
Simplifying Textured Triangle Meshes in the Wild

HSUEH-TI DEREK LIU, Roblox, Canada

XIAOTING ZHANG, Roblox, USA

CEM YUKSEL, University of Utah & Roblox, USA

Fig. 1. Given an artist-created city scene (cb mertkilic) in the wild, we simplify it down to 10% of its original resolution. Our method (right) better preserves

geometrically significant components (e.g., buildings) compared to the quadric error simplification [Garland and Heckbert 1998], implemented in [Cignoni

et al. 2008], (middle) which prioritizes small components (e.g., streetlamps).

This paper introduces a method for simplifying textured surface triangle
meshes in the wild while maintaining high visual quality. While previous
methods achieve excellent results on manifold meshes by using the quadric
error metric, they struggle to produce high-quality outputs for meshes
in the wild, which typically contain non-manifold elements and multiple
connected components. In this work, we propose a method for simplifying
these “wild” textured triangle meshes. We formulate mesh simplification
as a problem of decimating simplicial 2-complexes to handle multiple non-
manifold mesh components collectively. Building on the success of quadric
error simplification, we iteratively collapse 1-simplices (vertex pairs). Our
approach employs a modified quadric error that converges to the original
quadric error metric for watertight manifold meshes, while significantly
improving the results on wild meshes. For textures, instead of following
existing strategies to preserve UVs, we adopt a novel perspective which
focuses on computing mesh correspondences throughout the decimation,
independent of the UV layout. This combination yields a textured mesh
simplification system that is capable of handling arbitrary triangle meshes,
achieving to high-quality results on wild inputs without sacrificing the
excellent performance on clean inputs. Our method guarantees to avoid
common problems in textured mesh simplification, including the prevalent
problem of texture bleeding. We extensively evaluate our method on multiple
datasets, showing improvements over prior techniques through qualitative,
quantitative, and user study evaluations.

ACM Reference Format:
Hsueh-Ti Derek Liu, Xiaoting Zhang, and Cem Yuksel. 2025. Simplifying Tex-
tured Triangle Meshes in theWild .ACMTrans. Graph. 44, 6 (December 2025),
16 pages. https://doi.org/10.1145/3763277

Authors’ addresses: Hsueh-Ti Derek Liu, Roblox, Canada, hsuehtil@gmail.com; Xiaoting
Zhang, Roblox, USA, xzhang@roblox.com; Cem Yuksel, University of Utah & Roblox,
USA, cem@cemyuksel.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2025/12-ART $15.00
https://doi.org/10.1145/3763277

Fig. 2. Comparison between our textured mesh simplification method and

a representative prior technique [Garland and Heckbert 1998] (using the

implementation from [Cignoni et al. 2008]). On single component and

manifold inputs, both methods produce excellent results (compare baseline,

top center, vs. ours, top right). However, for challenging “wild” inputs, often

characterized by non-manifold and multiple components geometry, the

baseline approach frequently yields unsatisfactory results (bottom center).

In contrast, our method preserves visual fidelity and geometric structure

more effectively on these wild meshes (bottom right).

1 INTRODUCTION

Mesh simplification creates different levels of detail (LOD) for 3D
objects while maintaining their visual fidelity. It plays a critical role
in interactive graphics to achieve target performance in rendering
and simulation across various hardware platforms. Its importance
has been motivating decades of development with a plethora of
solutions, such as the widely used QEM by Garland and Heckbert
[1997]. While these solutions produce high-quality results for mani-
fold surface inputs, we demonstrate that they often fail to generate
acceptable results on meshes obtained from online repositories (see

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

https://doi.org/10.1145/3763277
https://doi.org/10.1145/3763277

2 • Hsueh-Ti Derek Liu, Xiaoting Zhang, and Cem Yuksel

Fig. 3. Many meshes available in online repositories are non-manifold. For

instance, Thingi10k [Zhou and Jacobson 2016] (a dataset consisting of 3D-

printable shapes) includes 22.5% non-manifold shapes, ModelNet [Wu et al.

2015] (a dataset of CAD models) contains 54.3% non-manifold objects, and

more severely 98.9% of the meshes in the ShapeNet dataset [Chang et al.

2015] (a widely used dataset for machine learning) are non-manifold.

Fig. 4. We stress test our method by simplifying a variety of challenging

cases encountered in the wild, including noisy 3D scans (left), low-quality

triangles from CAD models (middle), and meshes with defects (right).

Fig. 1). This issue is caused by the discrepancy between existing
problem formulations and real-world data characteristics. Existing
LOD techniques often assume the input mesh is manifold [Dey et al.
1999]. This was a realistic assumption when, for instance during the
1990s, the goal was to simplify meshes generated by isosurfacing
methods, such as marching cubes [Lorensen and Cline 1987]. How-
ever, recent advancements in 3D modeling have populated online
repositories with a rich amount of manually modeled shapes. In
contrast to meshes reconstructed from isosurfacing, the majority
of them are non-manifold (e.g., 98.9% on ShapeNet [Chang et al.
2015] are non-manifold, see Fig. 3). This prevalence of non-manifold
meshes underscores the need to revisit mesh simplification and its
problem formulation to better suit contemporary datasets.
A desired mesh simplification method must be performant and

robust to all types of geometric artifacts, and can preserve surface
attributes (e.g., textures). In real-time applications such as virtual
reality and video games, these (defective) meshes appear frequently
during game time from user interactions (i.e., engineers collabora-
tively model 3D buildings). Being able to efficiently and robustly
simplify all the newly created 3D content on the fly while pre-
serving attributes is critical to achieving target performance. Such
requirements also exclude expensive alternatives that do not pre-
serve attributes (see Fig. 6), such as repairing defective meshes into
manifolds and performing simplification afterward, which may take
minutes to hours.

In this work, we propose a method to simplify any textured tri-
angle meshes that may contain multiple components, non-manifold
geometry, and even the extreme case like triangle soups (Fig. 4). We
elevate the manifold restriction of prior arts to work with a soup
of triangles, while guaranteeing to converge to the classic quadric
error simplification results on manifold inputs. To handle textured
meshes, we successively compute correspondences between the
input mesh and the simplified mesh, unlike prior arts that aim at
preserving UV coordinates. Our strategy reduces texture distor-
tion and prevents texture bleeding occurs during the simplification
process. This combination enables us to handle arbitrary textured
meshes one can encounter today, without degraded performance on
clean inputs (see Fig. 2). We provide a background (Appendix A) and
analyze the limitations of existing strategies (Sec. 3). This analysis
highlights issues with current tools and motivates revisiting the
simplification problem for mesh data in-the-wild.

2 RELATED WORK

Our method belongs to the family of local decimation schemes de-
fined on triangle meshes, aiming to preserve their surface attributes.
We thus focus our discussion on prior techniques closest to ours, and
refer readers to Luebke [2003] for a more comprehensive discussion.

Triangle Mesh Simplification. Mesh simplification has been exten-
sively studied in computer graphics to reduce the resolution while
preserving the appearance of 3D objects. Early attempts tried to fit
low resolution polygons [Jr. and Zyda 1991], globally remesh the
input to a lower resolution [Hoppe et al. 1992; Turk 1992], or lo-
cally remove each mesh element [Schroeder et al. 1992]. Since then,
different formulations have been proposed, such as clustering of
triangles [Cohen-Steiner et al. 2004; Xu et al. 2024] or vertices [Lind-
strom 2000; Low and Tan 1997; Rossignac and Borrel 1993], greedily
removing triangles [Gieng et al. 1998; Hamann 1994] or vertices
[Klein 1998], simplifying a manifold envelope wrapping around
the input [Chen et al. 2023b; Gao et al. 2022; Mehra et al. 2009],
or optimization with a differentiable renderer [Deliot et al. 2024;
Hasselgren et al. 2021; Knodt et al. 2024]. Some of these techniques
have also been revisited in the context of machine learning-driven
simplification [Chen et al. 2023a; Potamias et al. 2022]. Among them,
perhaps the most popular strategy is the greedy edge collapse [Hoppe
1996] with the quadric error metric [Garland and Heckbert 1997].
The popularity of edge collapses is partly due to the efficiency as
each edge collapse exhibits constant time complexity.

Quadric Error Metrics. The success of quadric error [Garland and
Heckbert 1997] has motivated a variety of quadrics for measuring
different geometric quantities. Lindstrom and Turk [1998] propose
volume and area quadrics to measure the squared volume and area
changes, respectively. Garland and Heckbert [1998] introduce the
boundary quadric to maintain the shape boundary. Trettner and
Kobbelt [2020] consider that a mesh element is a sample from a
probability distribution and derive the probabilistic quadric to fur-
ther improve its numerical behavior. Other extensions generalize
the quadric error to incorporate surface attributes (e.g., textures) by
defining quadric error in a higher dimension [Garland and Heckbert

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

Simplifying Textured Triangle Meshes in the Wild • 3

Fig. 5. Repairing a triangle mesh with [Hu et al. 2020] (third) and then

simplifying the repaired model (fourth) depends on having a high quality

repaired model, which is not always the case. Our method simplifies the

input mesh directly and leads to a better result (first).

