APSI105
Winter 2012

Jonathan Deber
jdeber -at- c¢s -dot- toronto -dot- edu

Lecture 24
March 16,2012

Today

® (Even More) Dynamic Memory Allocation

Dynamic Memory Allocation

malloc() and friends

Automatic Allocation

® VWe've been doing this since the first week

® Variables have a name and an address

int 1i; i

1 = 5;

int *p = &1; D: |_1__|

int a[4];

al@] = 2; a:‘ 2‘ 4‘ ‘ ‘
a[l] = 4;

malloc()

void *malloc(size~t size);

ink of it as int

“ ., now th
Memory Allocator for

#include <stdlib.h>

You ask malloc () for some memory, it finds
some, and then gives it to you

void * pointer (“generic” pointer)

Different pool of memory (called the heap)

Dotted border means

r---

“dynamically allocated” :'J":
void * [%]
cp:
~—
char *cp = malloc(1l);
char c = mallOC(l);[WMmng
*cp = '] int 1 = 5;

int j = &1;

number of bytes |i|
cp:
\

char *cp = malloc(3);

number of elements size of each element

Ny
int *ip = malloc(3 * 4);

char is 1 byte (everywhere)
ip |i| int is 4 bytes (on ECF)

sizeof() and malloc()
int *ip = malloc(3 * 4);
int *ip = malloc(3 * sizeof(int));

You should always use sizeof ()

char *cp = malloc(3);

malloc(3 * sizeof(char));

char *cp

int *square3(int *p)

{
int *result = malloc(sizeof(int));
*result = *p * *p;
return result;

}
square3()
int main (void)
{ result:
int 1 = 2;
int *j = square3(&i); pilzl
printf("%d", *j); main()
1:12
return 0;
}

int *square3(int *p)

{

int *result = malloc(sizeof(int));

*result = *p * *p;
return result;

}

int main (void)

{
int 1 = 2;
int *j = square3(&i);
printf("%d", *j);

return 0;

}

4
square3()
result:
H
main()
i:]2 J:

int *square3(int *p)

{

int *result = malloc(sizeof(int));

*result = *p * *p;
return result;

}

int main (void)

{
int 1 = 2;
int *j = square3(&i);
printf("%d", *j);

return 0;

}

0
4
square3()
result:
H
main()
i:(2 J:

int *square3(int *p)

{

int *result = malloc(sizeof(int));

*result = *p * *p;
return result;

}

int main (void)

{
int 1 = 2;
int *j = square3(&i);
printf("%d", *j);

return 0;

}

0
4
square3()
result:
main()
i:(2 J:

int *square3(int *p)

{ Yo

int *result = malloc(sizeof(int));
*result = *p * *p;
return result;

}
square3()

int main (void)

{ result:
int 1 = 2; |
int *j = square3(&i); ¢
printf("%d", *j); main()

1:(2]
return 0;
}

int *square3(int *p)

{

==

_)l_pl

int *result = malloc(sizeof(int));

*result = *p * *p;
return result;

}

int main (void)

{
int 1 = 2;
int *j = square3(&i);
printf("%d", *j);

return 0;

}

square3()

.‘n

main()

int *square3(int *p)

{

==

_)l_pl

int *result = malloc(sizeof(int));
*result = *p * *p;
return result;

}

int main (void)

{

int 1 = 2;

int *j = square3(&i);

printf("%d", *j); main()

return 0;

}

int *square3(int *p)

{

[fonlli |
|_p|

int *result = malloc(sizeof(int));
*result = *p * *p;
return result;

}

int main (void)

{

int 1 = 2;

int *j = square3(&i);

printf("%d", *j); main()

return 0;

}

int *square3(int *p)

{

int *result = malloc(sizeof(int));

*result = *p * *p;
return result;

}

int main (void)

{
int 1 = 2;
int *j = square3(&i);
printf("%d", *j);

return 0;

}

==

|_p|

main()

int *square3(int *p)

{

int *result = malloc(sizeof(int));

*result = *p * *p;
return result;

}

int main (void)

{
int 1 = 2;
int *j = square3(&i);
printf("%d", *j);

4

return 0;

}

Heap

Stack

==

|_p|

main()

int 1 = 4;
int j = 5;
int *p = &i;

Cleaning Up
i:[::] j:IIII

[

int 1 = 4;
int j = 5;
int *p = &i;

p = &J;

Cleaning Up
i:l::] j:IIII

g

int
int
int

int
int
*1p

Cleaning Up

malloc(sizeof(int));

malloc(sizeof(int)); 1ip: |;| Jjp: |_7I_

r---

4,

i:IZIj:

&1;

r---

v 5 .

