this case, each cycle has the same period, T.

Our control formulation assumes the following apriori information, supplied by the user:

1. the open-loop controlynom
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2. the RV projection functiory,.
3. the fixed control perturbationdl.

4. the desired (target) values for the RQ&L for each cycle.

The parameters of the discrete system md@#&andJ) and the required perturbatigealings,
Ki* , are calculated automaticallyfhese computations will bdiscussed irBection3.7 after the

various elements of the bipedal control system have been described.

3.3 Application to Bipedal Locomotion

In attempting to generate balanced locomofmna biped, we must firsselect the number of
control dimensions to besed. For successfblalance the base of supponnust, on average,
remain under the centre of mass and the torso sheudin generallyipright. Only two control
dimensions are required to achidies, one ineachdimension of the horizontgllane. Thus to
balance each step, our bipedal control system will use two RV dimensiomscairétwo LPPs
which span the RV spaceSince weuse poseontrol exclusively withour biped we willuseB

andAP to represent the pose control equivalentd®MandAU respectively.

The base PCG, B, describes one complete cycle of motion, or in the ¢tigedafwalking, two
steps. For bipedal walking we choose to splitdyrde intotwo symmetric halves and apply our
control formulation to eaclstep. The PCG control perturbationsAP, affect the motion

throughout the cycle, rather than at a single point in the cycle.

Figure 3.6 illustrategshe overall pose control structureused for ourbipedal systems. The
structure is an expansion &fq. 3.4, for N=2, with the left step and right step perturbations
specified explicitly. In summary, each step is balanced by the choice of two scalar parameters, for
example, ko and kg for step 0. Thesparameters are calculated automaticafiingthe discrete

system model.
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stepping with left foot stepping with right foot
base PCG
B stride step
2 [T 0 0l | +Kior | APuefta| +kao: | APlett2
S3 S3
S4 . . _J: s4 + k11 [APrighta| + K21 [APright2
» 1 2|5 [ +kyp | OPreft1| +Kpo | APlett2
S3
- _?f S4 +kq3- AI:’rightl + ko3 AI:’rightz
2 4l | +kig | DPreftr| +kogr | APrert2
S3
- _5_ S4 +kqs5- AI:’rightl +kos- AI:’rightz
3 6l% | +kig|OPlerts| +kop | APrefr
v T M +k17° [BPright1] + ka7° |APright2
\Aﬁ_/
t fixed PCG perturbations perturbation scaling constants LPPs

Figure 3.6 - Overallimit cycle control structurdor a walking biped. The walk
begins withthe left leg as the stanteg. B isthe open-loop base
PCG. C isthe overall applied controfor eachstep, consisting of
the base PCG B and additional (left or right) stance leg perturbations
to balance the step. The Si are the states of B (four in this example).
With suitable parametezhoices,the control algorithm is able to generate stabbaking limit

cycles whose open loop motion is described by the base PCG.

Appropriate parameter choices are crufalsuccessful control.The nextfew sectionslescribe
each component of the conts}ystem for a walking biped.The process of choosing various

parameters will be described as they are introduced.

3.4 Nominal Open-loop Control, UMM

A base PCG provides the nominal open-loop controfiferperiodic motion of theiped. In the
case of a forward walk, the base PCG consists of a sequeposesf tayenerate dorward step
with oneleg followed by a forward step witthe otherleg. The basePCG forwalking must

generate motion that is initialiglose to attaining a balancedlk when used withouadditional
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compensating perturbations. A b@&€G producing an open-loapalk of a few steps isnore

likely to be successfully stabilized than one that falls in the first step.

Figure 3.7 shows a base PCG used to generate a forward wal&tion for the simplest human
model along with its equivalent graphical representation. bEsePCG hagight-left symmetry,
although PCG asymmetry caralso be quiteuseful as will be demonstrated lifie turning

perturbations presented in Section 6.2.

The base PCG consists of six stat@hie poses instates S1 and S2 are identical. Poses in
states S4, S5, and S6 are identical to those of states S1, S2 and S3 respectivibly,lefitand
right sides exchanging roles. Having a total of only four unmpees,the controllerdescribes a
simpler motion than a typical humavalk. This relatively small number gbosessimplifies the

specification of a base PCG as well as the creation of suitable parametric perturbations.

Sensor-based transitioase necessary to synchronitiee biped'smotion to the externalvorld.

The base PCG of Figure 3.7 uses such transitions to move from S1 to S2 and from S4 to S5. A
transition occurs whethe swing foot forthe currenistep(i.e. the next stancéot) contacts the
ground. If this has already happened before the state is entered, the transition occurs immediately.
Actively ensuring ground contact at fixed points in the walk cycle is important in ceitizétions

such as when starting from amitial resting state. While the sensorsare typically no longer
necessary once a walkidignit cycle is reached, changing from orienit cycle to another can

require sensor-based synchronization again.
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S1

right foot in
ground contact

/

S2
S6

0.2 sec 0.2 sec

S5
S3
/ 0.2 sec
left foot in
ground contact
S4
(a)
transition
DOF: 1 2 3:0 331 4 50 5:16:06:1 7 80 81 info
S1 o o O 5060 5 O O -10 0 o0 o 0 R
S2 0O 0O O 5060 5 0 O -10 0 O oO .2
state S3 o o 0O -20 0 5 O O -10 0 o0 o0 .2
S4 o o0 O -10 0 O O O 5060 5 0 0 L
S5 o o O -10 o O O O -50 60 5 o0 .2
S6 o o o0 -0 0o o o o0 -20 0 5 o0 .2
(b)

Figure 3.7 - Forward walking base PCG for a simple human model
(a) State diagram (right foot dashed). PosemnB R are left-right symmetric.

(b) Pose table. Al DOFs are in degreeselative to referenceposition.
Transition information is given asne (seconds) followed by aaptional
foot sensor type (left or right) for sensor-based transitions.

State Description

S1 Right foot placed on ground
Left leg begins forward swing (knee bent for ground clearance)

S2  Right leg propels body forward
Left leg continues forward swing (knee bent for ground clearance)

S3 Leftleg extends in anticipation of ground contact

S4  Left foot placed on ground
Right leg begins forward swing (knee bent for ground clearance)

S5  Left leg propels body forward
Right leg continues forward swing (knee bent for ground clearance)

S6 Right leg extends in anticipation of ground contact
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Figure 3.8 showshe open loop motion resultingghenthe basePCG alone isused for control.

As expected, the biped falls over after several steps.

Side view / / / | / / // // // /o |
e VVRNL Y RO AL b 2

Rear view \

(continued) \ \ \ \ \\ \\ \\ \\ \\\\
[RRERARRRRN S

Q-

Figure 3.8 - Unbalanced motion of human model using base PCG
shown in Figure 3.7.

Surprisingly, the small number of posessidficient not onlyfor walking, but also for dimited
form of running. Runningcan be achieved simply by replacing e secondtime-based
transitions ofthe walkingbasePCG with 0.1 second transitionsThe flexibility of the pose
controller to accommodate the differenbtions is due to thground sensors whichre used in
state transitions. The sensor-based transitions exist to ensure that the next stancedootast in
with the ground beforeproceeding into its stanqgehase. Howeverthey do not constrain the
initial time of ground contact. In the case of running, ground contact typically occurs stfiertly

entering state S1 or S4 t® new stance legnoves to propethe bipedforward. Inthe case of
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walking, groundcontact typicallyoccurs inthe previousstate(S6 or S3) towardhe end of the

swing leg extension. These two scenarios are illustrated in Figure 3.9.

S6 S1->S2
S6 clogy S2 S6 s1 s

[
S

! ~ o N L ~
left foot in both feet right foot in left foot in flight right foot in
ground in ground ground ground (brief) ground
contact contact contact contact contact
(double-
stance)
(a) (b)

Figure 3.9 - Possible walking and running steps described by base PCG of

Figure 3.7. Related states and transitions are indicated.

(a) walking

(b) running
An initial state must also be chosen for the walk. The initial state provides a starting position from
which a successful walking motion can begWhile thesimplestinitial state touse wouldhave
the creature at rest in the reference position, it is easier to achieve a limit cycle when the initial state
more closely resembles a state on a balanced eyale. Finding an appropriateitial state
currently requires trial-and-error dhe part of theanimator. Figure8.10 showghe initial state
which was generated manually for the simple human model controlled by the®&sef Figure

3.7.
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/
= =~
Rear view Right side view
DOF: 1 2 3031 4 50 5160 6:1 7 80 8:1
Value: 0O 0 0 0 0O O O -51-2050 0 O

Figure 3.10 - Initial configuration for simple human model.
Right foot shown as two segments for clarity. All
velocities are 0.

3.5 Choice of Regulation Variables,Q

As discussed earliethe discrete balance control Bfj. 3.6 isapplied only once pestep. This

implies that each regulation variable must represent the behaviour of some parsystenastate

over an entire step as a single scalar value. It is important to choose suitable functions of state and
sampling timeswhich give a reasonably smootkRsponse to perturbations as we assume in

Section 3.2 by using the discrete system Jacobian.

All of the RVs presented in this thesis are projections obylséemstate at a specific point in the
cycle asshown in Figure 3.11.The sample timesorrespond tdhe approximatdime of foot
placement for each step. Variations such as sampling an average or peak value of some function

of state over the whole step are also promising but unexplored possibilities.
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step

sS4
Q2n

Figure 3.11 - End-of-step sampling times @r

step
2n

RVs must be chosen to be meaningful functionghefsystemstate inorder to improve the

chances of attaining a limit cycle. A number of general criteria should be met:

1. RVs shouldncorporate some key element(s)tbé desiredcycle and shouldreflect
movement or position relative to the world frame. éample that meetsoth criteria

is “uprightness” with respect to the world vertical axis for the case of walking.

2. The RVs should be easily controllable. It should be possibleatih a wide range of
RV values from variougnitial states by choosing an approprigametric control
perturbation. For exampl#ée system must have DOFs whichn affect theehosen

RVs.

3. RVs should vary smoothly around a reasonable range of interest. For example, in the
case of a walking biped, the range of interagjht correspond to configurations with

a relatively upright torso.

4. We should beble to estimate a target valige each RVwhich will keepthe motion
close to a desirable limit cycld-or example, tattain awalking limit cycle, we must

be able to determine target RV values that will keep the biped balanced.
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5. When multipleRVs areused,independence or near-independence of the RVs can be

useful. RVinterdependencies can be comp{exg. non-smooth)making it more
difficult to find parametricperturbations which cause only smooth variations over a

wide range of RV values. For our bipedal control, we assume near-independent RVs.

N

@) (b) (©)

& centre of mass

Figure 3.12 - Balance RV vectors
(a) swing-COM vector
(b) stance-COM vector
(c) up vector

In this thesis, weexperiment with three choices BVs, based otthe vectorsshown in Figure

3.12. The first, theup-vector is based othe notion oftorso "uprightness".The up-vector is

fixed to and runs along the lengthtbé torso inthe human model and the head in tbleo-bird

model. Theswing-centre of mass (swing-COM) vediescribeghe position ofthe COM of the

biped with respect tothe currentswing foot. The stance-centre omass(stance-COM) vector
indicates the position of the COM with respect to the stioate The samplingime for all three

types of RV are at the end of states S3 and S6. For the purpose of computing RVs, the swing and
stance legs do not exchange until after thedasePCG state of thestep. The legwhich is the

swing leg for most of the current step is useddmpute the swing-CONRV. The stance-COM

RV is treated in a similar fashion.
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The RVs are two scalar components extracted from the given vector. The vector is sampled at the
end of the currenstep,normalized, and projected ontlee horizontalplane. The projection is

then decomposed into tiwo components aflustrated in Figure3.13 forthe up-vectorcase.

The components provide an indication of thevard and laral lean of the&ehosen vector. The
forward direction is defined as being orthogonal to gneund-plane projection of lane joining

the biped's hips.

Up vector

forward
component
axis

lateral
component
axis

Horizontal plane

Figure 3.13 - Decomposition of up vector projection into RVs

3.6 Choice of Perturbation Parameters,AU

The balance control formulation of FiguBes uses twdinear parametrigerturbations (LPPSs) to
control each step in the baBEG cycle. Recallfrom Section2.3 that each_PP consists of two

basic components,fexed PCGperturbation and a scalar multiplieNew values foreach scalar
multiplier are automatically computed for each step to balance that step. The fixed part of the PCG
perturbations remain the same throughout a given walk. This section discusses the choice of fixed
PCG perturbations which must be supplied thg animator. Throughout this sectiotie term
"perturbation” will beused to refestrictly to the fixed part of abhPP raher than an arbitrarily

scaled perturbation.
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As in the case of RVs, the choice of perturbations should meet a minimal set of requirements to be

effective. Thecriteriafor good PCGperturbations are leted to the criteridor suitable RVs,

discussed in Section 3.5. In general, the following should hold:

1. The scaled perturbati®hould beable to reach avide range of desired RV values
from a wide variety of initial conditions.
2. Perturbations should provide smoathntrol overthe RVs sothat a suitable linear
model of the discrete system can be constructed. The invetsis ofiodel isused to
determine the appropriate scaling factfws each perturbatiorior eachstep. For
bipedal walking, the chosen perturbations provide near-linear controkagkrof the
three balance control RVs presented in Section 3.5.
3. Perturbations should be designed to be as independent as possible in order to reduce or

eliminate non-linear interactions between RVs.

