APS 105
Winter 2012

Jonathan Deber
jdeber -at- cs -dot- toronto -dot- edu

Lecture 30
March 30,2012

Today

® |Linked Lists ->next

Linked Lists

® A different way to store multiple chunks of data

® (Simplest) example of a whole category of data
structures, built on indirection (i.e., using pointers)

® \VWe have to build them ourselves

head:

Linked Lists

® A recursive data structure
® Made up of nodes
® Actual data
® A pointer to another node
® Each node points to the next node

® |ast node points to NULL

score.

next:

N

A Pointer to Another Node?

typedef struct node
{

int score;

struct node *next;
} Node;

N

score.

next: | e+—

Terminology

Whole thing is a linked list

score: |2

next: | e >

head: |i|

First node is the head

Nodes

N

score.

score: |6

next: | e+—

next: | «+——

(what you normally have a pointer to)

score.

next:

8

A

Last node is the tail

Traversing Arrays

void printArray(int a[], int n)
{
for (int 1 = 0; 1 < n; i++)
!
printf("%d\n", a[i]);
}
}

Traversing Linked Lists

void printList(Node *head)

1
Node *current = head;
while (current != NULL)
printf("%d\n", current->score);
current = current->next;
}
}
score: |2 score: |4 score: |6 score:

hext: | e+— next: | +— nhext: | +— hext:

head:|i_|

Traversing Linked Lists

void printList(Node *head)

Node *current = head;
while (current != NULL)
printf("%d\n", current->score);
current = current->next;
current: LI_—'
score: |2 score: |4 score: |6 score:
next: |et—> | next: |®t—> | next: | +— next:

head:|i_|

Traversing Linked Lists

void printList(Node *head)
{

Node *current = head;
while (current != NULL)

printf("%d\n", current->score);
current = current->next;

current: @

score: |2 score: |4 score:

(&)

score.

hext: | e+— next: | +— nhext: | +— hext:

head:|i_|

N

Traversing Linked Lists

void printList(Node *head)

{
Node *current = head;
while (current != NULL)
printf("%d\n", current->score);
current = current->next;
}
}
current: |—I_—|
score: |2 score: |4 score: |6 score:

hext: | e+— next: | +— nhext: | +— hext:

head:|i_|

A~ DN

Traversing Linked Lists

void printList(Node *head)
{

Node *current = head; 2
while (current != NULL) 4
printf("%d\n", current->score); 6
current = current->next; 3

}

}

current: LI_—'
score: |2 score: |4 score: |6 score: |8

hext: | e+— next: | +— nhext: | +— hext:

head:|i_|

Traversing Linked Lists

void printList(Node *head)
{

Node *current = head; 2
while (current != NULL) 4
printf("%d\n", current->score); 6
current = current->next; 3

}

}

current: IZl
score: |2 score: |4 score: |6 score: |8

hext: | e+— next: | +— nhext: | +— hext:

head:|i_|

Verdict!

® Basically the same

Arrays vs. Linked Lists

Calculating length of list

Accessing i element

Insert at end of list

Insert at beginning of list

Insert in Middle of Array

Want to insert 1 at a[3]

2 4 8 | 16 | 32 | 64

al@] a[1] a[2] a[3] a[4] a[5] a[6]

Insert in Middle of Array

Want to insert 1 at a[3]

2 4 8 | 16 | 32 64

al@] a[1] a[2] a[3] a[4] a[5] a[6]

Insert in Middle of Array

Want to insert 1 at a[3]

2 4 8 | 16 32 | 64

al@] a[1] a[2] a[3] a[4] a[5] a[6]

Insert in Middle of Array

Want to insert 1 at a[3]

2 4 3 16 | 32 | 64

al@] a[1] a[2] a[3] a[4] a[5] a[6]

Insert in Middle of Array

Want to insert 1 at a[3]

2 4 3 1 |16 | 32| 64

al@] a[1] a[2] a[3] a[4] a[5] a[6]

Insert in Middle of Array

// Assuming the array is large enough

for (int 1 = N - 2; i >= 3; i--)