Cleaning Up
int 1 = 4; 1: [::I:V IEII

int j = 5;
int *p = &i;)

p = &J;

int *ip = malloc(sizeof(int));

int *jp = malloc(sizeof(int)); ip: jp:
*ip = 4;

*Jp = 5; A I
ip = 3p;

Cleaning Up
int 1 = 4; 1: [::I:V IEII

int j = 5;
int *p = &i; s

p = &J;

int *ip = malloc(sizeof(int));

int *jp = malloc(sizeof(int)); ip: jp:

*ip = 4;

*ip = §- This value is lost — —
Jp J ' 4 ' ' 5 '
. . This bit of memory is lost +...: L
1p = JpP;

int main (void)

d

int n = 1000000000;
for (int 1 = 0; 1 < n; i++)

{

malloc(sizeof(int));

main()

}

1:(100000000

return 0;

Memory Leaks

A memory leak is when you lose memory

Possible because malloc()ed memory does not have
a name, only an address

int *ip = malloc(sizeof(int));

int *jp = malloc(sizeof(int));

1p = Jp; This memory was leaked
Causes your program to use more and more memory

In C, it’s your responsibility to prevent leaks

Entirely manual process

free()

void free(void *p);

® Returns memory to the pool
® |t keeps track of the sizes of allocated blocks

® Any memory you get from malloc () must be
cleaned up using free()

int *p = malloc(sizeof(int));

free(p);

Three free() bugs

® “Use after free()”

® “Double free()”

® free()ing non-malloc()ed memory

“Use After Free”

® Once memory has been free()ed, you can’t use it again

int *p = malloc(sizeof(int)); p,@

r---
1

“Use After Free”

® Once memory has been free()ed, you can’t use it again

int *p = malloc(sizeof(int)); p,@

free(p); This doesn’t change p itself

“Use After Free”

® Once memory has been free()ed, you can’t use it again

int *p = malloc(sizeof(int)); p,@

free(p); This doesn’t change p itself

’ 4
* p = 4, [\/\/’ For ;J

o2

r---

malloc(sizeof(int));
P;

int *p
int *q

P

int *p = malloc(sizeof(int));
int *q = p;

free(p);

// Make sure not to use p anymore!

o

4

int *p = malloc(sizeof(int));

int *q = p;

free(p);

// Make sure not to use p anymore!
*q = 4, [\/\'/”r[olﬁgj

“Double Free”

® You can only free() memory once

int *p = malloc(sizeof(int));

free(p);
free (p) p [\/\/”r@méf;i]

“Double Free”

® You can only free() memory once

int *p = malloc(sizeof(int));
int *q = p;

free(p);
free (P) p i\/\/‘r@m%j
free(q); Z\«;\«/ 'rcmgj

Non-malloc()ed Memory

® You can only free() memory obtained from malloc()

int a[] = {9, 8, 7, 6};
free(a); wammgj

int 1 = 10;
int *p = &1;
free(p); 6&M@M§J

malloc() Summary

malloc() gives you memory from a separate
pool of memory called the heap

This memory exists outside of functions

Returns a generic void * pointer, must be
stored in a pointer variable

Parameter is the number of bytes to allocate
(sizeof () is your friend)

free() Summary

All memory obtained from malloc() must
eventually get passed to free()

You can’t use that memory after it’s been free()ed

You can’t call free() more than once on the same
chunk of memory

You can’t free() memory you didn’t get from
malloc()

C being C, all of the above will compile, but are
undefined behaviours, and may crash horribly

20

NULL

® A special pointer value that doesn’t point at anything
® Not the same as being uninitialized!

® Need to #include one of the common libraries
(e.g.,stdio.h or stdlib.h)

int i = 9; i=|z|

int *p; (p is uninitialized)
||

21

NULL

® A special pointer value that doesn’t point at anything
® Not the same as being uninitialized!