Fig. 6. Running mesh repairing [Hu et al. 2020] (second column) and then

simplifying the mesh with [Garland and Heckbert 1997] (third column)

leads to losses on surface attributes, such as textures, and may suffer from

suboptimal results due to inperfect repairing. In contrast, our method di-

rectly simplifies the input, leading to better results (fourth column).

Fig. 7. Comparing to methods that construct a manifold mesh wrapper and

simplify it [Chen et al. 2023b] (middle), our method directly simplifies the

input and preserves interior structures (right).

1998; Garland and Zhou 2005] or by linear approximation of the at-
tribute [Hoppe 1999]. The optimal choice of metric varies depending
on the input geometry and applications. The suite of quadric error
metrics provides us with several options to mix-and-match them for
different tasks, including the ones beyond mesh simplification such
as quadric-inspired surface reconstruction [Ju et al. 2002; Kobbelt

et al. 2001; Schaefer and Warren 2005] and filtering [Legrand et al.
2019; Vieira et al. 2010].

Topology Varying Mesh Simplification. Many of the methods men-
tioned above are designed for simplifying a single manifold triangle
mesh. Another class of mesh simplification generalizes the local
decimation method to triangle meshes in the wild, which may con-
tain multiple components or non-manifolds. Garland and Heckbert
[1997] reformulate the edge collapse operation as an operation to
collapse any vertex pair, meaning one can merge two vertices even if
they are not connected by an actual edge. These vertex pairs are com-
puted based on vertex-to-vertex distance (see Fig. 15) and optimized
with the quadric error metric. Schroeder [1997] identifies different
cases for manifold/non-manifold vertices and removes each vertex
based on a distance-to-plane metric. Popovic and Hoppe [1997]
strive for maximizing the compression rate and suggest not opti-
mizing the vertex location. In order to handle any triangle meshes,
Popovic and Hoppe [1997] reformulate it as a problem of simplify-
ing simplicial complex. Our method is another instance of topology
varying simplification for simplicial complex with high-quality geo-
metric approximation and is capable of transferring textures.
Another possible direction is to repair the mesh, i.e. convert it

into a single manifold, and then simplify it. However, this depends
on a repairing method to produce high-quality outputs, which is not
always the case (see Fig. 5) and can lose important surface attributes
(see Fig. 6). Alternatively, one can robustly create a manifold “cage”
to wrap the triangle mesh and then simplify the manifold wrapper
[Chen et al. 2023b; Nooruddin and Turk 2003; Portaneri et al. 2022].
However, these methods, e.g. Chen et al. [2023b], often suffer from
deleting interior components which may be important for interact-
ing with the 3D object (see Fig. 7). We thus follow the spirit of early
attempts to simplify triangle meshes with vertex pair collapses.

Beyond Appearance Preservation. Mesh simplification has also
been studied in the context of preserving properties related to com-
putation and simulation, such as preserving acoustic transfer [Li et al.
2015], spectral properties [Chen et al. 2020; Keros and Subr 2023;
Lescoat et al. 2020; Liu et al. 2019], intrinsic geometric quantities
[Liu et al. 2023; Shoemaker et al. 2023], and the dynamic behavior of
physics-based simulations [Chen et al. 2017, 2015, 2018; Kharevych
et al. 2009]. When trained jointly with a machine learning model,
one could even tailor-made a simplification for the underlying task,
such as mesh classification [Hanocka et al. 2019; Ludwig et al. 2023].
These methods serve as fundamental building blocks to obtain a
coarse approximation for a simulation. But if one aims to build a
multilevel solver that requires to transfer signals across resolutions
[Guskov et al. 1999], an important ingredient is to compute cor-
respondences across the decimation hierarchy. Such a motivation
has stimulated several works on computing correspondences across
hierarchy by computing an intrinsic mapping for each local decima-
tion [Khodakovsky et al. 2003; Lee et al. 1998; Liu et al. 2023, 2020,
2021] or by maintaining a bijective map with extrinsic projection
[Jiang et al. 2020, 2021]. With such correspondences, one can then
build hierarchical solvers for scalable computation [Liu et al. 2021;
Wiersma et al. 2023; Zhang et al. 2022, 2023].

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

4 • Hsueh-Ti Derek Liu, Xiaoting Zhang, and Cem Yuksel

Fig. 8. Given a tree mesh with non-manifold elements and multi-connected

components, we demonstrate that several off-the-shelf simplification meth-

ods and a combination of them suffer from different issues, such as failing

at achieving target face counts or deleting planar components. In contrast,

our method leads to perceptually better results when decimating the mesh

down to 1% of the original resolution.

Fig. 9. Simplifying the input mesh with the edge quadric error may lead

to deleting geometrically significant parts because they lead to nearly zero

quadric error (green). Our method overcomes such issues by penalizing

collapses that will introduce significant area change (blue).

3 PITFALLS OF QUADRIC ERROR SIMPLIFICATION

Many existing simplification methods are designed for manifold
meshes. Despite being a realistic assumption for meshes extracted
from marching cubes, it becomes obsolete when considering artist-
created assets in today’s online repositories. The discrepancy often
leads to geometric and texture issues.

3.1 Geometric Issues

Many simplification methods, such as [Dey et al. 1999], assume
the input is a manifold mesh and aim at maintaining the topol-
ogy throughout the simplification. However, this implicitly sets a
lower bound on the coarsest mesh resolution because representing
a component requires at least a single triangle (see Fig. 8 A). Not to
mention that many input meshes in practice already possess topo-
logical artifacts, which immediately break implementations that
assume manifold inputs.

The edge quadric error metric [Garland and Heckbert 1997; Tret-
tner and Kobbelt 2020] suffers from area losses. As described in

Fig. 10. Existing textured mesh simplification techniques work well when

the input mesh has one or few connected components in the UV-space, a.k.a.

UV islands (bottom middle). However, when deploying to meshes that have

multiple UV islands, previous methods often lead to the “texture bleeding”

artifact: seeing the background color of the texture image on the surface

mesh (top middle). As most real-world meshes (e.g., [Maggiordomo et al.

2020]) contain multiple UV islands, this motivates our method to handle

both cases more robustly (right column).

Appendix A, quadric error measures the squared distance to trian-
gle planes. When a component is nearly developable, can be flattened
to a plane without distortion, quadric error will report zero error
when collapsing edges in the developable region, resulting in the
risk of removing large components and causing significant visual
difference (see Fig. 9).

A potential remedy is to incorporate the area quadric [Lindstrom
and Turk 1998], in addition to the edge quadric error. Although it
helps to preserve some large-area components, this combination
(we use [L98+T20] to abbreviate the combination of area quadric
[Lindstrom and Turk 1998] and the probabilistic quadric [Trettner
and Kobbelt 2020]) is still prone to deleting components due to no
edges to collapse between disconnected parts.
In lieu of this, Garland and Heckbert

[1997] suggest constructing virtual edges for
vertex pairs such that their vertex-to-vertex
distance is below a small threshold. How-
ever, in Fig. 8 D, we show that this strat-
egy, a combination of [Garland and Heck-
bert 1997; Lindstrom and Turk 1998; Trettner and Kobbelt 2020]
(called [G97+L98+T20] for short), still does not introduce significant
improvements. This is because computing distances between ver-
tices is merely a sparse and inaccurate measure of distance between
mesh components, leading to failures in constructing virtual edges
between geometrically connected, but topologically disconnected
components (see the inset).

3.2 Texture Issues

UV coordinates are a popular way to store the mapping to a texture
space that stores surface attributes. A traditional approach to pre-
serve mesh attributes during simplification is to minimize geometric
distortion of their UVs [Garland and Heckbert 1998; Hoppe 1999].

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

Simplifying Textured Triangle Meshes in the Wild • 5

Fig. 11. An alternative method to avoid texture bleeding is to preserve the

UV boundaries exactly, such as [Liu et al. 2017]. But they often lead to

larger geometric distortion and have a lower bound on the resolution of

the simplified mesh (top rows). Our method, in contrast, can decimate the

mesh aggressively while still being able to transfer texture colors.

Fig. 12. Previous methods simplify a mesh while preserving its UV-

coordinates for transferring texture to the simplified mesh. In addition

to texture bleeding artifacts, these approaches can lead to distorted tex-

tures. Our method reduces such distortion by computing correspondences

between the input and its simplified counterpart (right).

However, this strategy of approximately preserving UV coordinates
does not perform well when the input mesh has many connected
UV components, a.k.a. UV islands (see Fig. 21). This is because if the
boundary of each UV island is not exactly preserved, and when the
renderer interpolates texture colors near UV boundaries, distortion
in the boundary curves could lead to interpolating the background
color of the UV image onto the surface mesh. This behavior of ren-
dering the background color on the mesh surface is also known as
the “texture bleeding” artifact (see Fig. 10). In practice, a majority of
the meshes have more than one UV islands, leading to significant
texture bleeding (see Fig. 10) or texture distortions (see Fig. 12) when
applying this strategy to meshes in the wild. An alternative is to
maintain the boundary shape of each UV island exactly [Liu et al.
2017]. However, this can lead to significant geometric distortion
and possibly result in the early termination of the simplification

Fig. 13. Compared to an expensive mesh optimization method with differ-

entiable rendering that usually takes a few hours [Hasselgren et al. 2021],

our method is orders of magnitude faster and achieves comparable quality.

process (see Fig. 11). On the other hand, although methods like dif-
ferentiable rendering [Hasselgren et al. 2021] can potentially repair
texture bleeding, such a texture optimization often leads to minutes
to hours of additional computation time (see Fig. 13), making them
unsuitable for real-time applications.

