APS 105
Winter 2012

Jonathan Deber
jdeber -at- cs -dot- toronto -dot- edu

Lecture 29
March 28,2012

® |Linked Lists

Today

Data Structures

Data Structures

® How we represent and store data in our programs

® |ndividual variables
® Arrays
® Arrays of pointers

® structs

Arrays

* Pro: int a[] = {1,2,3};

® Simple a:‘l‘z‘B‘

® Easy (and fast) access to each element
e Con:

® Only stores one type of data

® Fixed size

® Needs to be contiguous

Arrays of structs

® structs let us group multiple variables together
® Arrays let us group multiple structs together

® Fixes the “single type” problem

name: "Halifax"

City cities[4]; cities[0] metroPop: 0.283

.y name: "Montreal™
Cltles[l] metroPop: 3.764

name: "Toronto"

cities [2] metroPop: 6.324

.« . name: "Vancouver"
Cltles[?’] metroPop: 2.254

Arrays of structs

® Still need to be contiguous

® Hard to delete/move elements

name: "Halifax"

City cities[4]; cities[0] metroPop: 0.283

cities[1]

c L. name: "Toronto"
c1t1es[2] metroPop: 6.324

.« y . name: " "
c1t1es[3] Vancouver

metroPop: 2.254

Arrays of structs

® Still need to be contiguous

® Hard to delete/move elements

name: "Halifax"

City cities[4]; cities[0] metroPop: 0.283

cities[1] = NULL; cities[1]

[Error J .« L name: "Toronto"
c1t1es[2] metroPop: 6.324

.« . name: "Vancouver"
Cltles[?’] metroPop: 2.254

Arrays of structs

® Still need to be contiguous

® Hard to delete/move elements

name: "Halifax"

City cities[4]; cities[0] metroPop: 0.283

cities[1] = NULL; «cities[1] metrzag;z:zgintou
(e) cities[2]
cities[3] name: "Vancouver"

metroPop: 2.254

Arrays of structs

® Still need to be contiguous

® Hard to delete/move elements

: .y .y name: "Halifax"
City cities[4]; cities[O] metroPop: 0.283

cities[1] = NULL; cities[1] metrg@@;f;“’;i”to"

[Error] L name: "Vancouver"
c1t1es[2] metroPop: 2.254

cities[3]

Arrays of structs

® Still need to be contiguous

® Hard to delete/move elements

: .y .y name: "Halifax"
City cities[4]; cities[O] metroPop: 0.283

cities[1] = NULL; cities[1] metrg@@;f;“’;i”to"

[Error] L name: "Vancouver"
c1t1es[2] metroPop: 2.254

Name :

Cities[?’] metroPop:

Arrays of pointers to structs

® Array elements are much smaller

® Array elements can be NULL

first: | e+ "Homer"
last: | e

——> "Simpson”

first: [e+ "Marge"
last:

?

7:\
Z\

——> "Simpson”

Arrays of pointers to structs

® Array elements are much smaller

® Array elements can be NULL

first: | e+ "Homer"
last: | e

——> "Simpson”

~
~—

\
~, | first: | e "Marge"

| f last:

?

——> "Simpson”

Arrays of pointers to structs

® Array elements are much smaller

® Array elements can be NULL

first: | e+ "Homer"
last: | e

——> "Simpson”

—
\\
first: [e+ "Marge"
last: [e4—5 "Simpson”

?

Shifting Can be Slow

Linked Lists

® A different way to store multiple chunks of data

® (Simplest) example of a whole category of data
structures, built on indirection (i.e., using pointers)

® \VWe have to build them ourselves

head:

Linked Lists

® A recursive data structure
® Made up of nodes
® Actual data
® A pointer to another node
® Each node points to the next node

® |ast node points to NULL

score.

next:

N

head:

A Pointer to Another Node?

typedef struct node
1

int score;
Node next;

} Node; [Error J

A Pointer to Another Node?

typedef struct node
{

int score;
Node *next; <core:

} Node; [??%ﬂj next: [el—s

N

error: syntax error before ‘Node’

warning: no semicolon at end of struct or union

warning: type defaults to ‘int’ in declaration of €‘Node’
warning: data definition has no type or storage class

A Pointer to Another Node?

typedef struct node
{

int score;

struct node *next;
} Node;