The control perturbations chosen in this thesis affect the stance hip pitch and stanc®Qg soll
They are shown in Figure 3.14. Items (c) andsfw the posetableform of the perturbations
which are scaled and added to a base PCG pose table such as that @.Figbye In our case,
each of the chosen PCG perturbations affects a single DOF. Unity-valued perturdraticsesl

so that the scalar multiplier units are in degreleach perturbation is applied &l poses (i.e. all
states) of the relatestep, left or right. This provides a smoothand more effective control

perturbation.

Figure 3.14 illustrates the hip pitch and roll perturbations for a body irspaee. When applied
to a body incontactwith the ground, the perturbations primarily affect the biped si®wn in
Figure 3.15. Applying a stance haiich perturbation varies thersoangle in the sagittgdlane.

Applying a stance hip roll perturbation varies the torso angle in the coronal plane.
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Figure 3.14 - Right higitch and roll perturbation®r a simple
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humanmodel. During states S1 to S3, the right
leg is the stanckeg. DOF 6:1 is right hippitch.

DOF 6:0 is right hip roll.
(@) hip pitch (viewed from right)
(b) hip roll (viewed from rear)
(c) hip pitch (pose table)
(d) hip roll (pose table)
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Figure 3.16 shows the relationship between the stangatbipperturbation and therward and

lateral component of each of the thtgpes of RVs introduced in Sectidh5.

Figure3.17

shows similar results fahe stance hip rolberturbation. Each curve represethis value of the
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particular RV at the end of a singdeep for arange of applied perturbation scaling&or each

curve, a different initial state is used. The initial state for ste@s generated by first simulating

n-1 steps with the open-loop base PCG. By the fourth step, the figure is falling noticeably.

/// \\\ // , \K\

19 4

(b)
Figure 3.15 - Typical effect of stance hip perturbations when dynamics are considered

(a) right stance hip roll
(b) right stance hip pitch

The graphs illustratehat hip pitch varies nearly linearly witnyg for all three choices of RV.
Similarly, hip roll is nearly linear with respect@x;. These relationships provide evidence which
supports our assumption that the discrete system can be modelled using a linear model. Despite the
fact that theperturbations themselves are mutually independent, their effect on the RVs is not
cleanly decoupled. Thuthey do not provide truly independent control ogach RV dimension

as desired. In general, howeviltie magnitudes of thendesired variationare not excessively

large relative to the accessible range of RV values in the desired antesisions. Completely
independent control of the RWsould imply a diagonal discreteystem JacobianThe relatively

small effects of each perturbation on other's control dimension mean that the off-delgomadts

of the discrete system Jacobian will be small compared to the diagonal elements.
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Figure 3.16 - Balance RV components vs linearly scaled hip pitch perturbation
(@) - (b) up vector
(c) - (d) swing-COM vector
(e) - (f) stance-COM vector
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These relationships allow us &ttain finalvalues forQ close to the desired valués eachstep

using a simplified form of the Jacobian, discussed in the next section.

One interesting point to note is that the slope of the stance-COM curves in Figure 3.16 and Figure
3.17 are opposite in sign compared to the corresponding slopes for the up vector and swing-COM
RVs. This is due to themechanisnthrough whichthe stance-COM anglehanges. Figur8.18

shows this effect exaggerated for clarity.

\

up vector

swing—C. of M.

stance—C. of M.

Figure 3.18 - Direction of change of forward RV components with hip pitch

3.7 Linear, Sampled "Balance" Control

This section describesow the basePCG, perturbations and various RVs discusseckarlier
sections can be used to compute and apply the disygEmmodel parameters] @nd QoM to
generate a balanced walk. The "balancing" is done by choosing appropritagg&\Walues for
eachstep and findinghe scaling factors to apply to tRCG perturbations to reacthem. The
scaling factors are determined automaticaliyngthe inverse of the linear discrefgstemmodel
(Eq. 3.11). The balancing process is repeated, one step at a timepfanyesteps as desired.
In somecasesthe resultingwalk is erratic andwanders. In others, walking limit cycle is

reached.
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Two separate problems must be solved in order to achieve the motions we seek:

1. We must choose an R‘drgetvalue,Qd, on thecycle, which islikely to drive the
system into a reasonable limit cycle.

2. We must construct the discrete system model of Eqg. 3.9 and then use it to compute the
final control perturbatiorior eachstep. This involvescalculating the discrete system

Jacobiany, and the nominal operating poi@°™for each step.

3.7.1 Desired RV Values

The desired (target) values for the RVs should be chosen each step to keegtettmenear Bmit
cycle. We choose to use a constant target value for all steps. Thetdedisforcing the RVs
to the same desired value at the same poieaahcycle, alimit cycle will be generated. This
approach is sufficient both to drive the system into a stabiecycle initially and tomaintain it.
Allowing the RV targets towvary from one step tthe next can beseful, but requires a way to
selectthem. This possibility is further explored @hapter 5 where variation i@ is used to

provide control over the biped’s walking speed.

Once the choice is made to use constant RV targets, the particular values oheaddre This is
essentially a trial-and-error process. However, common sense and the behaviour of the open-loop
system can provide valuable clues. For example, if a straight forward waikitign isdesired,

the lateral RV target can be quickly estimatsthgthe finalpose in ond?CG step asshown in

Figure 3.19. Similarlythe first few steps othe open loop motior{such aghat in Figure3.8)

can provide a reasonabéstimatefor the forward componenttargets. Finally, performing a
number of trials with differenforward QA values provides a solution, if omists, aswell as
information on the useful range of target values. In this case, a “trial’atesnpt to balance the

biped’s motion by applying our proposed control technique with some particular trial v&@e of
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i i
Figure 3.19 - Estimate of desired lateral RV components
(based on S6 from Figure 3.7 (a) - rear view)
i) up vector (vertical)
ii) stance-COM
iif) swing-COM

3.7.2 Constructing and Applying the Discrete System Model

Once an RV target has been chosen, the discrete system model is reconstructed and equgiied at
step asshown in Figure 3.20. Igeneral, a single fixethodel is not sufficient to represent all
possible steps.While RVs provide a reduced, lowindensional representation of systestate,

they are also an incomplete aaehbiguous representation thie system state. For example, the
chosen RVs use position information and no velocity informati®ach unobserved parts of the
system state cause variations in bQf®MandJ. Figure 3.21 liustrates thisdea. This result is
evident in graphs of Figure 3.16 and FigBr&7 where boththe averageslope andhe offset of

the curvescanvary from one step tthe next. These variations are especially apparent in the

lateral control dimension.

determine model use model inverse simulate
L___p| parameters |—#»| tocompute final |—®| final step
(4 simulations) control perturbatiuon (1 simulation)

Figure 3.20 - Balancing process for each step.
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Qi+1
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Qi
Figure 3.21 - Unobservestateproblem. Two unperturbed RV

trajectories beginning witlidentical values forQ;
but different initial states.

Because of the variation @°MandJ from one step to the next, it is (unfortunately) necessary to
construct a new discrete system model for each step. This is done by sdufif)ing determine
the model parameters for the current s@)" andJj. The inverse ofhis linear model,J-1, is

then used to choose the perturbation scalings necessary tQ‘égchigure 3.22 illustratethis

process for a one-dimensional system.

Qi+1
A
Qi+1 = hi(k)

nom \
7 >
~ ~~linear model

Qd = :7 ,,,,,,,,,,,,,,,,,,,,,,

-~

kK" Kkl k2

X sample point
® extrapolated perturbation value

Figure 3.22 - Model construction and extrapolatid#. andk2 are
two sample pointsused to constructhe forward

model. The inverse model and)X yield the
necessary applied perturbation scalkig,
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In general, there is no guarantee that the discrete system Jacobian will be ineergblehstep.

However, with well-chosen choices of RVs andPPs, singularities generally occur only for
trajectories far enough from useful limit cycles to béttké interest. Typical singularitiedor the
human model, occur when it is lying on its side and wthencurrent stance ledpes notcontact

the ground at all during the current step.

The general form of the Jacobian for a 2D system is:

Wy Jdy O
Uk, ok, U

J= Da 1 20 3.10
% 9% ( )
Bk dke 5

Using finite differences, a minimum bf+1 samples are required to constrina linear model of
h(K) for a control system of dimensidit one forthe nominal operating point and ofte each
control dimension,each ofwhich yields a column ithe Jacobian. In this caseach “sample”
consists of a simulation of one step with a different valuk.ofln practice, a greater number of

samples may be required.

For the two dimensions of obipedal controkystem, we use folsamplesimulations, two for
eachdimension. Aradditional simulation computes the final motiam the step afterthe final
PCG scalings have been chosesingthe model. Rather tharusingthe completelacobian, we

choose to work with two simplified forms:

1. Assume independent control dimensions and observetlmlprimary RV. This

corresponds to the assumption of a diagonal Jacobiaddfi/ek; = 0,i#j). We will

refer to this form asuperpositior(SP) sampling.

2. Assume near-independent control dimensions but allow the operating point to move as

each final perturbation scaling is determined. This corresponds to a form of triangular
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Jacobian which makassethe most up-to-date values die model parameters in a

manner similar to the Gauss-Seidel method for solving linear systems.

For the first, two independent 1D models are constructed then combined in the fimgdhtsom.

For the second, twovariations areconsidered. Irthe first, a 1Dmodel is constructed in the
forward control dimension and inverted to obtain the requﬁ%. A second 1Dmodel is then
constructed in the lateral control dimension making use of the known val(;kvgf We refer to

this as forward-then-later@éfF-L) sampling. Lateral-then-forwardL-F) sampling issimilar but
performs 1D control in the lateral dimension first, then uses this result to construct a 1D model in
the forward dimension. We might expect that one or both of these approaches petferrthan
superposition sampling since they both incorposakditionalknowledge ofthe perturbations to

be applied. Somewhat surprisingly, this turns out not to be the case as we shall see in Chapter 4.
All three approaches give comparable results, with superposition slightly outperfahainther

two. The three sampling strategies investigated are illustrated in Figure 3.23.
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(b) (©)

X sample points [ interpolated points O final points
Figure 3.23 - 2D sampling strategies
(a) superposition (SP)

(b) forward then lateral (F-L)
(c) lateral then forward (L-F)

The final parameters to consider in constructing a good linear model of the diystetmare the

perturbation scaling factonssed tosampleh(K) (e.g. kI and k? in Figure 3.22). Since the
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discrete system is quite linedine precise location of the samjpleints is not criticalThereare,

however, a few potential pitfalls to be avoided in choosing them:

1. Since we cannot necessarily predict $ign of the required perturbatiorfsom one
step tothe next, it isoften best to samplé(K) symmetrically about the nominal
operatingpoint, K=0, rather than at the nominal poitgelf. Figure3.24 (a) shows
such a case.

2. Samples should sparséfficiently large range imrder to avoidlocal distortions in
h(K). A typical failure due to this problem can be seen in Figure 3.24 (b).

3. Sample points should not consist of excessively large control perturbations. When the
current state is far frorthe limit cycle, large control perturbations can result in the
biped fallingover. Including afall as a sample can lead topmor model. This

situation is illustrated in Figure 3.24 (c).

Sample scaling factors &g = =5 degrees for hipitch andkjz: = +1 degreeor hip roll give

acceptable linear models for our biped models over a wide variety of gaits.
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Figure 3.24 - Sampling point pitfalls in discrete model construction
(a) sample scalings non-symmetric
(b) sample scalings too small
(c) sample scalings too large

3.8 Torso Servoing

While it is preferablefor animation to have general contreblutions, more specific control
solutionsare sometimesseful or necessaryThe control described iprevious sectionsan be
used togeneratesuccessful walking gaitsHowever,the resultingwalks exhibit a characteristic

bobbing of the torso in the sagittal plane. This is due, in pathdcchoice of simple stance hip

2 rocking back and forth.
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perturbationsand, in part, tahe fact that the motion ignly constrained at a single point in the

cycle for each step.

