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Fig. 1. We can generate locomotions for a wide variety of complex, high resolution, deformable character geometries by combining a spatio-temporal
actuation subspace with a reduced order simulation.

Traditional character animation specializes in characters with a rigidly ar-
ticulated skeleton and a bipedal/quadripedal morphology. This assumption
simplifies the design of physically based animations, like locomotion, but
comes with the price of excluding characters of arbitrary deformable geome-
tries.
To remedy this, we propose a spatio-temporal actuation subspace built off
the natural vibrations of the character geometry. We show this actuation
subspace is well suited for designing natural locomotion, without requiring
user-provided guidance keyframes as is common in prior work. The resulting
actuation is coupled to a reduced fast soft body simulation, allowing us to
optimize for locomotions for a wide variety of high resolution deformable
characters.

1 INTRODUCTION
The world is comprised of a rich diversity of deformable organisms.
These organisms leverage their unique geometry and deformable
nature for complex interactions with their environment in order
to locomote, manipulate objects, or take flight. They also serve as
inspiration for the many fantastical creatures and virtual characters
that populate video games, films, and virtual environments. Having
simulation and control methods that are able to faithfully capture
the essence of these organisms and their behaviors is key to filling
virtual worlds with these creative characters. However, most work
on developing controllers for virtual characters is predicated on an
extremely narrow set of morphologies that assumes an underlying
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rigid skeletal structure, and further imposes that they be bipedal or
quadrupedal.

These assumptions preclude a wide range of characters, which are
neither bipedal or quadrupedal, from being animated. For instance,
the motion of an octopus with tentacles as shown in Fig. 2 could not
be accurately modeled using rigid segments, an issue that applies to
a wide variety of deformable organisms. These limitations motivate
the need to develop locomotion controllers for soft-body characters
with a wide range of highly detailed deformable mesh geometry,
yet without the requirement of a piecewise rigid skeleton.

Unfortunately, such controllers are difficult to generate for three
reasons. First, there exists significantly less motion data for arbitrary
geometries than there is for bipedal or quadripedal characters. This
data is key for creating natural-looking motions and its absence
results in behaviors that exhibit unrealistic jittery motion [Heess
et al. 2017].
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Fig. 2. Traditional animation techniques an underlying skeleton structure,
which is actuated via joint torques. The resulting actuation exhibits kinky,
piecewise rigid deformation. Our actuation properly models the octopus
tentacle as a deformable body, allowing for a naturally smooth deformation.
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Second, deformable characters make use of a complex organiza-
tion of various organic tissues, all interacting in harmony to carry
out even the simplest of tasks [Keller et al. 2023]. Designing this
musculo-skelature for many characters becomes a tedious, unintu-
itive ordeal.

Finally, high resolution deformable characters usually come with
the price of an expensive simulation, which scales in complexity
with the resolution of the character geometry.

We propose a very simple, scalable pipeline for generating locomo-
tion controllers for deformable characters of arbitrary user-defined
geometry. Our method defines a small data-free spatio-temporal
actuation subspace based off the geometry of the character alone.
An actuation signal in this subspace corresponds to a shape that
the deformable character naturally wants to take on. We then de-
fine a plasticity-based actuation energy, that guides our simulated
character towards this actuated target shape.
Unlike the linear actuation used in prior work, our actuation is

always rotation and translation invariant, ensuring our character is
not allowed non-physical control over its own net torque and force.

We then show how to couple this plastic actuation to a reduced
deformable simulation, allowing us to perform the entire soft-body
controller optimization within the reduced spaces of actuation and
simulation, decoupled from the mesh resolution. This allows us to
achieve a variety of crawling, running and hopping-like locomotion
behaviors with an off the shelf CMAES optimizer, without requiring
user-assisted guiding motions or keyframes.
We evaluate the effectiveness of our actuation subspace on a

wide variety of character geometries, obtaining varied locomotions
for highly detailed characters within minutes, while also providing
avenues for intuitive motion control and design.

2 RELATED WORK

2.1 Soft Body Controllers
Soft body characters bring with them many technical challenges
in the design of locomotion controllers. In particular, the physical
model used for simulation of soft bodies is often characterized by a
large number of degrees of freedom, bottle-necking the controller
optimization.
A limited amount of previous work addresses constructing soft

body controllers, with the significant majority modeling the full
space of the character geometry. Due to the increased complexity
from using high resolution models, most only animate simple 2D or
coarse 3D characters [Coros et al. 2012; Jain and Liu 2011; Tan et al.
2012]. Even with simpler physical models and character geometries,
Bhatia et al. [2021]; Hu et al. [2019]; Huang et al. [2024]; Lin et al.
[2020]; Min et al. [2019]; Rojas et al. [2021] all report that training
controllers for soft-body creatures with fewer than several thousand
degrees of freedom can require hours, or even days, of training time,
with simulations running much slower than real-time.