4 METHOD

In Sec. 3, we highlight the pitfalls of the off-the-shelf methods
(e.g., [Liu et al. 2017; Trettner and Kobbelt 2020]) failing at achiev-
ing satisfying results on wild meshes. We further show that di-
rect combinations of existing techniques, including [L98+T20] and
[G97+L98+T20] suffer from various issues. In this section, we present
our method to address these issues in order to achieve high quality
simplification on textured meshes in the wild.

4.1 Vertex Pair Collapses

Given a triangle mesh with vertices 𝑉
and faces 𝐹 , we first construct a set of
physical and virtual edges 𝐸 to connect
vertex pairs. We use physical edges to
denote the edges that are connected to
at least one of the faces in 𝐹 , and virtual
edges to denote the edges without neighboring faces (see inset). The
combination M = (𝑉 , 𝐸, 𝐹), a.k.a. simplicial 2-complex, is the input
to our system. We decimate the model by iteratively collapsing
edges (1-simplices) in 𝐸 prioritized by our error metric in Sec. 4.2.

4.1.1 Virtual Edges. Defining virtual
edges is critical for decimating a wild
mesh with multiple disconnected mesh
components (see Fig. 14). A common
heuristic is to connect vertices with
small vertex-to-vertex distance. How-
ever, it often leads to suboptimal results
because topologically disconnected components that are geomet-
rically close may still have large vertex-to-vertex distance due to
discretization, such as Fig. 15.

We thus take inspiration from the construction of the Čech com-
plex to form virtual edges. In a nutshell, Čech complex forms the
connectivity between points if their 𝑟 -radius balls have non-empty

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

6 • Hsueh-Ti Derek Liu, Xiaoting Zhang, and Cem Yuksel

Fig. 14. We simplify an input mesh (gray) with our method that computes

virtual edges based on the triangle distances (blue). Our method can merge

initially disconnected parts and lead to a more compact simplified mesh

compared to the method by Garland and Heckbert [1997] which constructs

virtual edges with vertex distances (green) and the method that is solely

based on physical edges (red).

Fig. 15. Given a lamp mesh representing a single connected rigid object

(first), the raw data, though, may contain several disconnected pieces from

the modeling process (second). Using vertex distance (third) to infer the

connectivity still leads to 4 disconnected components indicated by different

colors [Garland and Heckbert 1997]. In contrast, using our triangle distance

(fourth) leads to a single component. We visualize both physical and virtual

edges with thick black lines in the third and fourth images.

intersection. In our case of triangle meshes, the natural generaliza-
tion of the 𝑟 -radius ball around a point becomes the 𝑟 -offset surface
around a triangle (see inset). We thus check connectivity between
them by checking whether two offset surfaces have intersection.
Intuitively, the construction suggests a straightforward implemen-
tation by computing triangle-to-triangle distances. If the distance
between two triangles is smaller than 2𝑟 and the two triangles are
not from the same connected component, we form a virtual edge
between the two triangles by connecting their closest vertex pairs
(see the inset). Because our method additionally checks connected
components, our result is not a Čech complex, but it shares a similar
spirit in the construction.
Once we have established an edge set 𝐸 with virtual edges and

physical edges derived from 𝐹 , we use a simplicial complex data
structure to represent our input (𝑉 , 𝐸, 𝐹) (detailed in Appendix C),
then iteratively collapse edges (1-simplices) to decimate the mesh.
In Fig. 14, we demonstrate that our triangle distance measure is
more effective than the naive vertex distance for simplifying meshes
with multiple components.

Fig. 16. Our novel quadric accumulation, the memory edge quadric with

the memoryless area quadric, leads to a significantly better result in pre-

serving sharp features compared to the straightforward combination of

quadric [Garland and Heckbert 1997] and area quadric [Lindstrom and Turk

1998]. To illustrate the difference, we compare our method against such a

combination, augmented with a tiny bit of probabilistic quadric [Trettner

and Kobbelt 2020]) for numerical robustness and extended it with the data

structure of [Popovic and Hoppe 1997] to handle non-manifolds. Given a

soup of triangles (left), our method (right) leads to a better simplification

result than the baseline (middle).

4.2 Error Metric

A key element in edge collapse algorithms is to define an error
metric to prioritize the sequence of edge collapses. As pointed out
in Sec. 3, using the popular edge quadric error [Garland and Heck-
bert 1997] or its probabilistic version [Trettner and Kobbelt 2020]
suffers from deleting large planar components. Naively adding the
boundary quadric [Garland and Heckbert 1998] or the area quadric
[Lindstrom and Turk 1998] may lead to oversmoothing (see Fig. 16).
This motivates our modified metric to handle non-manifold meshes
with multiple components.

Our key observation comes
from studying the oversmooth-
ing behavior of the area quadric.
When contracting a virtual edge,
it can glue boundary edges (red
edges in the inset) into interior edges (green edges in the inset).
In such cases, the usual implementation of summing up quadrics
(suggested in [Garland and Heckbert 1997]) leads to area quadrics
being applied to interior edges later in the decimation. This behav-
ior results in incorrectly high costs for removing interior edges.
Collapsing an interior edge often leads to some area gain on one
side of the edge and loss on the other. Although they should cancel
each other and result in a small area change, area quadrics do not
differentiate between the two (see Sec. A.3) and would simply square
the area changes on both sides and sum up the results. This results
in a high cost when decimating long interior edges and leads to
overly uniform decimation.

To overcome the issue of oversmoothing, we propose a small, yet
effective change in the quadric error metric accumulation. Specifi-
cally, we accumulate the edge quadric with the usual summation
as proposed in [Garland and Heckbert 1997], a.k.a. the memory
implementation, but we do not accumulate the area quadric term,
a.k.a. the memoryless implementation. This targeted adjustment sig-
nificantly improves sharp feature preservation when decimating a
soup of triangles (see Fig. 16). Crucially, our method “converges” to
the standard quadric error metric [Garland and Heckbert 1997] for
closed manifold meshes. This ensures that our method maintains the
excellent performance of [Garland and Heckbert 1997] on manifold
inputs, while improving the results for meshes in the wild.

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

Simplifying Textured Triangle Meshes in the Wild • 7

Fig. 17. On a thin shell cloth mesh with different colors (blue, yellow) on

different sides, naive closest point projection between the simplified and the

input meshes may lead to projecting points onto the wrong side (middle). In

contrast, our successive closest point projection encourages the projection

to lie on the corresponding side, leading to less projection error.

Fig. 18. Given an input mesh (A), we simplify it (B) while computing a

successive map from the simplified mesh to the input. With this map, we

can sample points on the simplified mesh (C), obtain correspondences to

the texel locations, and transfer those points to the input with the corre-

spondence map (D). Then we can simply look up the color information on

the input (E) and generate a new texture image after simplification (F).

4.3 Texture Transfer With Successive Mapping

Previous textured mesh simplification methods preserve textures by
preserving UV coordinates of the input mesh. This class of approach
however suffers from issues detailed in Sec. 3.2. We take inspira-
tion from the idea of imposters [Christiansen 2005] which bake a
new texture to a simplified geometry via mapping. Our approach
simplifies a mesh while keeping track of correspondences between
the input mesh and its simplified counterpart with a successive map-
ping, and then bake a new UV map after simplification. Our method
avoids texture bleeding (see Fig. 10) and supports more aggressive
simplifications (see Fig. 11).

4.3.1 Successive Projection. Given
an input mesh M0 = (𝑉 , 𝐸, 𝐹) and
its coarsened counterpart M𝑐 =

(𝑉𝑐 , 𝐸𝑐 , 𝐹𝑐), our goal is to compute
a function 𝑇 : M𝑐 → M0 that
maps a point 𝑝 ∈ M𝑐 on the sim-
plified mesh to its corresponding point 𝑇 (𝑝) ∈ M0 on the input.
Then, for any point 𝑝 on M𝑐 , we can retrieve attribute values from
𝑇 (𝑝) and bake new texture maps for𝑀𝑐 .