{
ali + 1] = a[i];
}
a[3] = 1; Want to insert 1 at a[3]

2 4 3 1 |16 | 32| 64

a[@] a[1] a[2] a[3] a[4] a[5] a[6]
N-2 N-1

Insert in Middle of Array

// Assuming the array is large enough

for (int 1 = N - 2; i >»= k; 1i--)
{
a[i + 1] = a[i];

}

alk] = x; Want to insert 1 at a[3°

Want to insert X at a[k]

2 4 3 1 |16 | 32| 64

a[@] a[1] a[2] a[3] a[4] a[5] a[6]
N-2 N-1

Insert at Middle of Linked List

Insert at End of Linked List:
Find the end of the list

Update that node’s pointer to point at the new node

Make sure the new node’s pointer is NULL

Insert at Beginning of Linked List:
Find the beginning of the list

Point the new node’s pointer at that node
Make sure head points to the new node

next: | e1+——

score.

next:

o—t—>

score:

next:

Insert at Middle of Linked List

Insert at Middle of Linked List:

Find the node immediately before the insertion point
Point the new node’s pointer at that node’s next node

Point that node’s pointer at the new node

score.

next:

score: |2 score: |4

next: | «t+— next: | e+—

score:

next:

Insert at Middle of Linked List

Insert at Middle of Linked List:

Find the node immediately before the insertion point
Point the new node’s pointer at that node’s next node

Point that node’s pointer at the new node

Insert after the “4” node

score.

curr'enthl next:

score: |2 score: |4

next: | «t+— next: | e+—

8

score:

next:

Insert at Middle of Linked List

Insert at Middle of Linked List:

Find the node immediately before the insertion point
Point the new node’s pointer at that node’s next node

Point that node’s pointer at the new node

Insert after the “4” node

cur‘r'ent:Ek

next: | e1+——

score.

next:

score.

next:

o—t—>

8

score:

next:

Insert at Middle of Linked List

Insert at Middle of Linked List:

Find the node immediately before the insertion point
Point the new node’s pointer at that node’s next node

Point that node’s pointer at the new node

Insert after the “4” node

cur‘r'ent:Ek

next: | e1+——

score.

next:

score.

next:

o—t—>

8
A

\

score:

next:

Insert at Middle of Linked List

Insert at Middle of Linked List:

Find the node immediately before the insertion point
Point the new node’s pointer at that node’s next node

Point that node’s pointer at the new node

Insert after the “4” node

score: |8

cur‘r'ent:Ek next: \\
score: |2 Score. i/ score: |6

next: |e+— | next: [¢ next: [/]

Order Matters

Insert at Middle of Linked List:

Find the node immediately before the insertion point
Point that node’s pointer at the new node

Point the new node’s pointer at that node’s next node

Insert after the “4” node

score: |8

cur*r'ent)Zl next:

score: |2 score: |4 score: |6

next: |t | next: |et—> | next: Z

Order Matters

Insert at Middle of Linked List:

Find the node immediately before the insertion point
Point that node’s pointer at the new node

Point the new node’s pointer at that node’s next node

Insert after the “4” node

score: |8

cur‘r'ent:Ek next:

score: |2 score: |4 score: |6

next: |t | next: |et—> | next: Z

Order Matters

Insert at Middle of Linked List:

Find the node immediately before the insertion point
Point that node’s pointer at the new node

Point the new node’s pointer at that node’s next node

Insert after the “4” node

score: |8

cur‘r'ent:Ek next:
score: |2 Score. i/ score: |6

next: |e+— | next: [¢ next: [/]

Order Matters

Insert at Middle of Linked List:

Find the node immediately before the insertion point

Point that node’s pointer at the new node

Point the new node’s pointer at that node’s next node

Insert after the “4” node

cur‘r'ent:Ek

next: | e1+——

score.

next:

score.

next:

=

8

-

™

SCO

next: Z

re: |6

Order Matters

® For linked list operations, be very careful about
the order you do things

® |t’s like swap

® Draw pictures

Insert at Middle of Linked List

Node *insert(Node *head, int index, Node *newNode)