N

score.

next: | e+—

Terminology

Whole thing is a linked list

score: |2

next: | e >

head: |i|

First node is the head

Nodes

N

score.

score: |6

next: | e+—

next: | «+——

(what you normally have a pointer to)

score.

next:

8

A

Last node is the tail

Arrays vs. Linked Lists

® Some things get easier
® Some things get harder

® Some things are about the same

Traversing Arrays

void printArray(int a[], int n)
{
for (int 1 = 0; 1 < n; i++)
!
printf("%d\n", a[i]);
}
}

Traversing Linked Lists

void printList(Node *head)

Node *current = head;
while (current != NULL)
printf("%d\n", current->score);
current = current->next;
current: LI_—'
score: |2 score: |4 score: |6 score:
next: |et—> | next: |®t—> | next: | +— next:

head:|i_|

20

Traversing Linked Lists

void printList(Node *head)

Node *current = head;
while (current != NULL)
printf("%d\n", current->score);
current = current->next;
current: LI_—'
score: |2 score: |4 score: |6 score:
next: |et—> | next: |®t—> | next: | +— next:

head:|i_|

20

Traversing Linked Lists

void printList(Node *head)
{

Node *current = head;
while (current != NULL)

printf("%d\n", current->score);
current = current->next;

current: @

score: |2 score: |4 score:

(&)

score.

hext: | e+— next: | +— nhext: | +— hext:

head:|i_|

20

Traversing Linked Lists

void printList(Node *head)
{

Node *current = head;
while (current != NULL)

printf("%d\n", current->score);
current = current->next;

current: @

score: |2 score: |4 score:

(&)

score.

hext: | e+— next: | +— nhext: | +— hext:

head:|i_|

N

20

Traversing Linked Lists

void printList(Node *head)

{
Node *current = head;
while (current != NULL)
printf("%d\n", current->score);
current = current->next;
}
}
current: |—I_—|
score: |2 score: |4 score: |6 score:

hext: | e+— next: | +— nhext: | +— hext:

head:|i_|

N

20

Traversing Linked Lists

void printList(Node *head)

{
Node *current = head;
while (current != NULL)
printf("%d\n", current->score);
current = current->next;
}
}
current: |—I_—|
score: |2 score: |4 score: |6 score:

hext: | e+— next: | +— nhext: | +— hext:

head:|i_|

A~ DN

Traversing Linked Lists

void printList(Node *head)

{
Node *current = head; 2
while (current != NULL) 4
printf("%d\n", current->score); 6
current = current->next;
}
}
current: LI_—'
score: |2 score: |4 score: |6 score: |8

next: | er— next: |t next: | et next: Z

head:|i_|

20

Traversing Linked Lists

void printList(Node *head)
{

Node *current = head; 2
while (current != NULL) 4
printf("%d\n", current->score); 6
current = current->next; 3

}

}

current: LI_—'
score: |2 score: |4 score: |6 score: |8

hext: | e+— next: | +— nhext: | +— hext:

head:|i_|

A

20

Traversing Linked Lists

void printList(Node *head)
{

Node *current = head; 2
while (current != NULL) 4
printf("%d\n", current->score); 6
current = current->next; 3

}

}

current: IZl
score: |2 score: |4 score: |6 score: |8

hext: | e+— next: | +— nhext: | +— hext:

head:|i_|

20

Verdict!

® Basically the same

21

Length of Arrays

® No general technique

® sizeof() under some circumstances

® “Sentinel value” (e.g., \@) under some circumstances

® Keep another variable around

22

Length of Linked Lists

® Need to traverse it, but that will always work

int length(Node *head)

int length

=@;

Node *current = head;
while (current != NULL)

{

length++;
current = current->next;

¥

return length;

E_) next: | et—

score.

next:

o>

score.

next:

length:l 0

score.

next:

23

Length of Linked Lists

® Need to traverse it, but that will always work

int length(Node *head)

int length

=@;

Node *current = head;
while (current != NULL)

{

length++;
current = current->next;

¥

return length;

E_) next: | et—

score.

next:

o>

score.

next:

length:l 1

score.

next:

23

Length of Linked Lists

® Need to traverse it, but that will always work

int length(Node *head)
int length =

Node *current = head;
while (current != NULL)