Inspired by [Liu et al. 2020], we compute the mapping 𝑇 succes-
sively. Starting with an identity map from M0 to itself, we succes-
sively update the map during each edge collapse. However, previous

Fig. 19. Our method is applicable to any injective texture mapping method,

such as mesh color textures [Yuksel 2017] and Blender’s smart UV.

methods [Liu et al. 2020] require the input to be a manifold mesh
and without topological changes during simplification. This violates
the scenario we considered, preventing us from using them.
We thus compute the mapping 𝑇 by successive closest point

projection within the edge one-ring neighborhoods. Specifically,
we store the decimation history {M0,M1, · · · ,M𝑐 } where two
consecutive levels only differ by an edge collapse/vertex split. If
a given point 𝑝 ∈ M𝑐 lies within the vertex one-ring of M𝑐 , we
perform a vertex split to obtain M𝑐−1, and project to the edge one-
ring ofM𝑐−1 (see inset). We continue the local projection within
the vertex one-ring until we reach M0. This localized projection
encourages (but does not guarantee) projecting each point to the
part of the surface it comes from, making it more robust to thin
shell structures (see Fig. 17). One important implementation detail
is that we reuse point locations on M𝑐 for closest point queries,
but using successive mapsM𝑐 → M𝑐−1 → · · · → M0 to identify
relevant edge one-rings is crucial to our results. This ensures that the
sampled surface attributes are geometrically closer to the simplified
mesh M𝑐 and avoids accumulating distortions from compositing
multiple successive projections.

With the computed mapping 𝑇 , we can bake any attributes from
the inputM0 to the simplified meshM𝑐 as textures via the process
described in Fig. 18. Our mapping approach is compatible with any
injective texture mapping technique (see Fig. 19). In our paper, we
use the mesh color texture [Yuksel 2017] due to its simplicity.

5 RESULTS

Our method embrace the flexibil-
ity of existing QEM variants to
control the decimation process,
such as weighted simplification
driven by visibility [Hoppe 1997]
(see Fig. 20). We further enjoy the
efficiency of being an edge col-
lapse method that we can deci-
mate hundreds of thousands of edges in a few seconds. In the inset,
we report the total runtime of decimating the meshes from the Poly-
haven dataset down to 100 faces with around 56,000 texture sample
points, evaluated on a MacBook with the M1 processor.

Ourmethod shares the same asymptotic complexity,𝑂 (𝑛 log𝑛), as
previous edge collapse methods implemented with priority queues.
However, our method has an extra precomputation of triangle-to-
triangle distances for virtual edges, unlike previous methods which

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

8 • Hsueh-Ti Derek Liu, Xiaoting Zhang, and Cem Yuksel

Table 1. We decimate the meshes of the Thingi10K dataset [Zhou and Ja-

cobson 2016] down to 0.1%/1%/10% of their original resolution and report

the geometric errors (Hausdorff distance, mean squared Chamfer distance)

averaged across the dataset. The meshes are normalized to have unit diago-

nal bounding boxes to avoid bias towards large meshes.

Methods Hausdorff ×10−1 Chamfer×10−1

[Garland and Heckbert 1998] 1.05/0.57/0.13 2.36/1.37/0.46

[Trettner and Kobbelt 2020] 1.05/0.58/0.14 2.36/1.36/0.39

Ours 0.84/0.44/0.10 2.06/1.11/0.29

Table 2. We compute the symmetric Chamfer distance on the textures [Yuan

et al. 2018] for our method and the method by Garland and Heckbert [1998].

We decimate the mesh down to 1% of the original resolution, and then report

the average error from the Real-World Textured Things [Maggiordomo et al.

2020] and the Polyhaven datasets, respectively separated by “/”, showing

that our method quantitatively achieves lower texture errors.

Methods Textured Chamfer×10−1

[Garland and Heckbert 1998] 0.18 / 0.11

Ours 0.10 / 0.09

simply decimates existing physical edges. Compared to previous UV-
preserving mesh simplification (e.g., [Garland and Heckbert 1998]),
our method is cheaper during simplification because we avoid the
computation of high-dimensional quadrics for the UV coordinates.
But we instead require an extra post-process to transfer textures.
Specifically, our method requires to map each texel, represented as a
barycentric point on the simplified mesh, to the input mesh by going
through the decimation history. Luckily, this process is efficient
because the barycentric coordinate for each texture sample will only
be changed by a few edge collapses where the sample lies within
the edge one-ring. This property allows us to skip computations
for a majority of edge collapses when mapping texel points. From
our implementation, computing correspondences for each point
only involves less than 5 microseconds. When querying a large
number of texels, this process can be trivially parallelized because
the computation for each texel is independent.

Qualitative Evaluations. Our method offers several key advan-
tages demonstrated throughout this paper. (1) Its virtual edge con-
struction yields better results compared to previous method by
Garland and Heckbert [1997] in Fig. 14 and Fig. 8. (2) Our enhanced
error metric effectively prioritizes merging disconnected compo-
nents while preventing the deletion of components with large sur-
face areas (Fig. 2, 9). (3) The robust texture handling avoids texture
bleeding, outperforming UV-preserving techniques (see Fig. 12), es-
pecially on non-manifold inputs with multiple components (Fig. 1).
Integrating these components, our system demonstrates quality
improvements across numerous textured models in Fig. 24, 21.

Fig. 20. Our method is built on top of edge collapse algorithms, and thus can

be seamlessly integrated with existing QEM extensions, such as simplifying

a mesh driven by visibility [Hoppe 1997]. In this example, we simplify the

rubber duck statue based on the visible region (bottom left) from the observer

on the island.

Fig. 21. We present a subset of textured mesh simplification results from

[Garland and Heckbert 1998] and ours on the Real-World Textured Things
dataset [Maggiordomo et al. 2020]. A majority of them (the first column)

have multiple texture islands (second column). Using the existing method

(third column) suffers from texture bleeding and large distortion. In contrast,

we obtain better results (fourth column) and avoid texture bleeding.

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

Simplifying Textured Triangle Meshes in the Wild • 9

Quantitative Geometric Evaluations. In Tab. 1, we quantitatively
evaluate the geometric quality (excluding textures) of our simpli-
fication results against [Garland and Heckbert 1998; Trettner and
Kobbelt 2020], demonstrating that our method leads to smallerHaus-
dorff andmean squared Chamfer distances on the Thingi10K dataset
[Zhou and Jacobson 2016]. In Fig. 23 we show that our method can
reliably decimate every mesh in the dataset down to 0.1% of the
original resolution for the entire dataset.

Quantitative Texture Evaluations. We quantitatively evaluate tex-
tured mesh simplification on the Real-World Textured Things [Mag-
giordomo et al. 2020] and the Polyhaven datasets. Specifically, we
decimate the meshes in the datasets that contain a single texture
image (though potentially with multiple texture islands) down to
1% of the input resolution. To avoid bias towards any specific render
view, we measure the error using the average symmetric Chamfer
distance on textures [Yuan et al. 2018], which measures the L2 norm
of the color difference (color is normalized to [0,1]) between the clos-
est spatial point pairs sampled on the surface (using ten thousands
samples per mesh). In Tab. 2, our method consistently achieves lower
errors than the method by Garland and Heckbert [1998]. We exclude
the method by [Liu et al. 2017] because it struggled to achieve target
resolutions as shown in Fig. 24.

User Studies. In addition
to the qualitative and quan-
titative evaluations, we per-
formed user studies to get
perceptual opinions on our
mesh simplification results.
On the geometry side (see
inset, top), we evaluated
meshes presented in the
Fig. 25, showing that our
outputs were preferred, in
comparison to [Trettner
and Kobbelt 2020] and the
combination of baselines
discussed in Sec. 3. On the texture side, we conducted user study
on randomly sampled meshes from the PolyHaven dataset, which
contains a mixture of non-manifold textured meshes and manifold
meshes extracted from isosurfacing. In the inset (bottom), we show
that more than 80% of the participants agree that our method is
either comparable or outperforming [Garland and Heckbert 1998].
Note that in this experiment, we further included an option to select
Similar quality in the study to verify the claim that our performance
is comparable to [Garland and Heckbert 1998] for manifold meshes.
We provide more details about the studies in Appendix D.

6 DISCUSSION & CONCLUSION

We have presented a practical mesh simplification method that can
achieve better results on human-created meshes that commonly
found online. We have also described an effective attribute transfer
technique to preserve texture quality without impacting the quality
of the mesh simplification process. Our method extends the reach

Fig. 22. Our texture is based on a localized closest point projection. When

the decimation introduces topological changes (e.g. deleting components),

our projection may pick up colors from different components, leading to

noticeable texture distortion.

of mesh simplification to gracefully handle triangle meshes with in-
convenient properties, including non-manifold meshes and meshes
with multiple connected components. This enhances performance
by reducing the complexity of 3D models without compromising
visual quality, enabling fast rendering and interactive simulation for
real-time applications like online gaming, especially on low-power
devices such as mobile phones and VR headsets, where computa-
tional resources are limited.

However, our current attribute transfer mechanism does not guar-
antee sampling from the outermost parts of the surface, potentially
resulting in textures incorporating data from interior layers, which
may be undesirable in certain cases (see Fig. 22). Future work could
address this problem by considering external visibility information
while computing the mapping from the final mesh to the input sur-
face. Employing adaptive texturing techniques based on the color
content could mitigate potential blurry textures due to insufficient
texel density in high-frequency areas. Exploring different stopping
criteria, instead of simply setting target triangle counts, could further
enhance the practical utility when deciding which geometric resolu-
tion to use for a given application. Adding area quadrics reduces the
risk of removing large area components, but future exploration to
avoid deleting many small-area components (e.g., coniferous trees)
could further enhance the visual perception on a wider variety of
meshes. Our research contributes to the field of robust geometry
processing and underscores the need to further enhance the robust-
ness of downstream geometric algorithms, particularly because the
output of our method, like the input, may contain defects such as
non-manifold structures.