Onepossible solution to this problem is usethe waist pitch degree-of-freedom ajur human
model to continuously servo the torso to a desired angle from the vertical in the sagittal plane. The

torso servoing control is applied to the biped's waitsh DOF. The applied torquéor a planar
example is calculated as
7= Ky {0~ Pesired) ~ Ky
where
T is the applied joint torque
@Pgesired 1S the desired torso angle from vertical in the world frame (constant)
@ is the torso angle with respect to world frame vertical
@ is the time derivative ofp
and

kp andkqy are the proportional and derivative gains

The parameters, @yegreq, aNd @ are shown in Figure 3.25

Figure 3.25 - Torso servo parameters
With continuously-applied torsservoing, the torso motion becomes considerab§moother.
However, it also presents an additional problem when used with balance cditteohpplication

of a torso servo precluddise use of torso-based R\&nce these will no longer vary with hip
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perturbations. Redefining the up vectming avector fixed to the pelvis as illustrated Rigure

3.26, rather than the torso, is sufficient to overcome this problem.

/

Figure 3.26 - Pelvis-based up vector balance indicator

Torso servoing ensures that the upper body of the biped reomigét, and providesricreased
stability by damping largeipper body movements. However, it shouldnoged that itdoes
nothing to prevent the biped from falling over since the legs must still support the upper body. An

example of a fall with torso servoing applied can be seen in Figure 3.27.

There are a number of benefits in addition to a more aesthetic result. Reducing the highly dynamic
oscillations of the torso (a significant portion of the body mass) results in a suctesisiyicle

for a larger range ad. As well, longer stride times and very slow walks become possible.

SRR
A VRN

Figure 3.27 - Falling with torso servoing enabled.
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3.9 Conclusions

In this chapter, wéave described a control system capable of generating and contstdibig

3D bipedal walkinglimit cycles from unstable open loop motions. A number of key
simplifications were made, leading to a well-behaved discrete system which is remodelled for each
step using a discrete linear model. The details of each of the system components and their roles in

the overall system were described and examples were given for a walking human model.

In the following chapter, wewill present some othe results obtained by applying this control

strategy to our dynamic models.
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4. BALANCED WALKING RESULTS

This chapter describes tinesults of a series of experiments perforrasohgthe balance control
approach of Chapter 3. Various parameter choices are explored to determine their importance in
generating successful limit cycles and their effect on the resuattoigpn. Control otthe human

model is the primaryocus ofthese experiments, although triaising the robo-bird model are

also included to demonstrageiccess with aignificantly different bipedanodel. Sectiong.1,

4.2, and 4.3 present results obtained using each of the three choices of RVs introduced in Section

3.5. Section 4.4 examines the effectiveness of applying a torso servo to the human model.

Figure 4.1 shows a few steps from a typical balanced walk. The motion redichiesyale and
continues to walk in a straight line for the full 60 stepsheftrial. Using the nominalopen-loop
control aloneresults in only 5 steps befotke human figure fallover. The results clearly
demonstrate that with suitable parameter chomets/e stabilization of bipedal locomotion cycles

is both possible and useful.

IR IRERENY)

Figure 4.1 - A sequence of steps from a walking limit cycle.
Up vector-basedQd = [ .25, 0], F-L sampling.

The motion resultingrom the application of the described balance control vaigsificantly,

depending orthe choice of RVs and other parametalues. Many choices of parameter values
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result in a number of successful steps but eventually @ahervalues move thgystem onto a

successful walking limit cycle. Some walks don't fall despite seemingly chaotic motion.

4.1 Up Vector Regulation Variables

The first results we show usthe basePCG of Figure 3.7and the stance hip perturbations
described in SectioB.6. The RVsconsist ofthe components of the wector, asllustrated in
Figure 3.12 (c). Torso servoingnet applied. Figurel.2 shows aepresentative set of RV
trajectoriescorresponding to successful walkirgals of 60 steps. These curvesare the

experimentally-based equivalents of the idealized cyclic trajectories shown earlier, such as those of

Figure 3.3. Inthree of theplots, aclear limit cycleemerges. Irthe fourth, the trajectory is
chaotic.
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(c) SP samplingQd = [.3,0]

(d) L-F samplingQd = [.35,0]

Figure 4.2 - Continuous-time up-vector RV component phase

diagrams
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While such phase plots are useful tools for obserlnity cycle behaviour in asystem,they tell
us relatively little about the difference between sampling strategies and/or the visual appearance of

the walk.

The graphs shown in Figure 4.3 provide additional information. Graphs (a), (c) asttbye)xhe
effect of various choices f@d, in particular, for the forward component@. The trials explore
the useful range of this parameter by uniformly sampling a broad set of valuesackwial, the
forward component of th@d is held constant for afiteps. The lateral component is fixed at 0.0
for all trials. Walks are up to a maximum of &@eps long and feweahan 60successful steps

indicates a fall.

The "hip plots' corresponding to the most successfialls for each sampling strategy ashown
in Figure 4.3 (b), (d) and (f). Hip plots indicate the position @mehtation of thebiped'spelvis
in the horizontal plane as viewed from above. This orientation information indicatdgection
the biped is facing as it walks, allowing a forward motion to be easily distinguished fedenah
(sidestepping) motion.The lines on thelots are approximately 1 meter length, significantly
wider thanthe biped'sactualhips sothat their orientation can be easfigen. This affects the
perceived scale of thplot, making thewalks appear shorter than thegctually are. The
dimensions of the terrain are given in metefsie elapsedime between adjacergamples on the

hip plots is approximately 0.16 seconds.
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Figure 4.3 - Nominal up-vect@d range and corresponding hip plots for
each sampling method. All trials are limited to a maximum of
60 steps. The biped initially faces left (i.e. in the -x direction).
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A number of observations can be made from these graphs and the corresponding animations:

1. Not all choices ofQd work. Successfulrials fall within a "nominal range" ofd
which is similar across sampling strategies.

2. Choice of sampling strategy noticeably affects the appearancewélttee Somewhat
surprisingly, no one strategy is demonstrably superior.

3. Walks are not of unifornquality. Some walksnitially appear stabldut thenfall
over. Otherwalks appeachaoticbut don't fall. Choices ofQd towardthe centre of
the nominal ranges give the most consistent walks in terms of stability and appearance.

4. Onewalk begins movingforward, slows to a sto@and then movedackwards
chaotically for about 15 steps before finally falling. The fact that such a walk emerges
from a basePCG designed to produce forward walking motions illustrates the
potential for a broad range of useful motions with little or no change in the underlying

balance mechanism.

Figure 4.4 through Figure 4.6 show the end-of-cycle components of the reduced stattg*/ector,
over time, for the walks of Figure 4.3 (b), (d) and (Tlhe samplegointsare joined by lines to
better visualizeoscillations. The lines do not represent the contins motion othe RV during

each stride Qd is indicated by a dotted line.

A number of qualitative observations can be made about the behav'QUr of
1. A startup phase is clearly evident. The number of steps required to reach a steady-state
response varies from 5 to over 20, with 10 being most typitahls using values of
Qdin the middle of nominal range stabilize most quickly.
2. The desired valu€q, is not always achieved, but a limit cycle is siitiined in many
such cases.
3. No particular sampling strategy appesuperior with respect to steadtateerror or

rate of stabilization.
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Figure 4.4 - Discrete RV vaIueQ*, for L-F samplingQd = [.2,0]
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Figure 4.5 - Discrete RV vaIueQ*, for SP samplingQd = [.3,0]
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4. The chaotiovalk (see Figuret.6) hassignificantly larger error with respect to the

desired RV value€d, as compared to stable limit cycles (note the scale afrieh).

The visual appearance of this walk is noticeably more clumsy than the other walks.
5. Generally spdang, theforward component ofQ stabilizes more quickly than the

lateral component and exhibits smaller variation in steady-state (e.g. Figure 4.4).

6. Q* can oscillate from step to step. This is noteworthy since the overall nsbibamd

ideally have nearly identical characteristics from one step to the next.

4.1.1 Other Observations

The walks generated using the up-vector display a number of notable charactdfissi;avhile

step length is not a regulated variable, virtually all of the walks travel a uniform distance from one
step to the next. Figure 4.7 shows the step lengths over the coursgichlwalk. This result

is encouraging since an irregular walk would be much less appealing and a suitable remedy is not
immediately obvious. This also serves as evidence thatrtbleservable state variables approach

a limit cycle as desired.

Another characteristic of the resulting motionghiat not all of thewalks follow a straight line.
This can be seen clearly in the lplots of Figure4.3. Without any form of directinal control,
most of the walks follow a curved path. The chaotic walk corresponditng @ = [.35,0] trial
of Figure 4.3 (d) follows a less regular path, weawagk and forth ovethe course ofthe trial.
As we shall see in the neghapter, thiscan besolved by explicitly controlling thebiped's

direction with an additional feedback loop.

An adverse effect apparent in some of the walks is a tendeptgct each standeot directly in
line with the previous in the lateral dimension as if walking a tightrope. In adsesthis even
results in the biped crossing legs slighglgchstep, with oneleg passing througlthe other since

suchinterpenetrations are not prohibited auir simulations. While the tightrope walking is
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undesirable, it is also an artifact of using the up vector RV in the lateral dimension. The lateral hip

perturbations which result in this effect are chosen to maintain lateral torso uprightness. Using a
different choice of RV for the lateral dimension can cortieist effect, as will be demonstrated in

Chapter 5.
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Figure 4.7 - Step length vs step number.
Qd =[0.25,0] walk of Figure 4.3 (b)

Onefinal characteristic of thevalks is excessive front-to-back and side-to-giugtion of the
torso. This bodymotion is a result of the particular choice of conpeiturbations. Thigffect

and a suitable solution will be discussed in Section 4.4.

4.2 Swing-COM Regulation Variables
Our balance control techniqueatso effectivewith the use of swing-COMRVs. The fact that
significantly different choices of RV can heed successfully with otherwisgentical control

serves to illustrate that the proposed control approach is reasonably general.

Figure 4.8 shows a representative set of RV trajectory plots for the swing-COM vector trials. The
plots indicate the trajectories of both féetoughthe whole cycle since theswing leg,andhence
the swing-COM RV, changes legs each step. In contrasthétisimilar up-vector trajectories of

Figure 4.2, theswing-COM-based RV trajectories do not exhisitrong" limit cycle behaviour,
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but rather tends to drift around in near-cycles and/or converge very slowly imib gycle if at

all.
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Figure 4.8 Continuous-time swing-COM RV phase diagrams. The
two curves represerthe leftand rightfeet respectively
(i.e. swing-COM and stance-COM at varidimes in the
cycle).
(a) F-L-samplingQd = [-0.05,0]
(b) L-F-samplingQd = [0,0]
(c) SP-samplingQd = [0,0]
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Figure 4.9 showshe nominal rangelots and hip plots for a series tofls using swing-COM

RVs and stance hip control perturbations with each of the three sampling stréegids-F and
SP). The trials explore the useful range of the forward compon@&8 efith uniform sampling.
The lateral component g9 is fixed at 0.0 for all trials. Torso servoing is not appliédl. trials

are a maximum of 60 steps long.

A few of observationgan be maddased on Figurd.9 and on thecorrespondinganimated
motion:

1. The swing-COM RVs generate walking motions generally similar in natutieose
generatedising up-vectoRVs. Aswith the up-vectoresults,there is a “nominal
range” ofQd values which produce the most successful walks.

2. In contrast to the up vectaase,different sampling strategies give significantly
different results. SP sampling generates the most stable motions and F-L sampling the
least stable.

3. Unlike the up vectowalks, whichgenerally move straighforward, many swing-
COM walks demonstrate a tendency of the bipedwitst sidewaysabout its own
vertical axis. This tendency is most prevalemhen usingthe F-L samplingstrategy

and is almost entirely absent for the SP sampling strategy.
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Figure 4.9 - Nominal swing-COMQY range and corresponding hip plots for each

sampling method. Later@d = 0.0 for all trials. The biped initially faces
left (i.e. in the -x direction).
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Figure 4.10and Figure4.11 showdiscrete RV value plotgypical of theresults obtainedising

swing-COM RVs QU is indicated by a dotted line.
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Figure 4.10 - Discrete RV vaIueQ*, for L-F samplingQd = [0.05,0]
0.1 T T T T T T T T T T
0.05 [ : 01 [
0 A}llt...ﬁoxxxﬁﬂhA.AM'A.AAA i ]
T SRR e e _ 005 \
= - | =
o 005 5 o '.'.!.MM,A]\!\!x
01 | T & aaw
0.05 [ i
-0.15 o 1 1 1 1 1 ] 1 1 1 1 1
0O 10 20 30 40 50 60 0O 10 20 30 40 50 60
step step
(a) forward component (b) lateral component

Figure 4.11 - Discrete RV vaIueQ*, for SP samplingQRd = [0.0,0]

Overall, theresultsare not agjood as thosebtained withthe up-vectolRV. The swing-COM

Q valuesare, in general, less stabfajl farther from their desired values witkarger, more

chaotic oscillations, and demonstrate a tendency to drift. Correspondingly, the contiutions

of the biped in most swing-COM trials is farther from a true limit cycle, qualitatively speaking.
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Two particular problems are apparent when viewing the generated motion:

1. All three sampling strategies generate walks with step lengths which vary widely from
one step to the next as shown in Figure 4.12. This contrasts sharpiyevithiform
step lengths generated when using up vector RVSs.