{
length++;

current = current->next;

Y
return length;

! current: E

head

E_) next: | «t+—— next: | e+—— next:

length:l 1

score: |2 score. score.

score.

next:

23

Length of Linked Lists

® Need to traverse it, but that will always work

int length(Node *head)
int length =

Node *current = head;
while (current != NULL)

{
length++;

current = current->next;

Y
return length;

! current: E

head

E_) next: | «t+—— next: | e+—— next:

length:l 2

score: |2 score. score.

score.

next:

23

Length of Linked Lists

® Need to traverse it, but that will always work
int length(Node *head)

length:
int length = 0; - IZ

Node *current = head;
while (current != NULL)

{

length++;
current = current->next;

Y
return length;

! current: E

head

E_) next: | «t+—— next: | e+—— next: | e+— next:

score: |2 score: |4 score. score.

23

Length of Linked Lists

® Need to traverse it, but that will always work
int length(Node *head)

length:
int length = 0; - E

Node *current = head;
while (current != NULL)

{

length++;
current = current->next;

Y
return length;

! current: E

head

E_) next: | «t+—— next: | e+—— next: | e+— next:

score: |2 score: |4 score. score.

23

Length of Linked Lists

® Need to traverse it, but that will always work
int length(Node *head)

length:
int length = 0; - E

Node *current = head;
while (current != NULL)

{

length++;
current = current->next;

¥

return length;

) cur‘r‘ent:LT_l

head

score: |2 score: |4 score: |6 score: |8

E_) next: [T | next: [T | next: | | next: Z

Length of Linked Lists

® Need to traverse it, but that will always work
int length(Node *head)

length:
int length = 0; - IZ

Node *current = head;
while (current != NULL)

{

length++;
current = current->next;

¥

return length;

) cur‘r‘ent:LT_l

head

score: |2 score: |4 score: |6 score: |8

E_) next: [T | next: [T | next: | | next: Z

Length of Linked Lists

® Need to traverse it, but that will always work
int length(Node *head)

length:
int length = 0; - IZ

Node *current = head;
while (current != NULL)

{
length++;
current = current->next;
}
return length;
J cur‘r‘ent:z
head score: |2 score: |4 score: |6 score: |8

E_) next: [T | next: [T | next: | | next: Z

Verdict!

® You can always figure out the length of a linked
list, but it might take you a while

® Different

24

1™ Element of Array

® Really easy
® Really fast (basic math to find address)

® Same speed for any 1

® Potential for buffer overrun if not careful

City toronto = cities[2];

City vancouver = cities[29348]; (\i/wiy:4)

25

it Element of Linked List

® Need to traverse until we find it index:

Node *getElement(Node *head, int index) ..
{ i

Node *current = head;
for (int i = @0; 1 < index; i++)
{

current = current->next;

¥

return current;

} current: I‘I_‘I

head

score. score: |4 score: |6 score: |8

next: | | next: |t | next: | | next: Z

it Element of Linked List

® Need to traverse until we find it index:

) . C .
Izlode getElement(Node *head, int index) i:

Node *current = head;
for (int i = @0; 1 < index; i++)
{

current = current->next;

¥

return current;

} current: E

head

score: |2 score. score: |6 score: |8

next: | | next: |t | next: | | next: Z

it Element of Linked List

® Need to traverse until we find it index:
Node *getElement(Node *head, int index) i'
; :

Node *current = head;
for (int i = @0; 1 < index; i++)

{
current = current->next;
} What if index is larger than the
return current; number of elements in the list?
} current: E
head

score: |2 score. score: |6 score: |8

next: | | next: |t | next: | | next: Z

it Element of Linked List

® Need to traverse until we find it index:
Node *getElement(Node *head, int index) i'
; :

Node *current = head;
for (int i = @0; 1 < index; i++)

{
current = current->next;
} What if index is larger than the
return current; number of elements in the list?
} current: I‘I_‘I
head

score: |2 score: |4 score:. score: |8

next: | | next: |t | next: | | next: Z

it Element of Linked List

® Need to traverse until we find it index:
Node *getElement(Node *head, int index) i'
; :

Node *current = head;
for (int i = @0; 1 < index; i++)

{
current = current->next;
} What if index is larger than the
return current; number of elements in the list?
} current: |$|
head

score: |2 score: |4 score: |6 score.