REFERENCES

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. Technical
Report arXiv:1512.03012 [cs.GR]. Stanford University — Princeton University —
Toyota Technological Institute at Chicago.

Desai Chen, David I. W. Levin, Wojciech Matusik, and Danny M. Kaufman. 2017.
Dynamics-aware numerical coarsening for fabrication design. ACM Trans. Graph.
36, 4 (2017), 84:1–84:15.

Desai Chen, David I. W. Levin, Shinjiro Sueda, andWojciech Matusik. 2015. Data-driven
finite elements for geometry and material design. ACM Trans. Graph. 34, 4 (2015),
74:1–74:10.

Honglin Chen, Hsueh-Ti Derek Liu, Alec Jacobson, and David I. W. Levin. 2020. Chordal
decomposition for spectral coarsening. ACMTrans. Graph. 39, 6 (2020), 265:1–265:16.

Jiong Chen, Hujun Bao, Tianyu Wang, Mathieu Desbrun, and Jin Huang. 2018. Nu-
merical coarsening using discontinuous shape functions. ACM Trans. Graph. 37, 4

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

10 • Hsueh-Ti Derek Liu, Xiaoting Zhang, and Cem Yuksel

Fig. 23. Our method can robustly decimation all 10 thousand meshes from [Zhou and Jacobson 2016] down to 1% of their original resolution. Here we display

a randomly selected subset of the simplified meshes.

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

Simplifying Textured Triangle Meshes in the Wild • 11

Fig. 24. We show a subset of the textured mesh simplification results from the PolyHaven dataset. We can observe several benefits of our method, such as

preserving large planar regions, avoiding texture bleeding, and converging to comparable quality as previous methods when the input is a clean manifold

mesh. We use faded colors to denote the failure in achieving target resolutions.

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

12 • Hsueh-Ti Derek Liu, Xiaoting Zhang, and Cem Yuksel

(2018), 120.
Yun-Chun Chen, Vladimir G. Kim, Noam Aigerman, and Alec Jacobson. 2023a. Neural

Progressive Meshes. In ACM SIGGRAPH 2023 Conference Proceedings, SIGGRAPH
2023, Los Angeles, CA, USA, August 6-10, 2023, Erik Brunvand, Alla Sheffer, and
Michael Wimmer (Eds.). ACM, 84:1–84:9.

Zhen Chen, Zherong Pan, Kui Wu, Etienne Vouga, and Xifeng Gao. 2023b. Robust Low-
Poly Meshing for General 3D Models. ACM Trans. Graph. 42, 4 (2023), 119:1–119:20.

Kenneth Rohde Christiansen. 2005. The use of imposters in interactive 3D graphics
systems. Department of Mathematics and Computing Science 3 (2005), 1–8.

Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganov-
elli, and Guido Ranzuglia. 2008. MeshLab: an Open-Source Mesh Processing Tool.
In Eurographics Italian Chapter Conference, Vittorio Scarano, Rosario De Chiara, and
Ugo Erra (Eds.). The Eurographics Association.

David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. 2004. Variational shape
approximation. ACM Trans. Graph. 23, 3 (2004), 905–914.

Thomas Deliot, Eric Heitz, and Laurent Belcour. 2024. Transforming a Non-
Differentiable Rasterizer into a Differentiable One with Stochastic Gradient Es-
timation. arXiv preprint arXiv:2404.09758 (2024).

Tamal Dey, Herbert Edelsbrunner, Sumanta Guha, and Dmitry Nekhayev. 1999. Topol-
ogy preserving edge contraction. Publications de l’Institut Mathématique 66 (1999).

Leila De Floriani and Annie Hui. 2005. Data Structures for Simplicial Complexes: An
Analysis And A Comparison. In Third Eurographics Symposium on Geometry Process-
ing, Vienna, Austria, July 4-6, 2005 (ACM International Conference Proceeding Series,
Vol. 255), Mathieu Desbrun and Helmut Pottmann (Eds.). Eurographics Association,
119–128.

Xifeng Gao, Kui Wu, and Zherong Pan. 2022. Low-poly Mesh Generation for Building
Models. In SIGGRAPH ’22: Special Interest Group on Computer Graphics and Interactive
Techniques Conference, Vancouver, BC, Canada, August 7 - 11, 2022, Munkhtsetseg
Nandigjav, Niloy J. Mitra, and Aaron Hertzmann (Eds.). ACM, 3:1–3:9.

Michael Garland and Paul S. Heckbert. 1997. Surface simplification using quadric
error metrics. In Proceedings of the 24th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH 1997, Los Angeles, CA, USA, August 3-8, 1997,
G. Scott Owen, Turner Whitted, and Barbara Mones-Hattal (Eds.). ACM, 209–216.

Michael Garland and Paul S. Heckbert. 1998. Simplifying surfaces with color and
texture using quadric error metrics. In 9th IEEE Visualization Conference, IEEE Vis
1998, Research Triangle Park, North Carolina, USA, October 18-23, 1998, Proceedings,
David S. Ebert, Holly E. Rushmeier, and Hans Hagen (Eds.). IEEE Computer Society
and ACM, 263–269.

Michael Garland and Yuan Zhou. 2005. Quadric-based simplification in any dimension.
ACM Trans. Graph. 24, 2 (2005), 209–239.

Tran S. Gieng, Bernd Hamann, Kenneth I. Joy, Gregory L. Schussman, and Issac J. Trotts.
1998. Constructing Hierarchies for Triangle Meshes. IEEE Trans. Vis. Comput. Graph.
4, 2 (1998), 145–161.

Igor Guskov, Wim Sweldens, and Peter Schröder. 1999. Multiresolution Signal Process-
ing for Meshes. In Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH 1999, Los Angeles, CA, USA, August 8-13, 1999,
Warren N. Waggenspack (Ed.). ACM, 325–334.

Bernd Hamann. 1994. A data reduction scheme for triangulated surfaces. Comput.
Aided Geom. Des. 11, 2 (1994), 197–214.

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel
Cohen-Or. 2019. MeshCNN: a network with an edge. ACM Trans. Graph. 38, 4 (2019),
90:1–90:12.

Jon Hasselgren, Jacob Munkberg, Jaakko Lehtinen, Miika Aittala, and Samuli Laine.
2021. Appearance-Driven Automatic 3D Model Simplification. In 32nd Eurographics
Symposium on Rendering, EGSR 2021 - Digital Library Only Track, Saarbrücken,
Germany, June 29 - July 2, 2021, Adrien Bousseau and Morgan McGuire (Eds.).
Eurographics Association, 85–97.

Hugues Hoppe. 1996. Progressive Meshes. In Proceedings of the 23rd Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, New Orleans, LA,
USA, August 4-9, 1996, John Fujii (Ed.). ACM, 99–108.

Hugues Hoppe. 1997. View-dependent refinement of progressive meshes. In Proceedings
of the 24th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 1997, Los Angeles, CA, USA, August 3-8, 1997, G. Scott Owen, Turner
Whitted, and Barbara Mones-Hattal (Eds.). ACM, 189–198.

Hugues Hoppe. 1999. New Quadric Metric for Simplifying Meshes with Appearance
Attributes. In 10th IEEE Visualization Conference, IEEE Vis 1999, San Francisco, CA,
USA, October 24-29, 1999, Proceedings, David S. Ebert, Markus H. Gross, and Bernd
Hamann (Eds.). IEEE Computer Society and ACM, 59–66.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle.
1992. Surface reconstruction from unorganized points. In Proceedings of the 19th
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
1992, Chicago, IL, USA, July 27-31, 1992, James J. Thomas (Ed.). ACM, 71–78.

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020. Fast
tetrahedral meshing in the wild. ACM Trans. Graph. 39, 4 (2020), 117.

Zhongshi Jiang, Teseo Schneider, Denis Zorin, and Daniele Panozzo. 2020. Bijective
projection in a shell. ACM Trans. Graph. 39, 6 (2020), 247:1–247:18.

Zhongshi Jiang, Ziyi Zhang, Yixin Hu, Teseo Schneider, Denis Zorin, and Daniele
Panozzo. 2021. Bijective and coarse high-order tetrahedral meshes. ACM Trans.
Graph. 40, 4 (2021), 157:1–157:16.

Michael J. DeHaemer Jr. and Michael Zyda. 1991. Simplification of objects rendered by
polygonal approximations. Comput. Graph. 15, 2 (1991), 175–184.

Tao Ju, Frank Losasso, Scott Schaefer, and Joe D. Warren. 2002. Dual contouring of
hermite data. ACM Trans. Graph. 21, 3 (2002), 339–346.

Alexandros Dimitrios Keros and Kartic Subr. 2023. Spectral Coarsening with Hodge
Laplacians. In ACM SIGGRAPH 2023 Conference Proceedings, SIGGRAPH 2023, Los
Angeles, CA, USA, August 6-10, 2023, Erik Brunvand, Alla Sheffer, and Michael
Wimmer (Eds.). ACM, 22:1–22:11.