2. "Tightrope" walking,similar to thatpresent in some up vector-baseedlks, isalso
prevalent in the swing-CONtials. Theuse of swing-COMRVs, howevermakes a

reasonable solution possible by choospigwith this problem in mind.
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Figure 4.12 - Step length vs step number, SP sampling,

Qd =[0.05,0]
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Figure 4.13 -Discrete RV values for SP sampling®d = [0.0£0.03].
Compare with Figure 4.11. Larger lateral step-to-step variation means less tightrope walking.

The first problem will be addressed in the next chapter. To solve the second problem, the lateral

component o4 is chosen to give the swing foot a displacement slightly away from the body and



70
the COM in the lateral dimension. Figure 4.13 shows the resmﬁirfgr such an attempt based
on the walk of Figure 4.11, which exhibits tightrope walking. A la®fatomponent 0£0.03 is
used instead of 0.0. The sign@f is such that foot placement target is away from the COM.

The resulting walk does not fall and exhibits much more realistic lateral foot placement.

4.3 Stance-COM Regulation Variables

While using the up-vector and swing-COM RVs achieves reasonabess ingenerating

walking motions, similar use of the stance-COM RVs does not. Most trials fall dbeisgcond
controlled step. The failures are due to the fact that even modest changestamabeCOM RVs

require very large stance hip perturbatiorisch cause verfarge changes in theiped's state.

Figure 4.14 illustrates this idea. Because of this result, the chosen balance parameters fail to reach
a suitable state frowhich to beginthe nextcycle, even thougkhe desired RV value might be

attained.
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Figure 4.14 - Variation of stance-COM RV with stance hip pifdf) (

While the walks all fall quickly, two interesting observations can be made:
1. Thefirst controlled step reach&¥ with a high degree of accuradye. the discrete

system model of the first step is accurate.
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2. The above holds for final perturbation scalingjs,far from the sample point scalings

used to construdhe linear discreteystem model.Thatis, the model appliesver a
large change in state. Table 4.1 shows this for a number of desired vaés Af
one extreme, the model is still accurateldas high as 13 timebe sample scalings

used to construct the model.

Takentogether, thessuggestthe possibility of controlling non-trivial aperiodic motions in a
similar way to the periodic motions of thisesis. Suctmotions wouldtypically require a much
larger controllable range @i than cyclic motions since they typically involve a larger change from
initial state to finalstate. Anexample ofsuch amaperiodic motionwould be standing up from

sitting in a chair.

Qfwa | Q% K fud Kiat Qfwd at
A 0 -36.318 +5.544 0072 +0d.007
.15 0 -10.918 +7.823 0154 +0.030
.2 0 +14.481 +14.603 0.208 -0.001
.25 0 139.881 -45.124 0.254 -0.015
.3 0 +65.280 -0.943 0.335 -0.003

Table 4.1 - Results of first controlled step using stance-COM RVs.

Ktwg and K| are final stance hip perturbation scalings in
degrees. Sample scalings for constructiotinglar models

are KwgKiatl = [#5,£1] (compare toK},q and K in
table).

Finally, because the particular choice of perturbation is the primary cause pbdhstability
results withthe stance-COM, it is quitgossiblethat a better choice gqferturbations might give
better results. Using a stance ankle pitch perturbation to vary the force withthdistance foot

pushes off the ground is one possible example.
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4.4 Torso Servoing

All of the walks presented thus far suffer from an unaesthetic "bobbing" of the torsccaiitbs
readily observed inthe continuous-time R\phase diagrams such as those in Figdr2.
Excursions in torsgitch of around 12 degreeare typicaland they are quite apparewhen
watching animations of the balanced walks. While these motions may in fact be desirable in some
casesthey tend to adversely affect the perceived quality of the metioen a realisticnhatural

looking walk is the eventual goal.

10 T
60 A A4 T
50 T 5t
40 [ "
230 [ o
a ©0
»20 I S
10
0 1 1 1 1 1 1 -5
0.1 0.2 0.3 0.4 0.5
d 1 1 1 1 1 1
-10
Q fwd 30 25 20 -15 -10 -5 0
meters
(@) (b)
10 T
60 L 4 T T
50 T 35
5 |
40 T T Mgy
7/
830 | 5 Vi,
%20 o O 1
IS
10 ¢ w\\\\\\\\\\\\“
O 1 1 1 1 1 1 _5 o .25
0.1 0.2 0.3 0.4 0.5
d
Qde _10 1 1 1 1 1 1
-30 -25 -20 -15 -10 -5 0
meters
(© (d)

Figure 4.15 - Trial results based on the walks of Figure 4.3thétaddition
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Torso servoingsignificantly reduces the magnitude of teecursions inthe forward dimension
and, as a side effect, can also reduce the excursidhs lateraldimension. Figurel.15 shows
the results for a set of trials which use the same balance control parametersvalksttué Figure
4.3. Inthis set of trials, torso servoingappliedusing a desiredngle of 5 degreefrward

from vertical.

The resultingpathsare straighter and generally more consistent in direction thanotmeorso
servoed results. The useful range@fincreases in generallThe phasediagram in Figuret.16
illustrates the effectiveness ¢drso servoing at reducinthe bobbing effect caused by the
particular stance hip perturbatioised. Inthis trial, torso servoing reducéise range ottorso

pitch from approximately 12 degrees to 3 degrees.

0.4 - -
03 [

©

S 02

o i

01 F

0
-0.1 -0.05 0 0.05 0.1

Q at

Figure 4.16 - Continuous-time up vector component phdsgram for
human model withtorso servoing to +5 degrees from
world vertical Qservo= .09). Compare to Figure 4.2.

4.5 Robo-bird Running

Figure 4.17 showshe basePCG used ta@enerate aunning motionfor the robo-bird model,
shown in Figure 4.18.While thebasePCG differsfrom that used forthe humanmodel, it is
balancedusing up-vector RVs anstance hip pitch and roll perturbations as wilte human

model.



74

transition
DOF: 1 2021 3 4 5 6:06:1707:1 8 9 1011:.011:1 info
S1 0 O O 80 -95 45 -45 0 0 15 55 -65 25 -25 O 0.1
state S2 0 O O 80 -95 45 -45 0 0 15 55 -65 25 -25 O 0.1
S3 0 0 15 55 65 25 -25 0 O O 80 -95 45 -45 0 0.1
S4 0 0 15 55 65 25 -25 0 O O 80 -95 45 -45 O 0.1

Figure 4.17 - Robo-bird base PCG for running

Figure 4.18 - A running robo-bird

While both the robo-bird and human modetse bipeds,their dynamics are different. When
standing andvalking, the human model isupported bythe rigidity of its straight stanckeg,
which typically has little or no freedom in the verticilection. In theory, nactuatorforces are
required to prevent the human model from collapsing. The leg structurerobthird model is
such that actuator forces must constantly be applied even to rstaadéing upright. Thismeans
there is a significant amount wértical compliancevhen movingJeading to “bouncy’motions.
As well, the base ofthe robo-birdmodel is wide enough tmakestanding on one foot for any
length of time difficult. These factoreake a dynamicunning motion moraatural than a walk

for this model.

4.6 Conclusions

In this chapter we have presented evidetlta the discretdimit cycle control technique
introduced in Chapter 3 can beed togenerate balanced walking motidios the human model
and a running motion fahe robo-bird model. Twahoices ofRV, based orthe up-vector and
the swing-COMvector, were successfulpplied to thisend. A torso servo was shown to be

useful in improvingthe aesthetics of the human modelistion. Finally, a runningnotion for
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the robo-bird motion was used talemonstrate the applicability of the control technique to a

different motion andnodel. Inthe nextchapter, wewill present a number of interestirggait

variations, all of which make use of the same basic form of balance control demonstrated here.
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5. WALKING VARIATIONS

The ability to controlwalking characteristicsuch as speed, directiostride rate and posture is
important if a system is to bseriously considered as amimationtool. This chapter first
introduces an approach to controlling theeed of a walk without requiring changes to the
underlying baséCG. Next,the idea ofusing parameterizedasePCGs isintroduced and a

number of interesting variations on the basic walk are described.

The idea of parameterizing apen-loop control structursuch as PCGs igot entirely new
[VKF94b]. However,the successfuparameterization of dynamically unstalietions such as

walking does represent an important advance.

5.1 Speed Control

The basic balance contrdiscussed irChapter 3usesfixed values ofQd for all steps of a walk

and achieves constant walking speeds. One possible way to vary the speed of a walk is to provide

a number of base PCGs which yield various speeds and interpolate between these. This approach

might be somewhat cumbersome, however, since it requiresiimator to provide suitable base
PCGs. An alternative is to allo@d to vary from one step to the next instead of remaifiieg.
By varyingQdto cause the biped g&peed up or slow doweachstep, awide range of walking
speeds is possible without requiring modificationshimbasePCG. This approach requirgbat
we be able to affect the speed of the walk in a consistent manner by V@fying/hether or not
this is possible depends on the choice of control system pararfietssLPPs, etc.).With the
choices described in Chapter 3, an intuitive form of control is availablgudiitativeterms, an
increase in speed can be achieved by using a more forward-leaning vaeafat a decrease in

speed can be achieved using a more upright valu@for
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More formally, to control walkingspeed,éd, a newvalue for Q4 is computed eachktep by

adding a velocity feedback term to a nominal valu@®bés follows:

Q= Qfjas *+ kp vy -v) (5.1)

where

Qg'ias is a nominal bias value

e is a desired speed
% is a measure of the speed of the current step
Kp is a proportional feedback gain

The bias value is required becauge requiredQd for a stationary walk(i.e. in-place) is not

necessarily 0. The feedback term adjLé?sin the appropriate direction (moferward ormore

upright) by an amount proportional to the error in speed. We choose tleeusistance travelled

by the pelvis over the current step as a velocity measuveafwivg.

The speed of the walk can be varied using eufer Qgias, since both contribute a constaetm

to the overallequation. Fixingyg and varyingQS'ias is akin tochoosing anominal speed and

varying the actual speed about that point by leaning more forward or more upright.

To prevent excessively large acceleratitreg could cause fall, the feedback term is limited in

magnitude:

KoAVg| < AQra,

where AQqy IS the maximum allowable changeGNJij from QS'iaS
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Qgias can be taken from any successful walk. In theory, we could ug¥ tredue which gives a
stationary walk to reach any desirsgdeed. Inpractice, it may benecessary to choose a few
nominal bias values ned#ne various desired speeds to astd thebroadest possible range of
control. Other parameters requiseme trial-and-errork, must be chosen teelate arequired
change in speed to a suitable chang@din If kp is too largethe system will be too sensitive to
small errors in speed anfdll easily. Ifkp is too small,the systemmay notrespondquickly

enough to prevent fall. The size of the range of consta&pft values which produce successful

(constant speed) walks for the given base PCG is typically a reasonable val@s for

Figure 5.1 shows the nominal RV range and hip plots of a series of trials using speed control with
balance parametetmsed on Figurd.15. The trials of Figuréb.1 use acomposite choice of

RVs, consisting of a forward up vector RV component and a lateral swing-COM RV component.
This is done to avoidhe tightrope walking and unevestep length associated witach,
respectively. The hold times for each time-based transition diatbePCG have been increased

from 0.2 to 0.25 tgjield a natural strideate of1.0 steps/secondSpeed control parameters for
each control dimension are shown in Tahl2. Anominal desiredpeed 0.4 meters per step

or 0.8 m/sis chosenQS'iaS is varied to generate various speeds around this operating point.

Table 5.2 - Speed control parameters

Ko | AQma | Qfas | Vo

fwd 1.5 0.15 0.1-05 0.4

lat 0.5 0.05 +0.03 0.0
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Figure 5.1 -Speed controlusing composite RV and stridéme of 1.0
seconds. Only sele@d values areshown onhip plot. Other
pathsare similar in directiorwith varying lengthsThe biped
initially faces left (i.e. in the -x direction).

The resulting walks exhibit a number of desirable characteristics:

1. Applying speed control results in a wider nominal rang&for

2. Theuse of acomposite RV and the desired latespleed of Gare both effective in
eliminating anumber of the artifacts in earliaralks. The walks generally follow a
straightline for a large range ofQd, with consistent step length from one step to
another and no tightrope walking or leg crossing.