The large number of degrees of freedom (DOFs) required of soft-
body simulations has motivated the development of reduced or-
der models(ROMs) in order to improve simulation performance
[Benchekroun et al. 2023; Brandt et al. 2018; Trusty et al. 2023], with
most of the prior work focusing on accelerating passive simulation.

Modal Actuation 
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Liang et al. [2023]
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Fig. 3. Our plasticity based actuation energy conserves angular momentum,
while taking on the expected target shape. The force-based actuation from
Liang et al. [2023] does not conserve angular momentum, creating super-
natural rotational motion upon actuation .

ROMs have been leveraged to accelerate high resolution trajectory
optimization tasks [Pan and Manocha 2018], but their use remains
limited for more general controllers. While Liang et al. [2023] ac-
celerate a closed loop Model Predictive Control (MPC) controller,
their approach still remains limited to simple and coarse character
geometries, while exhibiting artifacts upon actuation Fig. 3.

Modal spaces for actuation have been leveraged for control prob-
lems guided by user-specified keyframes and objectives [Barbič
et al. 2009; Li et al. 2013], pushing the optimization towards a user-
designed solution. Our insight shows these modal spaces, when
sinusoidally activated and coupled to a plasticity-based actuator,
provide a basis expressive enough to discover natural locomotion
in a physical environment, even without the need for user provided
data.

2.2 Designing Character Musculature
Beyond fast simulation, an important step in designing controllers
for a character lies in defining a viable musculoskelature for activat-
ing the physical system, and for arbitrary soft body characters, this
is far from trivial. By far the most common method of constructing
this structure for rigid articulated characters is through the use of
joint torques applied at the intersection of adjacent bones [Xu et al.
2023; Yin et al. 2007]. These joint torques are either actuated directly,
or indirectly through desired joint angles via PD controllers [Reda
et al. 2020; Tan et al. 2011b]. Similar joint torques have been used to
model soft-body characters whose motion is skeleton driven [Kim
and Pollard 2011a,b; Liu et al. 2013], but this does not generalize to
arbitrary soft body characters where a skeleton is either not obvious
or non-existent.

Instead of joint torques, Geijtenbeek et al. [2013] use biomechan-
ically inspired muscles, resembling springs with adjustable rest
lengths, which ease the creation of contractible spring-like struc-
tures in deformable bodies [Rojas et al. 2021].
Of course, the configuration and placement of muscles play an

important contribution to the type of control that can be achieved.
Keller et al. [2023]; Lee et al. [2019, 2009, 2014]; Saito et al. [2015] all
propose highly detailed musculoskeletal models based on the real-
world human anatomy. However, as we explore different character
morphologies, realistic anatomical models become ill-defined, and
many methods rely on a user to manually design the placement of
muscle fibers. In the absence of an anatomical model, designers are
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left to their own devices, often opting to draw muscles directly onto
the character [Min et al. 2019; Tan et al. 2012].
Alternatively, others shift the burden to an optimization proce-

dure to design the control actuation structure [Bhatia et al. 2021;
Liang et al. 2023; Lin et al. 2020; Ma et al. 2021]. The resulting op-
timization has a large search space, and has again been limited to
coarse character geometries.

Yet another set of approaches from Coros et al. [2012]; Ichim et al.
[2017]; Pan and Manocha [2018] propose a musculature defined by
a plasticity-like deformation. The character is encouraged to take
on a changing target shape, as prescribed by a coarse cage, face scan
data, or user-prescribed constraints and objectives. Our approach
similarly encourages the shape towards a new rest shape, but in our
case, this rest shape is described by the natural vibrations of the
character geometry.

2.3 Motion Priors
State-of-the art character controllers often crucially make use of
motion priors in order to guide the character to more natural be-
haviors. This is done by specifying the expected characteristics of
the desired motion.

The copious amounts of motion data available for articulated char-
acters lends itself well to this task, with many modern controllers
making use of this data as reference motion that characters are en-
couraged to imitate [Peng et al. 2018, 2021; Xu andKaramouzas 2021].
Aside from imitation, another effective method of leveraging this
motion data is by constructing a motion subspace (or motion mani-
fold [Starke et al. 2022]), either with PCA [Chai and Hodgins 2005]
or more modern Deep Learning-based autoencoders [Bergamin et al.
2019; Holden et al. 2020, 2015].

Unfortunately, for soft body control of arbitrary geometries, mo-
tion data is not readily available. Thus, we must turn to alternative
principles for guiding controllers, without the use of motion data.

For example, Ranganath et al. [2021] derive an actuation subspace
via a Principal Component Analysis (PCA) applied to their own
synthetically generated data. They show their deep reinforcement
learning framework can animate rigidly articulated character with
widely varying morphologies.