Liliya Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun. 2009. Nu-
merical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. 28, 3
(2009), 51.

Andrei Khodakovsky, Nathan Litke, and Peter Schröder. 2003. Globally smooth param-
eterizations with low distortion. ACM Trans. Graph. 22, 3 (2003), 350–357.

Reinhard Klein. 1998. Multiresolution representations for surfaces meshes based on
the vertex decimation method. Comput. Graph. 22, 1 (1998), 13–26.

Julian Knodt, Zherong Pan, Kui Wu, and Xifeng Gao. 2024. Joint UV Optimization and
Texture Baking. ACM Trans. Graph. 43, 1 (2024), 2:1–2:20.

Leif Kobbelt, Mario Botsch, Ulrich Schwanecke, and Hans-Peter Seidel. 2001. Feature
sensitive surface extraction from volume data. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001, Los
Angeles, California, USA, August 12-17, 2001, Lynn Pocock (Ed.). ACM, 57–66.

Aaron W. F. Lee, Wim Sweldens, Peter Schröder, Lawrence C. Cowsar, and David P.
Dobkin. 1998. MAPS: Multiresolution Adaptive Parameterization of Surfaces. In
Proceedings of the 25th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 1998, Orlando, FL, USA, July 19-24, 1998, Steve Cunningham,
Walt Bransford, and Michael F. Cohen (Eds.). ACM, 95–104.

Hélène Legrand, Jean-Marc Thiery, and Tamy Boubekeur. 2019. Filtered Quadrics for
High-Speed Geometry Smoothing and Clustering. Comput. Graph. Forum 38, 1
(2019), 663–677.

Thibault Lescoat, Hsueh-Ti Derek Liu, Jean-Marc Thiery, Alec Jacobson, Tamy
Boubekeur, and Maks Ovsjanikov. 2020. Spectral Mesh Simplification. Comput.
Graph. Forum 39, 2 (2020), 315–324.

Dingzeyu Li, Yun (Raymond) Fei, and Changxi Zheng. 2015. Interactive Acoustic
Transfer Approximation for Modal Sound. ACM Trans. Graph. 35, 1 (2015), 2:1–2:16.

Peter Lindstrom. 2000. Out-of-core simplification of large polygonal models. In Proceed-
ings of the 27th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 2000, New Orleans, LA, USA, July 23-28, 2000, Judith R. Brown and Kurt
Akeley (Eds.). ACM, 259–262.

Peter Lindstrom and Greg Turk. 1998. Fast and memory efficient polygonal simplifica-
tion. In 9th IEEE Visualization Conference, IEEE Vis 1998, Research Triangle Park, North
Carolina, USA, October 18-23, 1998, Proceedings, David S. Ebert, Holly E. Rushmeier,
and Hans Hagen (Eds.). IEEE Computer Society and ACM, 279–286.

Hsueh-Ti Derek Liu, Mark Gillespie, Benjamin Chislett, Nicholas Sharp, Alec Jacobson,
and Keenan Crane. 2023. Surface Simplification using Intrinsic Error Metrics. ACM
Trans. Graph. 42, 4 (2023), 118:1–118:17.

Hsueh-Ti Derek Liu, Alec Jacobson, and Maks Ovsjanikov. 2019. Spectral coarsening
of geometric operators. ACM Trans. Graph. 38, 4 (2019), 105:1–105:13.

Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aigerman, and
Alec Jacobson. 2020. Neural subdivision. ACM Trans. Graph. 39, 4 (2020), 124.

Hsueh-Ti Derek Liu, Jiayi Eris Zhang, Mirela Ben-Chen, and Alec Jacobson. 2021.
Surface multigrid via intrinsic prolongation. ACM Trans. Graph. 40, 4 (2021), 80:1–
80:13.

Songrun Liu, Zachary Ferguson, Alec Jacobson, and Yotam I. Gingold. 2017. Seamless:
seam erasure and seam-aware decoupling of shape from mesh resolution. ACM
Trans. Graph. 36, 6 (2017), 216:1–216:15.

William E. Lorensen and Harvey E. Cline. 1987. Marching cubes: A high resolution
3D surface construction algorithm. In Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH 1987, Anaheim, California,
USA, July 27-31, 1987, Maureen C. Stone (Ed.). ACM, 163–169.

Kok-Lim Low and Tiow Seng Tan. 1997. Model Simplification Using Vertex-Clustering.
In Proceedings of the 1997 Symposium on Interactive 3D Graphics, SI3D ’97, Providence,
RI, USA, April 27-30, 1997, Andy van Dam (Ed.). ACM, 75–82, 188.

Ingmar Ludwig, Daniel Tyson, and Marcel Campen. 2023. HalfedgeCNN for Native
and Flexible Deep Learning on Triangle Meshes. Comput. Graph. Forum 42, 5 (2023),
i–viii.

David Luebke. 2003. Level of detail for 3D graphics. Morgan Kaufmann.
Andrea Maggiordomo, Federico Ponchio, Paolo Cignoni, and Marco Tarini. 2020. Real-

World Textured Things: A repository of textured models generated with modern
photo-reconstruction tools. Comput. Aided Geom. Des. 83 (2020), 101943.

Ravish Mehra, Qingnan Zhou, Jeremy Long, Alla Sheffer, Amy Ashurst Gooch, and
Niloy J. Mitra. 2009. Abstraction of man-made shapes. ACM Trans. Graph. 28, 5
(2009), 137.

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

Simplifying Textured Triangle Meshes in the Wild • 13

Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr. 2002. Discrete
Differential-Geometry Operators for Triangulated 2-Manifolds. In Third Interna-
tional Workshop "Visualization and Mathematics", VisMath 2002, Berlin, Germany,
May 22-25, 2002 (Mathematics and Visualization), Hans-Christian Hege and Konrad
Polthier (Eds.). Springer, 35–57.

David E. Muller and Franco P. Preparata. 1978. Finding the Intersection of two Convex
Polyhedra. Theor. Comput. Sci. 7 (1978), 217–236.

Fakir S. Nooruddin and Greg Turk. 2003. Simplification and Repair of Polygonal Models
Using Volumetric Techniques. IEEE Trans. Vis. Comput. Graph. 9, 2 (2003), 191–205.

Jovan Popovic and Hugues Hoppe. 1997. Progressive simplicial complexes. In Proceed-
ings of the 24th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 1997, Los Angeles, CA, USA, August 3-8, 1997, G. Scott Owen, Turner
Whitted, and Barbara Mones-Hattal (Eds.). ACM, 217–224.

Cédric Portaneri, Mael Rouxel-Labbé, Michael Hemmer, David Cohen-Steiner, and
Pierre Alliez. 2022. Alpha wrapping with an offset. ACM Trans. Graph. 41, 4 (2022),
127:1–127:22.

Rolandos Alexandros Potamias, Stylianos Ploumpis, and Stefanos Zafeiriou. 2022. Neu-
ral Mesh Simplification. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022. IEEE, 18562–18571.

Jarek Rossignac and Paul Borrel. 1993. Multi-resolution 3D approximations for render-
ing complex scenes. In Modeling in Computer Graphics, Methods and Applications
[selection of papers from the conference held at Genoa, Italy, on June 28-July 1, 1993]
(IFIP Series on Computer Graphics), Bianca Falcidieno and Tosiyasu L. Kunii (Eds.).
Springer, 455–465.

Scott Schaefer and Joe D. Warren. 2005. Dual Marching Cubes: Primal Contouring of
Dual Grids. Comput. Graph. Forum 24, 2 (2005), 195–201.

William J. Schroeder. 1997. A topology modifying progressive decimation algorithm.
In 8th IEEE Visualization Conference, IEEE Vis 1997, Phoenix, AZ, USA, October 19-24,
1997, Proceedings. IEEE Computer Society and ACM, 205–212.

William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. 1992. Decimation of
triangle meshes. In Proceedings of the 19th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH 1992, Chicago, IL, USA, July 27-31, 1992, James J.
Thomas (Ed.). ACM, 65–70.

Randy Shoemaker, Sam Sartor, and Pieter Peers. 2023. Intrinsic Mesh Simplifica-
tion. CoRR abs/2307.07115 (2023). https://doi.org/10.48550/ARXIV.2307.07115
arXiv:2307.07115

Philip Trettner and Leif Kobbelt. 2020. Fast and Robust QEF Minimization using
Probabilistic Quadrics. Comput. Graph. Forum 39, 2 (2020), 325–334.

Greg Turk. 1992. Re-tiling polygonal surfaces. In Proceedings of the 19th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH 1992, Chicago, IL,
USA, July 27-31, 1992, James J. Thomas (Ed.). ACM, 55–64.

Antônio Wilson Vieira, Armando Alves Neto, Douglas G. Macharet, and Mario Fer-
nando Montenegro Campos. 2010. Mesh Denoising Using Quadric Error Metric. In
SIBGRAPI 2010, Proceedings of the 23rd SIBGRAPI Conference on Graphics, Patterns
and Images, Gramado, Brazil, August 30 2010-September 3, 2010. IEEE Computer
Society, 247–254.

Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, and Klaus Hildebrandt. 2023. A
Fast Geometric Multigrid Method for Curved Surfaces. In ACM SIGGRAPH 2023
Conference Proceedings, SIGGRAPH 2023, Los Angeles, CA, USA, August 6-10, 2023,
Erik Brunvand, Alla Sheffer, and Michael Wimmer (Eds.). ACM, 1:1–1:11.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 2015. 3D ShapeNets: A deep representation for volumetric
shapes. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015,
Boston, MA, USA, June 7-12, 2015. IEEE Computer Society, 1912–1920.

Rui Xu, Longdu Liu, Ningna Wang, Shuangmin Chen, Shiqing Xin, Xiaohu Guo, Zichun
Zhong, Taku Komura, Wenping Wang, and Changhe Tu. 2024. CWF: Consolidating
Weak Features in High-quality Mesh Simplification. arXiv:2404.15661 [cs.GR]

Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and Martial Hebert. 2018. PCN:
Point Completion Network. In 2018 International Conference on 3D Vision, 3DV 2018,
Verona, Italy, September 5-8, 2018. IEEE Computer Society, 728–737.

Cem Yuksel. 2017. Mesh color textures. In Proceedings of High Performance Graphics,
HPG 2017, Los Angeles, CA, USA, July 28 - 30, 2017. ACM, 17:1–17:11.

Jiayi Eris Zhang, Jérémie Dumas, Yun (Raymond) Fei, Alec Jacobson, Doug L. James,
and Danny M. Kaufman. 2022. Progressive Simulation for Cloth Quasistatics. ACM
Trans. Graph. 41, 6 (2022), 218:1–218:16.

Jiayi Eris Zhang, Jèrèmie Dumas, Yun (Raymond) Fei, Alec Jacobson, Doug L. James, and
Danny M. Kaufman. 2023. Progressive Shell Quasistatics for Unstructured Meshes.
ACM Trans. Graph. 42, 6, Article 184 (2023).

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing
Models. arXiv preprint arXiv:1605.04797 (2016).

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

https://doi.org/10.48550/ARXIV.2307.07115
https://arxiv.org/abs/2307.07115
https://arxiv.org/abs/2404.15661

14 • Hsueh-Ti Derek Liu, Xiaoting Zhang, and Cem Yuksel

A BACKGROUND

Our method simplifies a triangle mesh by iterative edge collapses.
We prioritize the sequence of edge collapses by our modified quadric
error metric. Here, we briefly introduce the quadric error metric
[Garland and Heckbert 1997] and some variants that are relevant to
our method.

A.1 Quadric Error Metric

Let p ∈ M be a point on a surface M embedded in R3 and n̂ be
the (unit) normal vector at p. The tangent plane at p is given by all
points x ∈ R3 that satisfy

n̂⊤ (x − p) = 0. (1)

The quadric error 𝐸 (x) measures the squared distance from any
point x to the tangent plane at p, which can be computed as

𝐸 (x) =
(
n̂⊤ (x − p)

)2 (2)

= (x − p)⊤n̂n̂⊤ (x − p) (3)

= x⊤Ax + 2b⊤x + 𝑐, (4)

with

A = n̂n̂⊤, b = −Ap, 𝑐 = p⊤Ap (5)

A quadric𝑄 refers to the triplet (A, b, 𝑐), which are quantities derived
by the plane equation P with a unit normal n̂ and a point p on the
tangent plane:

𝑄 ≔ (A, b, 𝑐) = P(n̂, p), (6)

This quadric 𝑄 gives us the complete information to compute the
quadric error 𝐸 (x).

Triangle Quadrics. The quadric error can be generalized to trian-
gulated 2-manifolds by defining the quadric error 𝐸𝑖 𝑗𝑘 on the plane
of each triangle 𝑖 𝑗𝑘

𝐸𝑖 𝑗𝑘 (x) = x⊤A𝑖 𝑗𝑘x + 2b⊤
𝑖 𝑗𝑘

x + 𝑐𝑖 𝑗𝑘 . (7)

This defines the triangle quadric 𝑄𝑖 𝑗𝑘 as

𝑄𝑖 𝑗𝑘 = (A𝑖 𝑗𝑘 , b𝑖 𝑗𝑘 , 𝑐𝑖 𝑗𝑘) = P(n𝑖 𝑗𝑘 , v𝑖) (8)

derived from the face normal n̂𝑖 𝑗𝑘 and the location of a point on the
plane, such as one of the triangle corner vertices v𝑖 .

Vertex Quadrics. For each vertex 𝑖 , the vertex quadric error 𝐸𝑖 is
defined as the weighted summation of the triangle quadric errors
𝐸𝑖 𝑗𝑘 from its one-ring triangles 𝑖 𝑗𝑘

𝐸𝑖 (x) =
∑︁

𝑖 𝑗𝑘∈N𝑖

𝑎𝑖
𝑖 𝑗𝑘

𝐸𝑖 𝑗𝑘 (x) (9)

=
∑︁

𝑖 𝑗𝑘∈N𝑖

𝑎𝑖
𝑖 𝑗𝑘

(x⊤A𝑖 𝑗𝑘x + 2b⊤
𝑖 𝑗𝑘

x + 𝑐𝑖 𝑗𝑘) (10)

= x⊤
(∑︁
𝑖 𝑗𝑘∈N𝑖

𝑎𝑖
𝑖 𝑗𝑘

A𝑖 𝑗𝑘

)
x + 2

(∑︁
𝑖 𝑗𝑘∈N𝑖

𝑎𝑖
𝑖 𝑗𝑘

b⊤
𝑖 𝑗𝑘

)
x +

(∑︁
𝑖 𝑗𝑘∈N𝑖

𝑎𝑖
𝑖 𝑗𝑘

𝑐𝑖 𝑗𝑘

)

We use N𝑖 to denote the one-ring triangles of
the vertex 𝑖 and 𝑎𝑖

𝑖 𝑗𝑘
is a portion of the vertex

area at 𝑖 coming from face 𝑖 𝑗𝑘 . A common choice
of area is the barycentric area (see inset) which
simply sets 𝑎𝑖

𝑖 𝑗𝑘
= 𝑎𝑖 𝑗𝑘/3 to be one-third of the

face area 𝑎𝑖 𝑗𝑘 [Meyer et al. 2002]. This derivation gives rise to the
definition of vertex quadric 𝑄𝑖 as a weighted summation of its one-
ring triangle quadrics 𝑄𝑖 𝑗𝑘

𝑄𝑖 =
∑︁

𝑖 𝑗𝑘∈N𝑖

𝑎𝑖
𝑖 𝑗𝑘

𝑄𝑖 𝑗𝑘 (11)

where the summation between quadrics is the component-wise
summation for all elements in the triplets.

Edge Quadrics. The quadric error metric 𝐸𝑖 𝑗 for each edge 𝑖 𝑗 is
defined as the summation of vertex quadric errors of its endpoints

𝐸𝑖 𝑗 (x) = 𝐸𝑖 (x) + 𝐸 𝑗 (x) (12)

As we can see in Eq. 9 that summing up quadric errors leads to a
summation of quadrics, this leads to the definition of an edge quadric
𝑄𝑖 𝑗 as

𝑄𝑖 𝑗 = 𝑄𝑖 +𝑄 𝑗 . (13)

A.2 Quadric Error Edge Collapses

Garland and Heckbert [1997] suggest simplifying a triangle mesh
by iteratively collapsing the edge with the smallest edge quadric
error 𝐸𝑖 𝑗 (x★) which is the value of 𝐸𝑖 𝑗 evaluated at the optimal
location x★ that minimizes 𝐸𝑖 𝑗 . Specifically, given an edge 𝑖 𝑗 , edge
collapse is performed by replacing this edge with a new vertex 𝑖′
that is located at x★. Let 𝑄𝑖 𝑗 = (A𝑖 𝑗 , b𝑖 𝑗 , 𝑐𝑖 𝑗), the optimal location
x★ can be computed solving a linear system obtained from setting
∇𝐸𝑖 𝑗 = 0

A𝑖 𝑗x★ = −b𝑖 𝑗 (14)

If the matrix A𝑖 𝑗 is invertible and well-conditioned, one can solve
for x★ with standard linear solvers, such as Cholesky decomposition.
If not, one can use the singular value decomposition to solve for x★
more robustly [Lindstrom 2000] or use the probabilistic quadric as
a regularization [Trettner and Kobbelt 2020].

In subsequent iterations, instead of recomputing the edge quadric
with Eq. 13, Garland and Heckbert [1997] recommend using the
𝑄𝑖 𝑗 as the vertex quadric for the newly inserted vertex. Suppose
we collapse an edge 𝑖 𝑗 to a vertex 𝑖′, the quadric of the new ver-
tex 𝑄𝑖′ = 𝑄𝑖 𝑗 is simply the edge quadric before the collapse, and
𝑄𝑖′ will then be used to update the quadrics for its one-ring edges.
This definition allows the quadric error to “memorize” all the plane
information on the input mesh, instead of from the current mesh.
In practice, compared to recomputing the edge quadric 𝑄𝑖 𝑗 from
scratch, such an accumulation often leads to a more efficient and
desirable decimation. But some applications may favor not accumu-
lating quadrics [Hoppe 1999].
We use the term “memory” to denote the implementation that

accumulates the quadric error metric throughout the decimation
and “memoryless” to denote the implementation that recomputes
the quadric at every iteration.