3. A wide range of speeds is possible, with linear controhefsteady-statspeed about
the chosen nominapeed. All walks begin from astop andreach steady-state speed
within around 8 steps.

4. A very slow walk,almost in place, ipossible Qgias = 0.1). Notethatthis walk is
outside the linear range of control.

5. Acceleration and deceleration is possible as shown in Figure 5.4.
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5.2 Base PCG Parameterization

By applying the balance control of Chapter 4various basd’CGs, it ispossible toachieve
controlled variations on basic walking motiossch asbalancedturns, bent overwalks, and
different stride rates. A more powerful feature of thgaié variations is that they can sometimes
be predictably interpolatedThatis, giventwo different styles ofwalking, based oiPCGs B1
and B2, it is possible tanterpolate the control irorder to obtain a motiothat qualitatively

interpolates the respective motions.

More precisely, the interpolation procedure can be described as follows:

Define B as the balance contrpfocess which operates on a b&@G to bance it as

described in Chapter 3.

GivenB1 andB2, the parametesets defining two badeCGs,and giventhat 5( B1 ) and
B( B2 ) are both successfu(i.e. that theydon't fall), we often find that the control

interpolation
B(aBl + (1 -a)B2)

varies smoothly witra and is qualitatively similar tavhat we mightimagine a physically

correct motion interpolation to be, namely
aB(Bl1)+ (1 -a)B(B2).

There is no guarantee thahy such successfuhterpolationexists. In practice, however,

smoothly interpolating parameterizations can be found often enough to make them useful.



82
Suchparameterizations can equivalently be thought of lgear parametricperturbation which

modifies the open-loop behaviour of a b&@G. The perturbations aridentical inform to the
balance controLPPs ofChapter 3, but differ ifunction. Instead of providing step-to-step
variationsfor balancethe perturbations presentedtins chapterare appliedover a number of
steps andreused to vanthe overall behaviour of a balancbkdsePCG in order to adbve a
different motion fromthe original. By recastinghe interpolation described above asL&P, it
can then be applied directly to other b&&Gs tohopefully effect a similagualitative change in

the motion. For example, f( B1 )walks straight forward anf( B2 )turns to the right, then
AP =B2-B1

might be called a turning LP&nd could be applied tearious other basic gaits to alldhem to

turn.

This is the interpretation we shall build on in the rest of this chapter.

5.3 Turning Perturbations

One important parameterized perturbation candssl to achieve turning motion¥Vhen applied

to the basePCG of Section 3.4 and subsequently controllefbr balance, thisperturbation
provides a means to smoothly vary the curvature of the biped's path. Furthermore, by applying a
simple proportional control law to determine a suitable turmatg, the biped can be made to

follow an arbitrary direction and thus the path of the biped can be controlled.

Figure 5.5(a) and (c)showthe PCG perturbationfor a right turn for the humanmodel. The
perturbation affects only the left and right hip yaw DOFs (3:26G8)1 The conceptual operation

of the perturbation is straightforward. In order to cause the biped to turn, the foot is placed on the
ground at an angle which points toward the new direction of travel. Diléngtancehase, the

hip realigns the body with the foot, which remains fixed relative to the ground.
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Figure 5.5- Turning perturbations for human model with ball-and-socket hips

(DOF 3:2 and DOF 6:3).
(&) Unit-scaled right turning perturbation
(b) Unit-scaled left turning perturbation

(c) State diagram of relevant DOFs for right turning perturbation.

Feet indicate hip twist with respect to pelvis.
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For the right leg of the right turning perturbatidime initial foot rotation is performed during the

swing phase othe rightleg, as shown istate 5 of Figur&.5 (c). During the right leg stance
phase this rotation is eliminated.The return rotation islone inthe second stancetate(S3),
thereby ensuring that the foot is planted firmly on the ground (in S2) keferepting taurn the

body. Ground friction keeps the foot position and orientation findule thetorsorotates about
theleg. The leftfoot performs asimilar motion in its stancehase to distributéhe complete
rotation evenly over both feet. A similar and symmetric set of perturbations is used for turning to
the left. Figure 5.6 shows thigpical action of tha@urning perturbation. Fadhe sake of clarity,

the motion is illustrated for the case of a stationary stepping motion.

Figure 5.7 shows the hip plots from a set of turning trials performed using ®G&ssimilar to
that of Figure 3.7. The trials use ugctor RVs withQd = [.25,0]. Ascan beseen,the turning
control works well for each of the three sampling strategies. tHatlhises alifferent scaling of
the turning perturbation in Figufe5. The largest scaling factased whichstill yields forward
motion corresponds to a hip yaw of 8 degrees &achleg, giving a turning radius of
approximately2.5 meters. All of the walks face slightly into the centre of tharcle, aneffect

which is more pronounced for tighter curves.

," .O O. ODo o‘ aDO ) ==oo ..‘
e ? e 2 % \
S1 S2 S3 S3

M - stance footD - swing foot
Figure 5.6 -Typical operation of a righturn perturbatiorfor an in-place

stepping motion. A top view of the feet and pelvishewn,
with the associated PCG state indicated below.
The largest scaling-factor trials attempted, corresponding to 16 degrees of ridgft hiplyaw,

demonstrates an interesting behaviour. In such ttiaéstendency to "lead" theirn with the
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torso rotation causes the biped to rotate abowoiits vertical axis more quickly than itan move

along a circular path. As a result, it turns to face the centre of the circle.

In theF-L and L-F sampling trialghe highest turning rates eventually cause the biped to turn
around completely and walk almost straight backwards. The turning perturbation is ineffective in
the backward walking cases because the model walks primarily on its heels. As dheesodt

never obtains sufficient ground reaction forces to fix the foot's orientation.
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Figure 5.7 - Hip plots for the most successful turning perturbation trials
over a range of scaling factor@d = [.25,0] for all trials.

Not all values of ¢ work equally well as Figurés.8 demonstrates.Linearly varying the
perturbation scaling factor still yields smooth behaviour, but not the desired results of9-igure
While this result makes it clear that some care must be taken in choosing parameters, it also serves

to illustrate the fact that reasonable choices can often be withdeit exploring a larg@arameter
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space through brute force experimentatioHere, the clue lies in the fact that the value of

QUY=[.25,0] is around the centre tife range of nomina@d values forthe straighforward walks

of Figure 4.3. This suggests that this valu®@®might be best for other similar PCGs.

One deficiency of thewalks of Figure 5.7 ighat the smallessuccessful turning radius is
approximately2.5 meters. While this is adequatéor navigating the biped in a relatively open
environment, it is too large for motion in a constrained environsugtt as turning a corner in a

narrow corridor.
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(a) Q4=[2,0] (b) Q4 =1[.3,0]

Figure 5.8 - Hip plots for less successful turning perturbation trials over
a range of scaling factors.

"2 45 10 5 0 5

Figure 5.9 - Turning perturbation with torso servoing applied.

Applying torso servoing during turning helps significantly, iadicated by Figre 5.9. With

torso servoing to aangle of 5 degrees from verticéthe walk is slower andhe circles can be
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tighter. The 16 degree turning perturbatiomail, resulting in a turninglimit cycle of

approximately 0.75 meters in radius, a more useful Idwdrin terms of the motion that can be
animated. Thavalks still suffer fromthe biped facing too mudowardthe centre of theurn.
For tight turns, the biped's outside swing leg interpenetrates the stance tegjiceablefashion.

Nonetheless, the perturbations provide a good basis for higher level control of the biped's path.

5.3.1 Point and Path Following
By applying simple feedbac&ontrol, the biped can be made twalk in a desired direction.
Proportional control of the angle of the current facing direction and the desired direction as given

by a target point is used to generate an appropriate turning rate.

The pose control applied each step including balance control is the same form as Equation 5.1.a:

( B + kumAPwm ) + k14P1 + koAP2

In the case of separate left and right turning control perturbations,

kiurn > O @pplies to the right turning perturbation @y, = APyymright
kiurn < O applies to the left turning perturbation &R}, = APy nieft

andky,m is computed according to the proportional control law:
Kiurn = Ko €

wheref@is the angle between tigped'scurrent facing direction and a vector to the target point,
as illustrated in Figure 5.10.g ks a gain constant which determirtesw tightly the bipediurns

for agiven error in direction.ky,p, is bounded to @redetermined maximum value arder to

avoid large, unstable turn rates.
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Figure 5.10 - Point-following. Vectorihdicates the
facing direction of théiped. Vector t

indicates the desired direction. f and t
are both in the horizontal plane.
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Figure 5.11 - Path following.

(a) without torso servoing
(b) with torso servoing

With this turning control, a simple form of path control can be achieved by following a suitable set

of targetpoints in sequence. Eatime thebiped approaches a target point to withim@aimal
distancethe next point in sequence becomes the current tpaget.

Figure5.11 shows the
results of applying this algorithm to a set of tangeints, both withand without torsservoing.

In both cases, the proportional constégtis chosen to givéhe minimumradius turn when the

facing direction of the biped is 45 degrees friti@ target point andas amaximum value athat
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angle. The minimum distance to the current target point before changing to the next target point in

sequence is chosen to be slightly larger ttientightest turning diameter.This helps avoid

scenarios where the biped indefinitely walks in circles around a target point.

transition
DOF: 1 2 3:0 3:1 3:2 4 50 51 6:0 6:1 6:2 7 8:0 8:1 info
S1 0 0O O 0O O 0O O 0O O 0O O 0O O 0 0
S2 0 0O O 0O O 0O O 0O O 0O O 0O O 0 .05
state S3 0 0O O 0O O 0O O 0O O 0O O 0O O 0 .05
S4 0 0O O 0O O 0O O 0O O 0O O 0O O 0 0
S5 0 0O O 0O O 0O O 0 O 0O O 0O O 0 .05
S6 0 0O O 0 O 0O O 0O O 0O O 0 O 0 .05

Figure 5.12 APstrigerate Stride rate perturbation for human model with ball-
and-socket hips and arms.

5.4 Stride Rate Perturbation

The striderate perturbation can hesed to varythe striderate of thebiped. The perturbation,

shown in Figure 5.12modifies only the hold times of particular states the base PCG.
Applying the perturbation with a positive scalipgrameter increases theld time in eachstate,

resulting in a decrease in stridaete. Applying a negative scaling parametaasthe opposite

effect, decreasing the hold time in each state and the increasingateid&he unperturbed walk

is a straight walk with a stride rate of 1.0 strides/second and uses torso servoing and speed control

with a composite RY

Figure 5.13 (a), (b) and (showthree distincisteps in whictthe perturbation is appliedith a
gain of —1.0, 0 and +1.0 respectively to obtain stride rates varyingdr@matridesper second to
approximately 1.25 strides per second. The three sequencedacetakenfrom a singlewalk,
during which the stride rate is dynamically varied. In this cstsiele ratetransitions use 3 steps

for each unit of change in the perturbation gain.

3 In this case, an up vector-based forward RV component and a swing-COM-based lateral RV component.
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Figure 5.13 - Results of applying different stride rate perturbation scalings. Each

sequence indicates one full step. Horizontal distance along the page indicates
relative stride time.

(a) Kstriderate = —1 i.e.B" =B+ (—1-0 : Apstriderate)
(b) kstriderate = O
(C) Kstriderate = +1

As the sequences of Figure 5.13 indicate, the peak height of the swing leaebstep increases
with hold time. This is due to an associated increase in stangatdtip The increased hipitch
is automatically introduced by the balance controbiider tomeetQd at the end okachstep.
Without this action the bipedould fall due to leaning too faiorward with lager hold times or
too far backward with smaller holimes. The increased hip pitclgives the walk a more

mechanical, "marching" appearance at lower step rates than at higher step rates.
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Figure 5.14 - Average speed (m/s) for varying stride rates
Region Akstriderate= 0.0
Region BKstriderate= +1.0
Region Ckstrigerate= —1.0
Region DXstriderate= 0.0
Other regions are transition regions.

Figure 5.14 shows the average speed of the pelvis over the course of the walk which is controlled
to stay relatively constant while the biped's stride nateeases and decreases. A constant speed
implies that the stride length increases inversely with stride rate (and hence linearly with hold time)

for this particular perturbation.

5.5 Other Interesting Variations

PCGs varied in other ways can alsodagancedsuccessfully. Stylistic variations can based to
convey differentmoods or emotions anallow a broader range of abilities. In soroases,
simpler variations can be combinsdccessfully to form moreomplex motions. The next few

sections provide some examples.