{

Node *current = head;
for (int 1 = 0;1 < index-1 && current->next != NULL; i++)
{
current = current->next;
}
newNode->next = current->next; N |
VYVYrong
current->next = newNode; =

return head;

Node *insert(Node *head, int index, Node *newNode)

{

Node *current = head;

for (int i = 9;1 < index-1 & current->next != NULL; i++)
{

current = current->next;
}

newNode->next = current->next;
current->next = newNode;

return head; .
} head = insert(head, 0, newNode);

cur'r‘entzl_l__l

Node *insert(Node *head, int index, Node *newNode)

{

Node *current = head;

for (int i = 9;1 < index-1 & current->next != NULL; i++)
{

current = current->next;
}

newNode->next = current->next;
current->next = newNode;

return head; .
} head = insert(head, 0, newNode);

cur'r‘entzl_l__l

Node *insert(Node *head, int index, Node *newNode)

{

Node *current = head;

for (int i = 9;1 < index-1 & current->next != NULL; i++)
{

current = current->next;
}

newNode->next = current->next;
current->next = newNode;

return head; .
} head = insert(head, 0, newNode);

cur'r‘entzl_l__l

Node *insert(Node *head, int index, Node *newNode)

{

Node *current = head;

for (int i = 0;1 < index-1 & current->next != NULL; i++)
{

current = current->next;
}

newNode->next = current->next;
current->next = newNode;

return head;

} head = insert(head, 0, newNode);
score: |8
next:

Node *insert(Node *head, int index, Node *newNode)

{

Node *current = head;

for (int i = 0;1 < index-1 & current->next != NULL; i++)
{

current = current->next;
}

newNode->next = current->next;
current->next = newNode;

return head;

} head = insert(head, 0, newNode);
score: |8
next:

Node *insert(Node *head, int index, Node *newNode)

{

Node *current = head;

for (int i = 0;1 < index-1 & current->next != NULL; i++)
{

current = current->next;
}

newNode->next = current->next;
current->next = newNode;

return head; .
} head = insert(head, 0, newNode);

Node *insert(Node *head, int index, Node *newNode)

{

Node *current = head;
for (int i = 0;1 < index-1 & current->next != NULL; i++)

{

current = current->next;

¥

newNode->next
current->next

current->next;
newNode;

return head;

20

Node *insert(Node *head, int index, Node *newNode)

{

if (index == @ || head == NULL)
{

newNode->next = head;
return newNode;

¥

Node *current = head;
for (int i = 0;1 < index-1 && current->next != NULL; i++)

{

current = current->next;

¥

newNode->next current->next;
current->next = newNode;

return head;

20

if (index == © || head == NULL)
{
newNode->next = head;
return newNode;
} head = insert(head, 0, newNode);

21

if (index == © || head == NULL)
{
newNode->next = head;
return newNode;
} head = insert(head, 0, newNode);

21

if (index == © || head == NULL)
{
newNode->next = head;

return newNode;
} head = insert(head, @, newNode);

21

if (index == @ || head == NULL)
{
newNode->next = head;
return newNode;
} head = insert(head, 0, newNode);

score: |8

next:

head:|Z|

22

if (index == @ || head == NULL)
{
newNode->next = head;
return newNode;
} head = insert(head, 0, newNode);

score: |8

next: Z

head:|Z|

22

if (index == @ || head == NULL)
{
newNode->next = head;
return newNode;
} head = insert(head, 0, newNode);

score: |8

next: Z
head:

22

Verdict!

® Somewhere in between
® |n some cases arrays could be better

® |n general, linked lists are better

23

Delete From Array

® Trivial if we can leave and mark holes

® Otherwise need to shift everything

24

Delete From Linked List

Delete from Linked List:

Find the node immediately before the node being deleted
Point that node’s pointer at the deleted node’s next node

Clean up the deleted node, if necessary

score: |8

next: |)

score: |2 score: i./ score: |6

next: [+ | next: [¢ next: [/]

Delete From Linked List

Delete from Linked List:

Find the node immediately before the node being deleted
Point that node’s pointer at the deleted node’s next node