next: | | next: |t | next: | | next: Z

it Element of Linked List

® Need to traverse until we find it index:
Node *getElement(Node *head, int index) i'
; :

Node *current = head;
for (int i = @0; 1 < index; i++)

{
current = current->next;
} What if index is larger than the
return current; number of elements in the list?
} current :|Z|
head

score: |2 score: |4 score: |6 score: |8

next: | | next: |t | next: | | next: Z

it Element of Linked List

® Need to traverse until we find it index:
Node *getElement(Node *head, int index) i'
; :

Node *current = head;
for (int i = @0; 1 < index; i++)

{ E* Yron ;J

current = current->next;

} What if index is larger than the

return current; number of elements in the list!?

} current :|Z|
head score: [2 score: |4 score: |6 score: |8

next: | | next: |t | next: | | next: Z

it Element of Linked List

Node *getElement(Node *head, int index)

{

Node *current = head;

for (int 1 = 9; 1 < index && current != NULL; i++)

{

current = current->next;

}

return current;
} ’ curr‘ent:z
head score: |2 score: |4 score: |6 score: |8

next: | | next: |t | next: | | next: Z

Verdict!

® Arrays are much easier

® Arrays are much faster, and have constant run time

28

Insert at End of Array

// If the array has space
list[numElements] = newItem;
numkElements++;

// If the array is full but dynamically allocated
list = realloc(list, (numElements+1l) * sizeof(1list[0]);
list[numElements] = newItem;

numkElements++;

// If the array is full but automatically allocated
// Out of luck!

29

Insert at End of Linked List

Find the end of the list
Update that node’s pointer to point at the new node
Make sure the new node’s pointer is NULL

score: |2 score: |4 score: |6 score: |8

E_) next: |7 | next: | | next: Z next: Z

30

Insert at End of Linked List

Find the end of the list
Update that node’s pointer to point at the new node
Make sure the new node’s pointer is NULL

head score: |2 score: |4 score: |6 score: |8

E_) next: |7 | next: | | next: Z next: Z

30

Insert at End of Linked List

Find the end of the list
Update that node’s pointer to point at the new node
Make sure the new node’s pointer is NULL

head score: |2 score: |4 score: |6 score: |8

E_) next: |7 | next: | | next: Z next: Z

30

Insert at End of Linked List

Find the end of the list
Update that node’s pointer to point at the new node
Make sure the new node’s pointer is NULL

head

score: |2 score: |4 score: |6 score: |8

E_) next: |7 | next: | | next: [| next: Z

30

Insert at End of Linked List

void addToEnd(Node *head, Node *newNode)
{

Node *current = head;

while (current != NULL) [VVr@ngj

{ &
current = current->next;

}

current->next = newNode;

newNode->next = NULL;

31

Insert at End of Linked List

void addToEnd(Node *head, Node *newNode)

{
Node *current = head;
while (current != NULL)
{

current = current->next;

}
current->next = newNode;
newNode->next = NULL;

}

cur‘r‘ent:LT_I

score: |2 score: |4 score: |6 score: |8

E_) next: |7 | next: | | next: Z next: Z

32

Insert at End of Linked List

void addToEnd(Node *head, Node *newNode)

{
Node *current = head;
while (current != NULL)
{
current = current->next;
}
current->next = newNode;
newNode->next = NULL;
}

current: I‘I_‘I

head score: |2 score. score: |6 score: |8

E_) next: |7 | next: | | next: Z next: Z

32

Insert at End of Linked List

void addToEnd(Node *head, Node *newNode)

{
Node *current = head;
while (current != NULL)
{
current = current->next;
}
current->next = newNode;
newNode->next = NULL;
}
current: @

head score: |2 score: |4 score: score: |8

E_) next: |7 | next: | | next: Z next: Z

32

Insert at End of Linked List

void addToEnd(Node *head, Node *newNode)

{
Node *current = head;
while (current != NULL)
{
current = current->next;
}
current->next = newNode;
newNode->next = NULL;
}

cur‘r‘entzz

head score: |2 score: |4 score: |6 score: |8

E_) next: |7 | next: | | next: Z next: Z

32

Insert at End of Linked List

void addToEnd(Node *head, Node *newNode)

{

Node *current
while (current->next != NULL)

{
}

current =

current->next
newNode->next

head score:.