5.5.1 Bent-Knee Walking
The perturbation of Figurg.15 generates a walk with bekhees. While this perturbation may
not seem particularly useful on isvn, it can besuccessfully combined with other perturbations

to generate a ducking perturbation for the biped.
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transition
DOF: 1 2 303132 4 505:16:06:16:2 7 8081 9 10 11 12 info
S1 0O 0 O -20 0 2020 0O 0O -20 0O 20 -20 O 15 -30 15 -30 0
S2 0O 0 O -20 0 20-20 O 0O -20 0O 20 -20 O 15 -30 15 -30 0
state S3 0O 0 O -20 0 20-20 0O 0O -20 0O 20 -20 O 15 -30 15 -30 0
S4 0O 0 O -20 0 2020 0O 0O -20 0O 20 -20 O 15 -30 15 -30 0
S5 0O 0O O -20 0 20-20 O 0O -20 O 20 -20 O 15 -30 15 -30 0
S6 0O 0 O -20 0 20-20 0O 0 -20 0O 20 -20 0 15 -30 15 -30 0

Figure 5.15 - Bent-knee perturbation for a human model
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Figure 5.16 - Bent-knee walking with a parameter scaling of 1.0

Figure 5.16 shows aequence of steps from keent-knee walk generated by applying the
perturbation to a basic forward wallk-he transitionfrom the normalalk to the fully perturbed
(scaling parameter £.0) walk is performed smoothly over a series of skt8ps. Qualitatively
speaking,the motion is lively andbouncy”. The modelspends most otach stancephase

standing on its heel due to a raised stance toe (-20 degrees ankle pitch).

5.5.2 Bent-Over Walking
A bent-walking perturbation shown in Figure 5.17 provides yet another walking configuration.
consists of a relatively small bend at the waist and a larger behd torso, generating a slightly

hunched over, forward leaning walk.

transition
DOF: 1 2 303132 4 5051606:16:2 7 8081 9 10 11 12 13 info
S1 0O 0 0 O 0O O O OO OO 0O O 0 -52 -5 -42 -5 15 0
S2 O 0o 0o 0O O 0O 0O OO OO O O 0 -52 -5 -33 -5 15 0
state S3 0O 0 0 0O 0O O O OO OO O O 0 -52-5-332 15 0
S4 0O 0o 0 o 0O O 0O OO 0 0O 0O 0O 0 42 -5 52 -5 15 0
S5 0O 0o 0o 0o 0O 0O 0O OO OO O O 0 -33 -5-52 -5 15 0
S6 0O 0o 0o 0o 0O 0O 0O OO 0 OO O 0 -33 -2-52 -5 15 0

Figure 5.17 - Bent-over walking perturbation



Figure 5.18 - Bent-over walking

(a) straight to bent transition

(b) walking bent-over

(c) bent to straight transition
Figure 5.18 shows the transitions into and out of the bent-over walk and a few dtepderft-
over walk. Both transitions are performed over two steps, with a different spalageteused
for each intermediate step. The arm perturbations are includeden tomake thebiped'sarms
appear to hang by its side in a "natural” position wihieebody is bent-over. In retrospect, a
better approactwould be to reducdhe stiffness anddamping parameters of thehoulder

actuatorsletting physicsdetermine a more appropriate apwsition forthe walk. This would

require variable joint stiffness and damping parameters which are not currently supported.

5.5.3 Ducking
By combining the bent-knee and bent-over perturbations with an additional bérenetk, it is

possible to form aelatively simple composité&ducking” perturbation which coulgotentially be
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used to avoid overhead obstacles. Fidui® showshe composite perturbatidor the human

model used with the bent-over perturbation.

transition
DOF: 1 2 303132 4 505:1606:16:2 7 8081 9 10 11 12 13 info
S1 5 40 0 20 0 20 0 0O O -20 0 20 0 O -52 -5 42 -5 15 0
S2 5 40 0 20 0 20 0 O O -20 0 20 0O O -52 -5 -33 -5 15 0
state S3 5 40 0 20 0 20 0 O O -20 0 20 0O O -52 -5 -33 2 15 0
S4 5 40 0 20 0 20 0 O O -20 0 20 0 O -42 -5 -52 -5 15 0
S5 5 40 0 20 0 20 0 O O -20 0 20 0O O -33 -5 -52 -5 15 0
S6 5 40 0 20 0 20 0 0O O -20 0 20 0O O -33 -2 -52 -5 15 0

Figure 5.19 - Composite bent-knee, bent-over and bent-neck perturbation

Figure 5.20 showshe transitions to and fromiducking”. Note that while the bent-knee
perturbationwas originally designedor a slowerrate walk which uses speed control, atso

works well when applied to a different basic walk (bent-over) without speed control.
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Figure 5.20 - Ducking
(a) straight to ducking transition
(b) ducking to straight transition
While the ducking perturbation is demonstrated here in an open loop configuration, one can

imagine using feedback to provide the biped with the ability to automateiatly under obstacles

in its path.
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5.6 Conclusions

In this chapter, wéaveshownthat parameterizeBCG perturbations can besed togenerate a
variety of interesting gaits simply by modifying the underlyimgen loop control. Smooth
transitions between motions were demonstrated arekample of thaise of asimple feedback
mechanism to increase creature autonevag given. Arapproach to controlling thepeed of a
walk without requiring modification afhe underlyingpasePCG wasalso provided. The basic

balance control introduced in Chapter 3 required no modification tosée successfully with

variable motions.
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6. CONCLUSIONS AND FUTURE WORK

The initial goal ofthis thesis was to provide general techniquéor the control ofcomplex,
statically-unstable 3D bipedal creatufes use in physically-based animation. For simplicity,
only cyclic motions were considered.The proposedcontrol formulation meets this goal by
discretizing the periodic motion into cycles and simplifying the control through the usiendgéd

set of control perturbations which are used to stabilize a small set of observed variables.

The approach is general in the sense that the same control techniquausad b&ontrol a wide

variety of walking gaitdor a widerange of control parametehoices. Control of speed and
direction for a biped hasbeen demonstrated, as well garametric variations of a number of
walking characteristics. By usirgimple feedback to drive the parameterizedtrollers, it is
possible to give the animated creature a greater degeagasfomy, providinghe animator with

high level control. The approacthas been demonstratefbr walking andlimited forms of
running, using both human model and a bird-likebot model. Wébelieve that the technique

will also prove to be a suitable approach to animating many other types of periodic behaviours for

a wide variety of articulated figures.

While the bipeds are not of full human complexXityhich wouldrequire abouR00 DOFs),they
are sufficiently complex that many other forms of control would prove computatianifsible.
Many of the DOFs in the human body cannot act independently, for exah®pheertebrae of the
spine. Theens of DOFs imur modelsare sufficient to capture thgross motions of natural

bipedal locomotion with reasonable fidelity.

The primary contribution ofhis thesis is to illustratthat control techniques can baccessfully

applied to animate creatures of high complexity.
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6.1 Future Work

A number of items remain for futusgork. In particular, improved performance, otHerms of
locomotion and more natural looking motion remain tabtdressed. As welkxtension of the
control formulation to non-periodic motions and the possibility of automating much design

process stand out as worthwhile avenues to pursue.

6.1.1 Better Discrete System Models

One of thedrawbacks ofthe current control approach is tihégh computational expense of
reconstructing the discreystemmodel eaclcycle. Inthe case obur bipedal control, this

results in a four-foldncrease in théime required to generate the finaotion. Tworeasonable
possibilities exist to reduce this cost. Both are based on the reuse of previously computed models

rather than blind reconstruction of the model each cycle.

One approach would be to reconstriine modelonly when necessaryOnce areasonabldimit

cycle hasbeenreachedthe model parameters determintsfough samplingremain relatively
constant from one cycle to the next. In such cases, a fixed model may be sufficient. By assuming
fixed model parameters and monitoring the final RV vafoesleviations fronmthe limit cycle, it

seems likely that direct balance control can be achiweshuch of the desirechotion. When a

limit cycle terminates, foexampledue to a change in baB&€G, a newsystemmodel could be

constructed.

A second approach might be to construct a general disystiemmodelwhich is parameterized

with respect to the creature's initial state at the start of a cycle. Such a model could be constructed
by generating a number afalks from variousinitial conditions and recording thmodel
parameters and initial state for each. Once a large enough number of models have been generated,
they could baused inthe form of a lookup table. Particular models could be chaseng a

nearest neighbour approach based on the initial state of the current cycle. The number of different
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models generateshould besufficiently large tospan areasonable domain afitial states. A

general model like this could incorporate varying terrain or other environmental state information

in order to allow a wide range of behaviours.

6.1.2 Additional Forms of Locomotion

A number of features need to be added tostrstem for it to beruly useful as ayeneric biped
animationsystem. First,other commonforms of bipedal locomotionsuch as skipping and
hopping would be necessary, as well as transitions between the various types of gaits. A second
desirable feature not yet explored is the ability to geneodiestlocomotion over varying terrain.

Finally, it should be possible to parameterize a controller with respect to varaued properties

such as mass and dimensions. We believe that it is possible to implement such features within the

proposed control structure.

6.1.3 Natural Motion

The motions obtained to date using our technique do not yet represent convincingnimtan
This is primarily due to the use of simple b&@Gs. Ongossible way to dgeve more natural
motion might be to fine tune a suitable open-loop motion based on motion capturd/taétawe
are convinced that more natural looking motion can be attaitbda reasonable amount extra

effort, this remains to be demonstrated.

6.1.4 Extension to Aperiodic Motions and Further Generalization

While this thesis has focused ayclic motions, a similarapproach might be suitable for
controlling aperiodic mtions. Such motions woulthclude standingup, sitting down or
throwing a ball at a targeDtheruseful acyclic motionsnight include transitions into and out of
cyclic motion and dynamic balancing jtace, stepping only when necessary.urfified control
technique for both periodic and aperiodic motions would be quite useful, since anityyaitady

require the ability to freely move between the two as needed.
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6.1.5 Automatic Synthesis

Anotherpossibledirectionfor future work is towardautomatic controllesynthesis. While the
base PCGs, RVs and LPPs for the motigiven throughout this thesis were designedchband,
they shouldideally be automaticallgenerated. Previous use of pasmtrol hasbeen directed

primarily toward such automatic synthesis of motion controllers [vKF94] [vKF94b] [vL95].

Most of these attempts deaith relatively simple, statically-stablecreatures. The problem of
automatic synthesis of control for statically unstable 3D systems is a difficult o 96, van

de Panne antlamouretproposethe use ofexternal guidingforces toinitially generate cyclic

PCGs, followed by two subsequent phases which retthederces and theattempt to eliminate

them respectively. While the motions generated by the second phase are significantly more natural
looking than the initial PCGs, theyre not fully realistic in theensethat thecreature'sactuators

do not drive the motiomnassisted.The final phase removal of externaforces, isnot always

successful and can be very computationally expensive.

Rather than attempting to direcynthesize the entileCG inthis way, it might bepossible to
automatically synthesize various control componefds our system. The two most likely
candidates are theasePCG and the fixed°PCG perturbationgLPPs). BasePCGs for various
interesting motions might be synthesized using van de Panne's first two phases and then stabilized
using the balance contrgbresented in thishesis. LPPsmight be synthesizedising amore

traditional generate, test, and refine process such as that used for simple, statically stable systems.
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APPENDIX A — TERMS AND DEFINITIONS

Robotics and Systems Control

Articulated Figure — A set of rigid body segments connected by rotary joints.

Degrees of Freedom (DOFsy} Theset of variables required to fully specifyceeature's
position and orientation in fregpace. Asingle rigid body infree spacehas six
degrees of freedom, three for position and three for orientation.

Kinematics — Computation of the absoluposition ofall parts of a creature, given the
relative joint angles. In animation, kinematics typicadifers tothe specification or
manipulation of the joint angles and velocities without regard to physics.

Inverse Kinematics — Computation of the intermediate joigingles from absolute
positions. For example, computing the angles of leg joints neegsacto afoot in
a particular position.

Dynamics — Computation of the accelerations of timks of anarticulatedfigure using the
laws of physics.

Inverse Dynamics— Computation of the torques and forces required to be applied to a body
to achieve desired accelerations.

Centre of mass (COM)- The single point on body through which #inear force can be

H’LX dm

M

considered to act, defined as:

X =

where M is the total mass.
System state— The set of variables required to fully specify thesition and velocity of
every point on an objectThe systemstate of an objeatonsists of its degrees of

freedom and their derivatives. Figure A—1 shows the two components of the state for
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a simpleswinging pendulunplotted with respect to timeThe two near-sinusoidal

curvesare out ofphase sincéhe peak joint velocitpccurs wherthe joint angle is

zero and the peak angle occurs when the velocity is zero.
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Figure A-1 - State vs time for a 1 degree-of-
freedom swinging pendulum plotted
vs time.