Clean up the deleted node, if necessary

score: |8

prev:)Zl next: [«
score: |2 score: i./ score: |6

next: [+ | next: [¢ next: [/]

Delete From Linked List

Delete from Linked List:

Find the node immediately before the node being deleted
Point that node’s pointer at the deleted node’s next node

Clean up the deleted node, if necessary

score: |8

prev: Ek next: [«
score: |2 score: i./ score: |6

next: [+ | next: [¢ next: [/]

Delete From Linked List

Delete from Linked List:

Find the node immediately before the node being deleted
Point that node’s pointer at the deleted node’s next node

Clean up the deleted node, if necessary

score: |8
prev: Ek next: [«
score: |2 score: |4 score: |6

next: (e | next: | | next: Z

Delete From Linked List

Delete from Linked List:

Find the node immediately before the node being deleted
Point that node’s pointer at the deleted node’s next node

Clean up the deleted node, if necessary

score: |2 score: |4 score: |6

next: (e | next: | | next: Z

Node *delete(Node *head, int index)

{

Node *current = head;
Node *prev = NULL;

if (index == 0)

{
head = head->next;
¥
else
{
Eor (int 1 = 0; 1 < index && current != NULL; i++)
prev = current;
current = current->next;
¥
prev->next = current->next;
}

destroyNode(current);

return head;

} 26

Node *current = head;
Node *prev = NULL;

if (index == 0)

{ head = head->next;
}
else
{
ﬁop (int i = @; i < index && current != NULL; i++)

prev = current;
current = current->next;

} index:

prev->next = current->next;

}

destroyNode(current); prev.

cur‘r‘enti)Zl

Node *current = head;
Node *prev = NULL;

if (index == 0)

{ head = head->next;
}
else
{
ﬁop (int i = @; i < index && current != NULL; i++)

prev = current;
current = current->next;

} index:

prev->next = current->next;

}

destroyNode(current); pr‘ev:)z
current)Zl

Node *current = head;
Node *prev = NULL;

if (index == 0)

{ head = head->next;
}
else
{
ﬁop (int i = @; i < index && current != NULL; i++)

prev = current;
current = current->next;

} index:

prev->next = current->next;

}

destroyNode(current); pr‘ev:)z
current: ELA

Node *current = head;
Node *prev = NULL;

if (index == 0)

{ head = head->next;
}
else
{
ﬁop (int i = @; i < index && current != NULL; i++)

prev = current;
current = current->next;

} index:

prev->next = current->next;

}

destroyNode(current); prev: Ek

current:

Node *current = head;
Node *prev = NULL;

if (index == 0)

{ head = head->next;
}
else
{
ﬁop (int i = @; i < index && current != NULL; i++)

prev = current;
current = current->next;

} index:

prev->next = current->next;

}

destroyNode(current); prev: Ek
[

current:

Node *current = head;
Node *prev = NULL;

if (index == 0)

{ head = head->next;
}
else
{
ﬁop (int i = @; i < index && current != NULL; i++)

prev = current;
current = current->next;

} index:

prev->next = current->next;

}

destroyNode(current); prev: Ek
[

current:

Node *current = head;
Node *prev = NULL;

if (index == 0)

{ head = head->next;
}
else
{
ﬁop (int i = @0; i < index && current != NULL; i++)

prev = current;
current = current->next;

} index:

prev->next = current->next;

}
destroyNode(current); prev. Ek
current:|-= >
score 2 score: |4 score.

next: |*t+— next: | e+— next:

27

Node *current = head;
Node *prev = NULL;

if (index == 0)

This doesn’t work if

{ index > length of list
head = head->next;

}

else

{
?or (int 1 = @; i < index && current != NULL; i++)

prev = current;
current = current->next;

¥

prev->next = current->next;

}

destroyNode(current);

N

index:

score: |4 score: |6

next: | e+—

next: Z

27

Verdict!