® Need to #include one of the common libraries
(e.g.,stdio.h or stdlib.h)

int i = 9; i=|z|

int *p; (p is uninitialized)

21

NULL

® A special pointer value that doesn’t point at anything
® Not the same as being uninitialized!

® Need to #include one of the common libraries
(e.g.,stdio.h or stdlib.h)

int i = 9; i‘EI

int *p; (p is uninitialized)
i [

21

NULL

® A special pointer value that doesn’t point at anything
® Not the same as being uninitialized!

® Need to #include one of the common libraries
(e.g.,stdio.h or stdlib.h)

int i = 9; i=|z|

int *p; (p is uninitialized) |_I__|
p:

p = &1i; (p has the value &1)

21

NULL

® A special pointer value that doesn’t point at anything
® Not the same as being uninitialized!

® Need to #include one of the common libraries
(e.g.,stdio.h or stdlib.h)

int i = 9; 1: EI
int *p; (p is uninitialized)
p:
&i; (p has the value &1) ¥
p = NULL; (p has the value NULL) ~

©
Il

21

NULL

® A special pointer value that doesn’t point at anything
® Not the same as being uninitialized!

® Need to #include one of the common libraries
(e.g.,stdio.h or stdlib.h)

int i = 9; 1: E
int *p; (p is uninitialized)
p:]
&i; (p has the value &1)

p = NULL; (p has the value NULL)

©
Il

21

NULL

® A special pointer value that doesn’t point at anything
® Not the same as being uninitialized!

® Need to #include one of the common libraries
(e.g.,stdio.h or stdlib.h)

int i = 9; 1: E
int *p; (p is uninitialized)
%
&i; (p has the value &1)

p = NULL; (p has the value NULL)

©
Il

21

NULL vs. '\0'

® A pointer to NULL is called a null pointer

® The null pointer (NULL) is very different than the
null character ('\0")

® One is a pointer that doesn’t point to anything, the
other is the character with ASCITI character code ©

char *p = NULL; p:|Z|

char c

= '\@’; c:|'\e

22

Following NULL

® You can'’t follow the null pointer

int *p = NULL; .
*p = 8; [\/\/vfoné:] p.

® Well,it’'s C, so of course you can, but it’s
undefined behaviour

23

malloc() and NULL

e [fmalloc() can’t allocate memory, it returns
the null pointer

® Technically, you should always check for this

® |n this course, we won'’t

int *a = malloc(N * sizeof(int));
if (a == NULL)

printf("Out of memory!");
// handle error somehow

}

else

// do something
} 24

free() and NULL

® free() doesn’t change the pointer it frees

in
*p

t

*p = malloc(sizeof(int)); o
i L

r---

e

25

free() and NULL

® free() doesn’t change the pointer it frees

in
*p

t

*p = malloc(sizeof(int)); o
i L

free(p);

25

free() and NULL

® free() doesn’t change the pointer it frees

® |t’s often a good idea to set free()ed pointers to NULL

p:/]

int *p = malloc(sizeof(int));
*p=4;

free(p);
p = NULL;

25

if (p has not been free()ed)

{
do something

}

free(p); free(p);
p = NULL;
if (?27?) if (p !'= NULL)
{ {
do something do something

¥ }

26

free() and NULL

® free(NULL) is legal (and does nothing)

free(p); q = p;
free(p); (W) free(p);
p = NULL;
free(p); e .
b = NULL; free(q); [W/Lr@mgj

free(p); [Neanr = elo) Sy

27

Fixed Sizes

® Automatically allocated variables can’t change size

® Until C99, array sizes needed to be fixed at
compile time

O\
S int a[4];

< | [|] |
int n;
& scanf("%d", &n);
int a[n];

28

Fixed Sizes

® Automatically allocated variables can’t change size

® Until C99, array sizes needed to be fixed at
compile time

O\
S int a[4];

< | [| |
int n;
& scanf("%d", &n);
int a[n];

28

realloc()

void *realloc(void *p, siz€ t size);
for now think of itas int
Resizes a malloc()ed chunk of memory

Can increase or decrease the size

Returns a pointer to the resized memory

P

NULL is equivalent to malloc()

size = 0 is equivalent to free()

int *a = malloc(4 * sizeof(int));
a = realloc(a, 5 * sizeof(int));

29