State space- The set of all possible values of the state of an object. A trajectory through the
state space of an objedéscribes its motion. Figud-2 showsthe state space
representation of the trajectories of Figure A-1.

Limit cycle — A periodic, cyclictrajectorythroughstatespace. The trajectory in Figure A-2
is an example of a limit cyclevhich representshe periodic motion of a simple
pendulum. Throughout this thesithe term limit cycle isused to refer to cyclic,

periodic motion in part of the state space rather than strictly applying to trstafell

space.

Figure A—2 - State-space trajectory of a simple
swinging pendulum.
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Biomechanics
Anthropomorphic — Human-like in structure.
Sagittal Plane— A reference plane on the human body. See Figure A-3.
Coronal or Frontal Plane — A reference plane on the human body. See Figure A-3.

Transverse Plane- A reference plane on the human body. See Figure A-3.




111
Double-stance- The phase of a walk during which both feet are in contacttixgtround.

Figure A-4 shows the phases of a bipedal walk.
Single-stance— Thephase of a walk or run during which only one foot i€amtactwith

the ground. See Figure A-4.

Single support Single support
h f ‘ — [ 1 1
Right foot Right foot
| | | | —== time | | .| —=time
Left foot = — — Left foot
contact I I I I contact | | |
I I I
oy NI
Double support Flight
(@) (b)

Figure A—4 -Phases obipedal walking andunning. Solidlines
indicate the times that the associafieokt is in contact
with the ground.

(a) walking
(b) running

Computer Animation
Motion capture - A technique, used to animate compugenerated characters, in which the
motion of the animated character is taken froreadworld source such as a person
walking. Modern forms of motion capture typicalluse markersattached to the
subject’s body which are tracked by a sensing device (e.g. an IR camera).
Rotoscoping- A form of motion capture imvhich motiondata is takerirom pre-recorded

live images such as film or video.

Thesis Related

Pose Control Graph (PCG) — A type of finite state machinghich specifies a set of
desired poses over time. Each desired pose specifies a set of pasiradgles for

the articulated figure being animated.
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Base Pose Control Graph- A pose control graph used poovide the basicyclic control

for a desired periodic motion.

Regulation Variable (RV) — A scalar function of systestatechosen to represent a key
feature in the overall motion of an articulafegure. A set of regulation variables
essentially form a reduced orderodel of thesystem. Regulation variables are
controlled in order to achieve some desired change in the overall rfmtiarfigure.
Qfis used tadenote the desire@r target) value of aRV. Q" representshe final
controlled value of the RV.

Linear Parametric Perturbation (LPP) — A fixed PCG multiplied by a scaling factor and
added to a badeCG. LPPsareused to achieve desired changeshia regulation
variables or variations in the overall motion of the base PCG.

Superposition (SP) sampling- A sampling strategy for constructingrendel to balance
one step of avalk. Using SP samplinghe biped is balanced in the sagittal and
coronal planes independently and then the results are combined.

Forward-then-lateral (F-L) sampling — A strategy for constructingraodel to balance
one step of avalk. Using F-L samplingthe biped idirst balanced in the sagittal
plane and then theesults of this operatioare used to bance the biped in the
coronal plane.

Lateral-then-forward (L-F) sampling — A strategy for constructingraodel to balance
one step of a walk. L-F sampling is similar to F-L sampérgept that the biped is

balanced first in the coronal plane and then in the sagittal plane.



APPENDIX B — MODEL PARAMETER SCRIPTS

H* 3%

#file: human.bones

#

# Skeleton for human model with feet, amms and 2-link torso.

# All joints are 1 DOF, except for hips (3 DOF) and ankles (2 DOF).
# Mass and inertia data from Wooten & Hodgens

#

# Body axes: forward >-1,00 (-ve x-axis)

# right ->00,-1 (-vez-axis)

# up ->010 (+vey-axis)

#

# Joints: (z - pitch, X - roll, y - yaw)

# waist-z,spine-z,neck-z lhip-x, lhip-z, hip-y, lknee-z, lankle-z, lankle-x
rhip-x, rhip-z, mip-y, rknee-z, rankle-z, rankle-x
Ishoulder-z, lelbow-z, rshoulder-z, relbow-z

Model construction commands:

bone <#>
Creatues a new bone. Bones can have many rigidly attached segments.
seg <X1><y1>,<z71> <x2><y2><z2>
Adds a segment to the current bone.
cofm < <y> <z> < <Iy> <rz>
Specifies the centre of mass for the current bone.
mass <mass>
Specifies the mass for the current bone.
iner <ix> <iy> <iz>
Specifies the moment of inertia for the current bone about major axes
mon <x><y>,<z>
Specifies a monitor point
hinge <bonett> <x> <y><z> <ax>,<ay><az>
Specifies a 1 DOF hinge at x,y,z with axis ax,ay,az
uhinge and ghinge
Similar to hinge but specify 2 DOF and 3 DOF respectively
and take 2 and 3 hinge axis arguments respectively.
kpd hinge <parent bone #><DOF#> <Kp> <Kd>
mon <x<y>,<z>
Adds a new monitor point at x,y,z. Monitor points are points of
interest on the creature. They are the only parts of a creature
which are experience ground forces.

HHFEHFHHHHFHEHFH T HF S HEHF SR

### STRUCTURE + LINK PARAMETERS

bone 1 # pelvis

seg 0,0.95,0.12 0,095,0.12 # - add a bone segment
mass 16.61 # -bone mass

iner0.23 0.16 0.18 # - major axis inertias

cofm0 0.98 0 # - bone COM position
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bone 2 # lower torso
seg0,1.02,0 0,1.350

mass 195133

iner 0.4867 0.17427 0.42

cofm-0.03 1.3112 0

hinge1 0,1.0202,0 0,0,1 #walist - 1 DOF (pitch)
bone 3 # upper torso

seg0,1.35,0 0,1.505,0

mass 9.7567

iner 0.2433 0.08713 0.21
cofm-0.03 14275 0
hinge 2 0,1.35,0 0,0,1 # spine - 1 DOF (pitch)

bone 4 #head

seg0.02,1.57,0 0.02,1.80,0

mass 5.89

iner 0.03 0.023 0.033

cofm-0.01 1.70 0

hinge 3 0.0478,1.5052,0 0,0,1 #neck - 1 DOF (pitch)

bone 5 # left upper leg

seg 0.00478,0.9629,0.0932 0.00478,0.5197,0.09091

mass 8.35

iner 0.150.0250.16

cofm 00.800.09

ghinge 1 0.00478,0.9629,0.09321,0,00,0,10,1,0 #hip-3DOF
# (ol pitch, yaw)

bone 6 # left lower leg
seg 0.00478,0.5197,0.09091 0.03348,0.09164,0.0837
mass 4.16

iner 0.055 0.007 0.056

cofm 00.350.07

hinge 5 0.00478,0.5197,0.09091 0,0,1 #knee - 1 DOF (pitch)

bone 7 # left foot

seg-0.10,0,0.0837 0.07,0,0.0837

mass 1.20

iner 0.0018 0.0070 0.0075

cofm-0.030.020.08

uhinge 6 0.03348,0.09164,0.08370,0,11,00 #ankle-2DOF
#  (pitch, roll)

bone 8 # right upper leg

seg 0.00478,0.9629,-0.0932 0.00478,0.5197,-0.09091

mass 8.35

iner 0.150.0250.16

cofm 00.80-0.09

ghinge 1.0.00478,0.9629,-0.09321,0,00,0,10,1,0 #hip-3DOF
#  (roll, pitch, yaw)

bone9 #right lower leg

seg 0.00478,0.5197,-0.09091 0.03348,0.09164,-0.0837

mass 4.16

iner 0.055 0.007 0.056

cofm00.35-0.07

hinge 8 0.00478,0.5197,-0.09091 0,0,1 #knee - 1 DOF (pitch)

bone 10 # right foot
seg-0.10,0,-0.0837 0.07,0,-0.0837

mass 1.20

iner 0.0018 0.0070 0.0075

cofm -0.030.02-0.08

114



uhinge 9 0.03348,0.09164,-0.08370,0,11,00 #ankle -2 DOF ankle

#  (pitch, roll)
bone 11 # left upper arm
seg 0.0289,1.4203,0.1847 0.0287,1.1491,0.2102
mass 2.79
iner 0.025 0.005 0.025
com 0134021
hinge 30.02,1.4203,0.1847 0,0,1 # shoulder - 1 DOF (pitch)
bone 12 # left lower am
seg 0.0287,1.1491,0.2102 0.0287,0.85,0.2302
mass 1.761
iner 0.0066 0.0018 0.0080
cofm 0.0287 1.030.222
hinge 11 0.0287,1.1491,0.2102 0,0,1 # elbow - 1 DOF (pitch)
bone 13 #right upper amm
seg 0.0289,1.4203,-0.1847 0.0287,1.1491,-0.2102
mass 2.79
iner 0.025 0.005 0.025
cofm01.34-021
hinge 30.02,1.4203,-0.18470,0,1 # shoulder - 1 DOF (pitch)
bone 14 # right lower arm
seg 0.0287,1.1491,-0.2102 0.0287,0.85,-0.2302
mass 1.761
iner 0.0066 0.0018 0.0080
cofm 0.0287 1.03 -0.222
hinge 13 0.0287,1.1491,-0.2102 0,0,1 # elbow - 1 DOF (pitch)

### JOINT STRENGTH (Kp & Kd) PARAMETERS

kpd hinge 2:0 2000 100 #waist pitch (2)
kpd hinge 3:0 2000 100 # spine pitch (2)
kpd hinge4:0 100 10 # neck pitch (2)
kpd hinge 5.0 900 30 # left hip roll (x)

kpd hinge 5:1 1275 60 # left hip pitch (2)
kpd hinge 5:2 1275 60 #left hip yaw (y)
kpd hinge 6:0 1275 60 # left knee pitch (2)
kpd hinge 7.0 170 17 # left ankle pitch (2)

kpd hinge 7.1 170 17

kpd hinge 80 900 30

# left ankle roll (x)

# right hip roll (x)

kpd hinge 8:1 1275 60 #right hip pitch (2)
kpd hinge 8:2 1275 60 # right hip yaw (y)
kpd hinge 9.0 1275 60 #right knee pitch (2)
kpd hinge 10.0 170 17 # right ankle pitch (2)

kpd hinge 10:1 170 17

#right ankle roll (X)

kpd hinge 11:0 100 10 # left shoulder pitch ()
kpd hinge 120 50 5 # left elbow pitch (2)

kpd hinge 13:0 100 10 # right shoulder pitch (2)
kpd hinge 140 50 5 # right elbow pitch (2)
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### MONITOR POINTS

# up vector monitor

# points (lower torso):
mon0,1.1,0 # 1-origin
mon 0,1.30 #2-"up"
mon 0,1.1,-05 # 3-"right'

# swing/stance COM points:
mon 0.03348,0,0.0837 # 4 - left mid-foot
mon 0.03348,0,-0.0837 # 5 -right mid-foot

# leftfoot
mon -0.10,0,0.05 # 6-inside ball of foot
mon 0.07,0,0.05 # 7 -inside heel
mon 0.07,0,0.13 # 8- outside heel
mon-0.10,0,0.13 # 9-litte toe

# rightfoot
mon -0.10,0,-0.05 # 10 -inside ball of foot
mon 0.07,0,-0.05 #11 -inside heel
mon 0.07,0,-0.13 #12 - outside heel
mon -0.10,0,0.13 #13 - little toe
mon 0.00478,0.5197,0.09091 #14 - leftknee
mon 0.00478,0.5197,-0.09091 #15 - rightknee
mon 0.02,1.80,0 #16 - head

# pelvis-based up vector &

#torso servo mon points:
mon 0,0.95,0 #17 - origin
mon 0,0.97,0 #18-"up"
mon 0,0.95,-02 #19-"right"
mon 0,0.95,+.02 # 20 - servo axis (local)
mon 0,1.1,+05 #21 -torso axis
setup_mon1,2,3 # up vect mon points

setcofm_mon 54 #initial swing,stance feet
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H* 3%

#file: robo-bird.bones
#

# Skeleton for bird-like robot model with feet, body and large head.

# All joints are 1 DOF, except for hips (2 DOF) and ankles (2 DOF).

# Mass and inertia parameters calculated automatically using density of
#1.0glem"3

#

# Body axes: forward >-1,00 (-ve x-axis)

# right =>0,0,-1 (-vez-axis)

# up ->010 (+vey-axis)

#

#Jaoints: (z - pitch, x - roll, y - yaw)

# neck-z, rhip-x, rhip-z, rkneel-z, rknee2-z, rknee3-z, rankle-z, rankle-x
Ihip-x, Ihip-z, lkneel-z, lknee2-z, lknee3-z, lankle-z, lankle-x