® Somewhere in between
® |n some cases arrays could be better

® |n general, linked lists are better

28

Concatenate Two Lists

headl:E

score:

next:

score:.

next:

score.

next:

29

Concatenate Two Lists

score: |8 score.

head2:
E_) next: | e next:

cur‘r'ent‘jZl

score: |2 score: |4

headl:E—> Z

next: | e next:

29

Concatenate Two Lists

headl:E

—

cur‘r'ent:Ek

score:

next:

2

o

score:.

next:

score.

next:

29

Concatenate Two Lists

headl:E

score:

next:

score.

next:

29

Concatenate Two Lists

head2 is still a valid pointer
head?2 is still a linked list

headl:E

score.

next:

—>

score.

next:

(00)

—>

score.

next:

6

Vi

These facts can be useful,
dangerous, or irrelevant

29

Recursively Processing Lists

To Process a List:

Otherwise:
If head is NULL, Process the first node
we’re done Process the remainder of the list

void printList(Node *head)

{
if (head != NULL)

printf("%d\n", head->score);
printList(head->next);

30

Recursively Processing Lists

printList(list); 2

void printList(Node *head)

if (head != NULL)

printf("%d\n", head->score);
printList(head->next);

head

1i
st score: |2 score: |4 score: score: |8

(o))

E_) next: | e | next: [T | next: |e— | next: Z

Recursively Processing Lists

printList(list); 2
4

void printList(Node *head)

if (head != NULL)

printf("%d\n", head->score);
printList(head->next);

head

+

score: |4 score:

score: |8

next: [&T— | next: |*T> | next: Z

(o))

Recursively Processing Lists

printList(list); 2
void printList(Node *head) g
if (head != NULL)
printf("%d\n", head->score);
printList(head->next);
¥
head
score: |6 score: |8

next: | | next: Z

31

Recursively Processing Lists

printList(list);

void printList(Node *head)
if (head != NULL)

printf("%d\n", head->score);
printList(head->next);

head

score.

next:

2

00 O pH

31

Recursively Processing Lists

printList(list); 2
void printList(Node *head) 2
if (head != NULL) 8
printf("%d\n", head->score);
printList(head->next);
¥
head

31

Recursively Processing Lists

printList(list);

void printList(Node *head)
if (head != NULL)

printf("%d\n", head->score);
printList(head->next);

head

score.

next:

2

00 O pH

31

Recursively Processing Lists

printList(list); p)
void printList(Node *head) g
if (head != NULL) S
printf("%d\n", head->score);
printList(head->next);
}
head
score: |6 score: |8

next: | | next: Z

Recursively Processing Lists

printList(list); 2
void printList(Node *head) g
if (head != NULL) 8

printf("%d\n", head->score);
printList(head->next);

head

+

score: |4 score:

score: |8

(o))

next: [&T— | next: |*T> | next: Z

Recursively Processing Lists

printList(list); 2
void printList(Node *head) g
if (head != NULL) 8

printf("%d\n", head->score);
printList(head->next);

head

1i
st score: |2 score: |4 score: score: |8

(o))

E_) next: | e | next: [T | next: |e— | next: Z

Recursively Processing Lists

printList(list); 2
void printList(Node *head) g
if (head != NULL) 8

printf("%d\n", head->score);
printList(head->next);

1i
st score: |2 score: |4 score: score: |8

(o))

E_) next: | e | next: [T | next: |e— | next: Z

Linked List Variations

® Doubly linked lists

® Branched linked lists (i.e., trees)

(You are not being tested on these)

32

Doubly Linked Lists

score: |2 score:
o—

prev: [/] rev:

> next: | e

>

score:

next:

rev.

33

Doubly Linked Lists

® Pointers go in both directions
® We can go forward and backward

® There are two NULL pointers

® This seems useful, why not use them all the time!?

® More complexity

34

Doubly Linked Lists

35

Doubly Linked Lists

35

Doubly Linked Lists

35

Doubly Linked Lists

35

Doubly Linked Lists

35

Doubly Linked Lists

® Pointers go in both directions
® We can go forward and backward

® There are two NULL pointers

® This seems useful, why not use them all the time!?
® More complexity

® More space (almost never an issue these days)

36

37

Linked List Summary

Different approach to building a data structure
(using indirection)

Series of nodes, each has a pointer to the next node

Arrays are better at accessing i*" element

Linked lists are usually better at inserting and deleting

38

