
APS105
Winter 2012

Jonathan Deber
jdeber -at- cs -dot- toronto -dot- edu

Lecture 35
April 13, 2012

2

Today

• Exam Info/Tips

• Review

• Big Picture

Exam Info

• Check Registrar’s website for timing/location

• 2.5 hours

• No external aids

• Cumulative (emphasis on later topics)

3

Office Hours

• I will have some during the exam period

4

Exam Tips

• Read the whole thing first

• Read every question carefully

• Make things easy for the marker

5

What We’re Asking

• More than just “what does the function do?”

• Do we want a complete program?

• Do we want a code snippet/fragment?

• Do we want an example of using a function?

6

Question !

7

Write your student number in the space provided at the
bottom of each odd-numbered page.

Failure to do so will result in a 2 mark deduction.

Buggy Code Question

8

"#$%&'$()*+,,#-"#$./
0
%%%%&'$()1-2*+,,#2/3
4

1

2

“!"#$” is misspelled “!"#”1)

Format string in single quotes, should
be in double quotes

2)

Pointers Point!

9

&6

5$6

#%&'#'(')*
#%&'+,'('-#*

&6 5 &6 5

Wrong Wrong

Approaching Coding Questions
• Read it carefully

• What am I being asked to do?

• Figure out the pseudocode

• How do I go about doing it?

• Write the code

• How do I translate the pseudocode into C code?

• Re-read the question

• Does my code do what it was supposed to?
10

How to Handwrite Code

• We realize that there is no compiler on paper

• However, consistent or egregious syntax errors
are a problem

11

&'$()1-78.7;%"9,:+/3

&'$()1-78.7%"9,:+/3

<=$,+%0%$1%>?%5@;AB%C%A4%0)':+43

How to Handwrite Code

• Some symbols are hard to draw (0%4 and D)

• Indenting

• Tell us what you’re doing

• Leave lots of space

12

13

13

14

Function Reference Sheet

• We will provide a reference page with
documentation for some built-in functions

• You are free to use other (non-prohibited)
functions as well

• You do not have to use every function on the sheet

Exam Period Tips

• Figure out a study schedule

• What material for what course on what day

• Don’t completely ignore exams that are later

• Schedule breaks

15

Review

16

What We’ve Covered

• What’s a computer?

• What does it mean to program it?

• How to we take an English problem and translate
it to a program?

17

18Source: http://cm.bell-labs.com/cm/cs/who/dmr/picture.html

What We’ve Covered

• What’s a computer?

• What does it mean to program it?

• How to we take an English problem and translate
it to a program?

• How do we write a program?

• What are the parts of a program?

• Variables, expressions, statements

19

What We’ve Covered
• Types

• $(),%.#:E,+,%F=9'

• Arithmetic operators

• Style

• Reading/writing data

• &'$()1-/, GF9(1-/, conversion specifiers

• Booleans (E##, and Boolean operators)

• Relational and comparison operators
20

What We’ve Covered
• $1, +,G+%$1, and +,G+

• <=$,+ and 1#' loops

• Arrays

• Functions (parameters, return values, scope)

• H9)=;=, Random Numbers

• Helper Functions

• Pointers

• Pointer Arithmetic
21

What We’ve Covered
• Strings

• Literals, arrays, pointers

• .&/#%012 (including functions you should never use)

• Reading/writing (including functions you should never use)

• Arrays of pointers

• Dynamic memory

• 3455"678, 9/::78, /:455"678

• Dynamically allocated arrays, .#;:"978

• Dynamic memory bugs
22

What We’ve Covered
• IJKK
• Multi-file programs

• Structures (and &<,:$:9)

• Pointers to .&/=6&s

• Dot and arrow operators

• Commenting, testing, and debugging

23

24Image: Naval Historical Center

Grace Hopper’s Lab Notebook

What We’ve Covered
• Dynamic memory bugs

• IJKK
• Structures (and &<,:$:9)

• Pointers to .&/=6&s

• Dot and arrow operators

• Commenting, testing, and debugging

• Recursion

25

What We’ve Covered
• Dynamic memory bugs

• IJKK
• Structures (and &<,:$:9)

• Pointers to .&/=6&s

• Dot and arrow operators

• Commenting, testing, and debugging

• Recursion

• Linked lists
27

What We’ve Covered
• 6&<,:12 character functions

• Searching

• Sequential

• Binary

• Sorting

• Maintain sorted order while adding

• Simple sorts (bubble, selection, insertion)

• Complex sort (merge sort)
28

Building on the Foundation

29

Real Programs

30

• “Real” programs are built from the same tools

• Much more complicated

• More languages (maybe)

• More libraries

• More data structures

• More algorithms

• Could be millions of lines of code

Web Browser

• Read a (long) string containing the page’s HTML

• Process the string, and build up data structures in memory

• Traverse those data structures, and figure out what to draw

• Draw the page on screen with calls to OS drawing functions

31

Image Editing

• An image is just an array of pixels

• Editing it is just changing those pixels

32

Operating System

• Data structures hold info about memory, files, etc.

• Implement a bunch of functions that provide an interface

• Other software can call them

• Hardware can trigger them

• Wait for some bit of hardware or software to request
something, and process that request

33

Closing Thoughts

• Computers do exactly what you tell them

• To work with them, we need to think algorithmically

• Computing is built out of abstractions

34

Thank You!

35