E_) hext:

—

score.

next:

= head;

current->next;

= newNode;

= NULL;
cur‘r‘ent:LT_l

4 score: |6

score.

next:

32

Insert at End of Linked List

void addToEnd(Node *head, Node *newNode)

{
Node *current = head;
while (current->next != NULL)
{
current = current->next;
}
current->next = newNode;
newNode->next = NULL;
}
cur‘r‘ent:LT_l

head

score: |2 score: |4 score: |6 score: |8

E_) next: | | next: |er—> | next: [T next:Z

32

Insert at End of Linked List

Node *addToEnd(Node *head, Node *newNode)
{

if (head == NULL)
{

newNode->next = NULL;
return newNode;

¥

Node *current = head;
while (current->next != NULL)

{

current = current->next;
}
current->next = newNode;
newNode->next = NULL;

return head;

34

Building a List

Node *head = NULL;
for (int 1 = @; i < N; i++)
{

Node *newNode = malloc(sizeof(Node));
newNode->score = 1i;
head = addToEnd(head, newNode);

newNode :@

score: |©

head

next:

Building a List

Node *head = NULL;
for (int 1 = @; i < N; i++)
{

Node *newNode = malloc(sizeof(Node));
newNode->score = 1i;
head = addToEnd(head, newNode);

newNode :@

head score: |9

E_) next: Z

Building a List

Node *head = NULL;
for (int 1 = @; i < N; i++)
{

Node *newNode = malloc(sizeof(Node));
newNode->score = 1i;
head = addToEnd(head, newNode);

newNode :@

score: |0 score: |1
—1>
next: Z next:

head

Building a List

Node *head
for (int 1

{

Node *newNode

NULL;

90;

i < N; i++)

= malloc(sizeof(Node));

newNode->score = 1ij;
head = addToEnd(head, newNode);

head

score:

next:

>

newNode :@

score: |1

next: Z

35

Building a List

Node *head = NULL;
for (int 1 = 0; 1 < N; i++)
{

Node *newNode = malloc(sizeof(Node));
newNode->score = 1i;
head = addToEnd(head, newNode);

newNode :E

score: |© score: |1 score: |2

head

—1>
next: | e > next: Z next:

Building a List

Node *head = NULL;
for (int 1 = 0; 1 < N; i++)
{

Node *newNode = malloc(sizeof(Node));
newNode->score = 1i;
head = addToEnd(head, newNode);

newNode :E

score: |© score: |1 score: |2

head

—1>
next: | e > . next: |e > . nhext: Z

Building a List

Node *head = NULL;
for (int 1 = 0; 1 < N; i++)
{

Node *newNode = malloc(sizeof(Node));
newNode->score = 1i;
head = addToEnd(head, newNode);

head

score: |© score: |1 score: |2

—1>
next: | e > . next: |e > . nhext: Z

35

Verdict!

Array easier, if it has space

Array (much?) harder, if it doesn’t

Lin
Lin

KEC

KEC

ist never runs out of space

ist needs to traverse entire list

36

Insert at Beginning of Array

Insert at Beginning of Array

Insert at Beginning of Array

Insert at Beginning of Array

Insert at Beginning of Array

Insert at Beginning of Array

// Assuming the array is large enough

for (int 1 = N - 231 >=0; i--)
{
ali + 1] = a[i];

}

a[@] = newlItem;

1 2 4 3

al[o] a[1l] a[2] a[3]
N-4 N-3 N-2 N-1 N

37

Insert at Beg. of Linked List

Insert at End of Linked List:
Find the end of the list
Update that node’s pointer to point at the new node
Make sure the new node’s pointer is NULL

Insert at Beginning of Linked List:

Find the beginning of the list
Point the new node’s pointer at that node
Make sure head points to the new node

score: |8

next: score: |2 score: |4 score: |6

next: |t | next: |et—> | next: Z

38

Insert at Beg. of Linked List

Insert at End of Linked List:
Find the end of the list
Update that node’s pointer to point at the new node
Make sure the new node’s pointer is NULL

Insert at Beginning of Linked List:

Find the beginning of the list
Point the new node’s pointer at that node
Make sure head points to the new node

score: |8

next: | & Iscore: [2 score: |4 score: |6

next: |t | next: |et—> | next: Z

38

Insert at Beg. of Linked List

Insert at End of Linked List:
Find the end of the list
Update that node’s pointer to point at the new node
Make sure the new node’s pointer is NULL

Insert at Beginning of Linked List:

Find the beginning of the list
Point the new node’s pointer at that node
Make sure head points to the new node

next: | & Iscore: [2 score: |4 score: |6

next: |t | next: |et—> | next: Z
head:

38

Insert at Beg. of Linked List

newNode->next = head;
head = newNode;

Insert at Beginning of Linked List:

Find the beginning of the list
Point the new node’s pointer at that node
Make sure head points to the new node

next: | & Iscore: [2 score: |4 score: |6

next: |t | next: |et—> | next: Z
head:

Insert at Beg. of Linked List

Node *addToFront(Node *head, Node *newNode)
{

newNode->next = head;

return newNode;

}

40

Node *head
for (int 1

{

Building a List

NULL;
O; 1 < N; i++)

Node *newNode = malloc(sizeof(Node));
newNode->score = 1i;
head = addToFront(head, newNode);

newNode :@

score: |©

next:

41

Node *head
for (int 1

{

Building a List

NULL;
O; 1 < N; i++)

Node *newNode = malloc(sizeof(Node));
newNode->score = 1i;
head = addToFront(head, newNode);

newNode :@

score: |©

next: Z
head: —

41

Building a List

Node *head = NULL;
for (int 1 = @; i < N; i++)
{

Node *newNode = malloc(sizeof(Node));
newNode->score = 1i;
head = addToFront(head, newNode);

newNode :|_I__|
score: |1 score: |9
next: next: Z

Node *head
for (int 1

{

Building a List

NULL;
O; 1 < N; i++)

Node *newNode = malloc(sizeof(Node));
newNode->score = 1i;
head = addToFront(head, newNode);

newNode :|_I__|

score: |1 score: |9

next: | e—> next: Z

head:&

41

Building a List

Node *head = NULL;
for (int i = ©0; 1 < N; i++)
{

Node *newNode = malloc(sizeof(Node));
newNode->score = 1i;
head = addToFront(head, newNode);

newNode :@
score: |2 score: |1 score: |9
next: next: | > next: Z

head:&

Building a List

Node *head = NULL;
for (int i = ©0; 1 < N; i++)
{

Node *newNode = malloc(sizeof(Node));
newNode->score = 1i;
head = addToFront(head, newNode);

newNode :@
score: |2 score: |1 score: |9
next: | e—> next: | > next: Z

head

Node *head
for (int 1

{

Building a List

NULL;
O; 1 < N; i++)

Node *newNode = malloc(sizeof(Node));
newNode->score = 1i;
head = addToFront(head, newNode);

score.

N

score.

=

score: |©

next: | e—> next: | > next: Z

head

41

® Array time consuming, if it has space

Verdict!

® (Gets more time consuming as the array gets larger

® Array (much?) harder, if it doesn’t

® Lin

® Lin

® Always takes the same time, no matter the length

KEC

KEC

ist never runs out of space

ist is very fast

42

Insert in Middle of Array

Want to insert 1 at a[3]

43

Insert in Middle of Array

Want to insert 1 at a[3]

43

Insert in Middle of Array

Want to insert 1 at a[3]

43

Insert in Middle of Array

Want to insert 1 at a[3]

43

Insert in Middle of Array

Want to insert 1 at a[3]

43

Insert in Middle of Array

// Assuming the array is large enough

for (int 1 = N - 2; i >= 3; 1i--)

{
ali + 1] = a[i];
}
a[3] = 1; Want to insert 1 at a[3]

2 4 3 1 |16 | 32| 64

a[@] a[1] a[2] a[3] a[4] a[5] a[6]
N-2 N-1

43

Insert in Middle of Array

// Assuming the array is large enough

for (int 1 = N - 2; i >= k; 1i--)
{
a[i + 1] = a[i];

}

alk] = x; Want to insert 1 at a[3°

Want to insert X at a|

2 4 3 1 |16 | 32| 64

a[@] a[1] a[2] a[3] a[4] a[5] a[6]
N-2 N-1

43