H*

#
#

### STRUCTURE + LINK PARAMETERS

#the words "left" and "right" may be backwards in the descriptions below.

bone 1 # body

# x-aligned segments
seg10,04,-15-4,04,-15
seg10,-0415-4-0415
seg1.0,08,15-4,0815
seg 10081540815

# z-aligned segments
seg 100815100815
seg10,04,-151.00415
seg-4,-04,-15-4,-04,15
seg-4,08-15-40815

#y-aligned segments
seg10,04,-151.008-1.5
seg 1.0,-04,151.0,0815
seg-4,04,-15-4,08-15
seg-4,-04,15-408,15

bone 2 #head
# x-aligned segments
seg05,15,1.75-6.0,15-09
seg05,1.51.75-6.0,1.509
seg0.5,55,2.25-4555,1.25
seg05,552.25-45551.25
# z-aligned segments
seg05,15,-1.7505151.75
seg05,55,-2250555,2.25
seg-6.0,1509-6.0,1509
seg-4555,-1.25-45551.25
#y-aligned segments
seg 0515,-1.750.5,5.5,-2.25
seg05,15,1.7505,55225
seg-6.0,15-09-4555-1.25
seg-6.0,1509-45551.25

hinge 1-2.3,1.000,1,0 # neck - 1 DOF (yaw)
bone 3 #right leg bonel (upper)
seg0,0,-25-30,-25

uhinge 10,0,,251,000,0,1 #hip- 2 DOF

# (ol pitch)
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bone 4 #right leg bone2 (mid1)
seg-30,25-34,25

hinge 3-3,0-250,0,1 #kneel - 1 DOF (pitch)
bone 5 #right leg bone3 (mid2)
seg-34,25-3-95-25

hinge 4-3,-4,-250,0,1 #knee2 - 1 DOF (pitch)
bone 6 # right leg bone4 (lower)
seg-4.8-95-25-1.3-95-25

hinge 5-395,-250,0,1 #knee3 - 1 DOF (pitch)
bone 7 # right foot

seg-4.1,-104,-25-7.6-104,-25
seg-5.6,-104,-39-56,-104,-1.1

uhinge 6-4.895,-250,0,11,00 #ankle - 2 DOF

#  (pitch, roll)
bone 8 #left leg bonel (upper)
seg0,0,24-3024
uhinge 10,0,25-1,0,00,0,1 #hip-2DOF

#  (roll, pitch)
bone 9 #rightleg bone2 (mid1)
seg-3025-34.225
hinge 8-30,250,0,1 #kneel - 1 DOF (pitch)
bone 10 # leftleg bone3 (mid2)
seg-34,25-39525
hinge 9-3,-4,250,0,1 #knee2 - 1 DOF (pitch)
bone 11 # leftleg bone4 (lower)
seg-4.8,95,25-1.3-9525
hinge 10-3-95250,0,1 #knee3 - 1 DOF (pitch)
bone 12 # left foot

seg-4.1,-104,25-7.6,-104,25

seg-5.6,-104,1.1-56,-104,39

uhinge 11-4.8,95,250,0,11,00 #ankle - 2 DOF
#  (pitch, roll)

### JOINT STRENGTH PARAMETERS

kpd hinge2 100033

kpd hinge 3.0 1000 33

# neck pitch (2)

# right hip roll (X)

kpd hinge 3:1 100033 # right hip pitch (2)
kpd hinge4 100033 # right kneel pitch (2)
kpd hinge5 100033 #right knee2 pitch ()
kpd hinge 6 100033 #right knee3 pitch (2)
kpd hinge 7.0 100 15 #right ankle pitch (2)

kpd hinge 7:1 100 1.5

#right ankle roll (x)

kpd hinge 8:0 1000 33 #left hip roll (x)

kpd hinge 8:1 1000 33 # left hip pitch (2)
kpd hinge9 100033 #left kneel pitch (2)
kpd hinge 10 1000 33 # left knee2 pitch (2)
kpd hinge 11 1000 33 # left knee3 pitch (2)
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kpd hinge 12:0 100 1.5
kpd hinge 12:1 100 1.5

### MONITOR POINTS

mon -3.8,-104,-3.9
mon-3.8,-104,-1.1
mon-7.6,-10.4,-3.9
mon-7.6,-104,-1.1

mon -3.8,-104,3.9
mon-3.8,-10.4,1.1
mon-7.6,-104,3.9
mon-7.6,-104,1.1

mon-5.5,2,0
mon 1,2,0
mon 1,30
mon 2,2,0
mon 1,20

mon -4.8,-104,-2.5
mon -4.8-104,25

setup_mon 10,11,13
setcofm_mon 15,14

kpd mon 1400
kpdmon 1500

# left ankle pitch (2)
#left ankle roll (x)

# right foot
# 1 -rightback
# 2 - lefthack
# 3 - rightffront
# 4- leftback

#left foot
# 5-leftback
# 6 - rightback
# 7 - leftfront
# 8- rightffront

#falling & up vect mons:
# 9-nose
# 10 - up vect origin
#11 -up vect"up”
#12 - up vect "right"
#13 - body
# swing/stance COM points:

# 14 - right foot COM mon
# 15 - left foot COM mon

# up vect monitor points
#initial swing,stance feet

#no gnd force on cofm_mon
#no gnd force on cofm_mon
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APPENDIX C — SAMPLE ANIMATION SCRIPT

file: human-walk-trials.script
Script to perform basic walking trials

HHEHEHHR

# Perform balance trials with up vector RVs
# Trialsuse Q_dfrom[0.1,0]t0 [0.5,0] (Q_d=[Q_d fwd,Q d laf])
#

# balance <#strides><Q _tol1><K1_max><K1 _sample> <RV1><elem1> \
<Q_tol2><K2_max> <K2_sample> <RV2>:<elem2>

<max_strides> - desired # of strides

<Q1 to>  -max. tolerable error in Q for 1st control dimension
<K1 max>  -maxfinal perturbation scaling (dim 1)

<K1 sample> -sample scalings (+/- K1_sample) (dim 1)
<RV><elem> - RV type and component

0 > up vector
1 -> stance-COM vector
2 ->swing-COM vector

component of RV
0 ->forward component
1 -> lateral component

<Q_tol2>, <K2_max>, <K2_sample>, <RV2>, <elem?2> as above but for 2nd
control dimension.

HHEFHHFHHEHHEHFH T HH RS

< human.bones

set kfspring 25000 #floor stiffness (Kp)
setkfdamp 1500 #floor stifiness (Kd)

set sddt 0.00025 # simulation time-step

# base PCG for walking
set pestates 6

posecycle poses 0

500 0-50060-50 0-100000 70-30 5 5#rfoot
500 0-50060-50 0-100000 70-120 2

500 0-200050 0-100000 70-12-7 2

500 0-100 000 0-50060-50 -30 70 4 5#Hoot
500 0-100 000 0-50060-50 - 120 70 2

500 0-100000 0-200050 -12-7 70 2

set hinit 0,0,0,0,0,0,0,0,0,-5.1,-20,0,50,0,0,0,0,0,0 # initial pose
# all velocities are 0
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# — forward then lateral (F-L) 2d control

# hip pitch perturbations:

posecycle poses 1 # right hip pitch
000 000000 010000 00 OO O
000 000000 010000 00 OO O
000 000000 010000 00 OO O
000 000000 000000 00 OO O
000 000000 000000 00 OO O
000 000000 000000 00 OO O

posecycle poses 2 # left hip pitch
000 000000 000000 00 OO O

000 000000 000000 00 OO O
000 000000 000000 00 OO O
000 010000 000000 00 OO O
000 010000 000000 00 OO O
000 010000 000000 00 OO O

# hip roll perturbations:

posecycle poses 3 #right hip roll
000 000000 100000 00 00 O
000 000000 100000 00 00 O
000 000000 100000 00 00 O
000 000000 000000 00 OO O
000 000000 000000 00 00 O
000 000000 000000 00 00 O

posecycle poses 4 # left hip roll
000 000000 000000 00 OO O

000 000000 000000 00 OO O
000 000000 000000 00 00 O
000 100000 000000 00 00O O
000 100000 000000 00 OO O
000 100000 000000 00 00 O

# balance trials

set showfile basic-walk_upvect FL_Q=[.1,0].out
setQ d0.1,0
balance 30118050.0118010:1

set showfile basic-walk_upvect FL_Q=[.15,0].out
setQ d0.15,0
balance30118050:0118010:1

set showfile basic-walk_upvect FL_Q=[.2,0].out
setQ d0.20
balance 30118050:0118010:1

set showfile basic-walk _upvect FL_Q=[.25,0].out
setQ d0.25,0
balance 30118050.0118010:1

set showfile thasic-walk_upvect FL._Q=[.3,0].out
setQ d0.30



balance30118050:0118010:1

set showfile basic-walk_upvect FL_Q=[.35,0].out
setQ d0.350
balance 30118050:0118010:1

set showfile basic-walk _upvect FL_Q=[.4,0].out
setQ d0.4,0
balance 30118050.0118010:1

set showfile basic-walk_upvect FL_Q=[.45,0].out
setQ _d045,0
balance30118050:0118010:1

set showfile basic-walk_upvect FL_Q=[.5,0].out
setQ d05,0
balance 30118050:0118010:1

# — superposition (SP) 2d control
#

# Use same perturbations as F-L since order of
# perturbations doesn't matter for superpos.

# balance trials
set superposition true

set showfile basic-walk_upvect SP_Q=[.1,0].out
setQ d0.1,0
balance 30118050.0118010:1

set showfile basic-walk_upvect SP_Q=[.15,0].out
setQ d0.150
balance30118050:0118010:1

set showfile basic-walk_upvect SP_Q=[.2,0].out
setQ d0.20
balance30118050:0118010:1

set showfile basic-walk_upvect SP_Q=[.25,0].out
setQ d0.250
balance 30118050.0118010:1

set showfile thasic-walk_upvect SP_Q=[.3,0].out
setQ d0.30
balance 30118050.0118010:1

set showfile basic-walk_upvect SP_Q=[.35,0].out
setQ d0.350
balance30118050:0118010:1

set showfile basic-walk_upvect SP_Q=[.4,0].out
setQ d04,0
balance 30118050:0118010:1

set showfile basic-walk_upvect SP_Q=[.45,0].out
setQ d045,0
balance 30118050.0118010:1

set showfile basic-walk_upvect SP_Q=[.5,0].out
setQ d05,0
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balance30118050:0118010:1

set superposition false

# — lateral then forward (L-F) 2D control

# hip roll perturbations:

posecycle poses 1 # right hip roll
000 000000 100000 00 OO O

000 000000 100000 00 00 O
000 000000 100000 00 00O O
000 000000 000000 00 OO O
000 000000 000000 00 00 O
000 000000 000000 00 00O O

posecycle poses 2 # left hip roll
000 000000 000000 00 00O O

000 000000 000000 00 OO O
000 000000 000000 00 OO O
000 100000 000000 00 OO O
000 100000 000000 00 OO O
000 100000 000000 00 OO O

# hip roll perturbations:

posecycle poses 3 #right hip pitch
000 000000 010000 00 OO O
000 000000 010000 00 OO0 O
000 000000 010000 00 00 O
000 000000 000000 00 OO O
000 000000 000000 00 00 O
000 000000 000000 00 00 O

posecycle poses 4 # left hip pitch
000 000000 000000 00 OO O

000 000000 000000 00 OO O
000 000000 000000 00 00O O
000 010000 000000 00 00O O
000 010000 000000 00 OO O
000 010000 000000 00 00 O

# balance trials

set showfile basic-walk_upvect LF Q=[.1,0].out
setQ d0.1,0
balance 3011801 0:1118050.0

set showfile thasic-walk_upvect LF Q=[.15,0].out
setQ d0.150
balance 30118010:1118050:.0

set showfile basic-walk_upvect LF_ Q=[.2,0].out
setQ d0.20
balance 3011801 0:1118050:0

set showfile basic-walk _upvect LF Q=[.25,0].out
setQ d0.25,0
balance 3011801 0:1118050:.0



set showfile thasic-walk_upvect LF Q=[.3,0].out
setQ d0.30
balance 3011801 0:1118050:.0

set showfile basic-walk_upvect LF_ Q=[.35,0].out
setQ d0.350
balance 30118010:1118050:0

set showfile basic-walk _upvect LF Q=[.4,0].out
setQ d0.4,0
balance 3011801 0:1118050:.0

set showfile basic-walk_upvect LF Q=[.45,0].out
setQ d045,0
balance 3011801 0:1118050:.0

set showfile basic-walk_upvect LF_ Q=[.5,0].out
setQ d050
balance 30118010:1118050:.0
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