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

Simplifying Textured Triangle Meshes in the Wild • 15

A.3 AreaQuadrics

The quadric error metric has stimulated several variants to serve
different purposes (see Sec. 2). Among them, the area quadric is
related to our decimation metric. The area quadric measures the
squared area change for each edge collapse. Lindstrom and Turk
[1998] show that the squared area change for each edge 𝑖 𝑗 can
be written as a quadratic expression, thus giving birth to the area
quadric 𝑄𝐴

𝑖 𝑗

𝑄𝐴
𝑖 𝑗 =

∑︁
𝑎𝑏∈N𝑖 𝑗∩𝜕M

(
[s𝑎𝑏]⊤× [s𝑎𝑏]×, −[s𝑎𝑏]×t𝑎𝑏 , t⊤𝑎𝑏 t𝑎𝑏

)
/2 (15)

with

s𝑎𝑏 = v𝑏 − v𝑎 t𝑎𝑏 = v𝑎 × v𝑏 (16)

where 𝑎𝑏 are 𝑖 𝑗 ’s one-ring edges that are also on the mesh boundary
𝜕M and [·]× is the cross product matrix defined as

[x]× ≔


0 −𝑥2 𝑥1

𝑥2 0 −𝑥0
−𝑥1 𝑥0 0


(17)

This area quadric 𝑄𝐴
𝑖 𝑗
is derived

from summing up the squared
area (computed with cross prod-
ucts) from each boundary edge
𝑎𝑏 to the newly inserted vertex
𝑖′ (see inset). This implies that this area quadric is merely an ap-
proximation to the actual area change because this measure ignores
the cancelation between the area gain and the loss. But this proxy
maintains the favorable quadratic expression and can be seamlessly
incorporated into the quadric-based mesh simplification.

B THEORETICAL GUARANTEES

No Texture Bleeding. Our method guarantees no texture bleeding.
This is because each texel (represented as a barycentric point) on
the simplified mesh is guaranteed to be projected onto a face of the
input mesh. This ensures that no texel will pick up the background
color of the input texture, thus avoiding texture bleeding.

Manifold In, Manifold Out. Our simplification framework offers
flexibility regarding topological changes. The vanilla configuration
allows topological changes, such as merging components, to strive
for high quality simplification (see Fig. 24). Alternatively, for appli-
cations requiring strict topology preservation on known manifold
inputs, our method can be augmented with validity checks (e.g.,
those detailed in Appendix C of [Liu et al. 2020]), to reject edges
that violate them. Including these checks ensures that our decima-
tion maintains the manifold structure.

Convergence to QEM on Closed Manifolds. Our error metric con-
verges to the edge quadric error metric [Garland and Heckbert 1997]
when the input mesh is a closed manifold mesh. This property is
guaranteed because we only augment the area quadric if the local
edge one-ring contains boundary edges (as discussed in Sec. 4.2).
Thus, for a closed manifold mesh without boundary edges, no area

quadric will be included in the decimation, and our method con-
verges to QEM up to some minor implementation differences, such
as how to handle tied quadric error. This design decision ensures
that our method improves LOD on meshes in the wild, without
sacrificing the already amazing performance of QEM on manifolds.

C IMPLEMENTATION

In addition to the proposed improvements over the edge topology,
the error metric, and the texture-preserving simplification part,
reproducing our method requires changes in the implementation
(e.g., data structures) to properly handle non-manifold meshes. Here,
we focus on discussing the differences in implementation compared
to the standard approach, such as in [Garland and Heckbert 1997],
and omit the aspects that remain the same (e.g. using a priority
queue to prioritize edge costs, employing a linear solve to determine
the optimal vertex positions, etc.).

C.1 Simplicial Complex Data Structure

Many off-the-shelf mesh simplifi-
cation methods are implemented
using the half-edge data struc-
ture [Muller and Preparata 1978].
However, such a data structure
is primarily designed to handle
manifoldmeshes with implicit as-
sumptions e.g. each edge is shared by one or two faces, making it
inapplicable to defective meshes.
Several data structures for manipulating simplicial complexes

have been proposed to handle general simplices (e.g., high dimen-
sional simplices) and reduce the memory footprint [Floriani and
Hui 2005]. However, in our case, these more generic data structures
are unnecessary. We only perform edge collapses on simplicial 2-
complexes. Thus, instead of using general-purpose data structures,
we use a list of lists (similar to [Popovic and Hoppe 1997]) to repre-
sent the simplicial complex. Specifically, we construct three lists to
store the star information for each (1) vertex to its one-ring edges,
(2) vertex to its one-ring faces, and (3) edge to its one-ring faces. For
each edge collapse, we use these lists to gather neighboring sim-
plices and update their connectivity correspondingly. If a collapse
leads to duplicated or degenerated simplices (see inset), we simply
remove them from the corresponding lists.

C.2 Successive Texture Transfer

To support the texture transfer described in Sec. 4.3, for each edge
collapse, we additionally store the local edge one-ring mesh before
the collapse and the local vertex one-ring mesh after the collapse for
closest point successive projection. This is because successive pro-
jections only requires updating texture samples within the one-ring
neighborhoods, we can avoid redundant computations by skipping
samples outside the one-ring (by checking the corresponding face
of each barycentric point) and only perform the closest point projec-
tion within the one-ring meshes. In practice, the number of triangles
within the one-ring is small, we did not observe significant efficiency
improvement if one build spatial hierarchies for the local one-ring
meshes.

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

16 • Hsueh-Ti Derek Liu, Xiaoting Zhang, and Cem Yuksel

D USER STUDY DETAILS

We performed two user studies to gather perceptual opinions on
our mesh simplification results. Specifically, the participants were
instructed to perform the user study within the context of a common
online game scenario where the players are using low-end devices
(e.g., mobile phones) to play online video games with other players.
Due to the high performance requirements (e.g., frame rates, band-
width), the 3D assets in the game have to satisfy a fixed budget (e.g.,
the total number of vertices in the scene). Under this situation, we
asked participants to fill out online surveys about their preferences
among a variety of simplified 3D assets obtained from our method
and baselines.

One of the studies evaluated the quality of textured mesh simpli-
fication. For each response, we randomly selected a mesh from the
PolyHaven dataset, simplified with our method and the textured
QEM by Garland and Heckbert [1998], and asked the participant
to select their preferences among (1) our method, (2) [Garland and
Heckbert 1998], and (3) comparable (see Fig. 24 for some examples in
the dataset). We included comparable as one of the options because
our method “converges” to QEMwhen the input is a closed manifold
mesh and this can avoid users randomly picking one out of compa-
rable outputs. The results from the two methods are presented in an
arbitrary order in the survey to avoid the order bias. From the 591
responses we collected, 81.9 % of them indicated that our method is
either comparable or outperforming the baseline, suggesting that
our method leads to better simplification results (see Sec. 5 for more
details).
The second study solely focused on the quality of geometry (ex-

cluding textures) after simplification. We presented results from the
method by [Trettner and Kobbelt 2020] and our invented baseline
[G97+L98+T20] mentioned in Sec. 3. Participants were asked to
select their favorite mesh simplification results out of the 10 user-
created non-manifold meshes presented in the paper (see Fig. 25
for the collection) representing a wide range of meshes from or-
ganic shapes, 3D scenes, and man-made objects. From the total
690 responses (69×10), 82.5% of them favored our results, 10.4% fa-
vored the results from [Trettner and Kobbelt 2020], and 7.1% favored
[G97+L98+T20] (see Sec. 5).
For these two studies, we invited 73 participants (51 male, 21 fe-

male, 1 non-binary individual, age ranging from 11-50, 75% graduate
students and 25% working professionals including engineers and
artists) to conduct the user study.

Fig. 25. We conducted a user study to evaluate the perceptual preference

across different mesh simplification techniques, including (1) ours, (2) [Tret-

tner and Kobbelt 2020], and (3) [G97+L98+T20] a combination of [Garland

and Heckbert 1997; Lindstrom and Turk 1998; Trettner and Kobbelt 2020].

The figure contains all the meshes used in the user studies. Note that in the

user study, the order of different methods is randomly permuted to avoid

order bias, but in this figure we display them in a consistent order for clarify.

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

	Abstract
	1 Introduction
	2 Related Work
	3 Pitfalls of Quadric Error Simplification
	3.1 Geometric Issues
	3.2 Texture Issues

	4 Method
	4.1 Vertex Pair Collapses
	4.2 Error Metric
	4.3 Texture Transfer With Successive Mapping

	5 Results
	6 Discussion & Conclusion
	References
	A Background
	A.1 Quadric Error Metric
	A.2 Quadric Error Edge Collapses
	A.3 Area Quadrics

	B Theoretical Guarantees
	C Implementation
	C.1 Simplicial Complex Data Structure
	C.2 Successive Texture Transfer

	D User Study Details