Heess et al. [2017] instead turn to a more rigorous training routine
to fill the hole, observing that training a controller on a diverse set
of environments leads to more robust rigid body controllers that
better satisfy user defined objectives, albeit with some undesired
jittery motion.
Alternatively, periodicity has shown itself to be a particularly

powerful prior for locomotion, with Yu et al. [2018] generating lo-
comotion controllers that reward periodic and symmetric behaviors
for articulated-bodies. This can be taken one step further by imbu-
ing periodicity into our controller actuation space itself; Central
Pattern Generators (CPG) [Guertin 2009] model character motions
with simple periodic control signals that are propagated across the
character according to a low-dimensional set of parameters. These
kinds of temporal motion subspaces have been effective for generat-
ing swimming and crawling motions [Ma et al. 2021; Min et al. 2019;
Tan et al. 2011a; Tu and Terzopoulos 1994] and have been injected
into modern deep reinforcement learning architectures to create

rich encodings of human motions [Holden et al. 2017; Starke et al.
2022]

On top of periodicity, others also turn to energy efficiency to guide
their animations. For example, Kry et al. [2009] and Nunes et al.
[2012] show that the natural vibrations of articulated characters
can be used to generate kinematic locomotion animations for rigid
characters of varying morphology.

Our approach extends these energy efficient, periodic subspaces
demonstrated in prior works, and shows how these same principles
can be used to find natural soft body locomotion, without user
guidance.

3 METHOD OVERVIEW
Our goal is to derive an actuation for deformable characters that
generates motion satisfying certain objectives, while remaining
physically plausible. We cast this as a controller optimization prob-
lem,

min
𝒅 (𝑡 )

𝐽 (𝒙 (𝑡)), (1)

s.t. 𝒙 (𝑡) = argmin
𝒙

𝐸 (𝒙, 𝒅 (𝑡)) ∀𝑡 ∈ [𝑡0, 𝑡1], (2)

where we are solving for a time-varying actuation 𝒅 (𝑡) ∈ R3𝑛 that
corresponds to the target shape our character should take. 𝐽 (𝒙 (𝑡))
is a task-specific objective on the vertex positions 𝒙 (𝑡) ∈ R3𝑛 that
rewards desired motions (e.g for a locomotion task, it can reward
motion of the center of mass along a target direction).
The constraint Eq. (2) ensures the resulting motion obeys the

laws of soft-body physics with contact; The vertex positions at
any point in time 𝒙 (𝑡) ∈ R3𝑛 must be the minimizers of the total
energy 𝐸 (𝒙 (𝑡), 𝒅 (𝑡)) of the physical system. Temporarily dropping
the dependence on time for clarity, this per-timestep physical energy
can be split into two components,

𝐸 (𝒙, 𝒅) = 𝐸𝑝 (𝒙) + 𝐸𝑎 (𝒙, 𝒅), (3)

a passive component 𝐸𝑝 (𝒙) that captures motion according to in-
ertia, external forces, and elastic forces, and an active component
𝐸𝑎 (𝒙, 𝒅) that encourages the elastic body to take on the shape de-
scribed by 𝒅.

On top of being non-linear in both 𝒙 (𝑡) and 𝒅 (𝑡), Eq. (1) becomes
especially difficult to solve for high resolution characters because
the problem scales in complexity with the increased dimensionality
of 𝒙 (𝑡) and 𝒅 (𝑡). The sour combination of high non-linearity and
high dimensionality makes solving this problem an extremely slow
process prone to large null spaces.

Our solution to this problem is to construct an actuation subspace
for 𝒅 (𝑡) based on the natural elastic vibration modes of the character
[Pentland and Williams 1989] and then then define an actuation in
this space via a plasticity-based actuation energy [Ichim et al. 2017]
.

We combine this actuation reduction with a separate simulation
subspace for 𝒙 (𝑡), built off Skinning Eigenmodes [Benchekroun
et al. 2023]. We can then carry out simulation within these reduced
spaces, including within the novel non-linear plastic actuation en-
ergy , while remaining independent from the resolution of the mesh.
This fully reduced-space framework allows us to quickly evaluate
simulations of arbitrarily high resolution characters.
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Fig. 4. The first 5 non-rigid elastic vibration modes of a seal, corresponding
to reasonable low-energy motions one could expect to see from a seal.

This speedup in simulation evaluation lends itself well to the
use of a Covariance Matrix Adaptation Evolution Strategy(CMAES)
[Hansen 2006] optimizer in order to solve our control optimization
Eq. (1). This derivative-free genetic algorithm iteratively samples
populations of 𝒅 (𝑡), which are used to drive multiple simulations.
The resulting objective 𝐽 is measured for each simulation, and is
used by CMAES to inform the collection of a next, more optimal
generation of 𝒅 (𝑡). The process is repeated until convergence, or
until a maximum number of iterations are achieved.

3.1 Modal Actuation Subspace
Without access to motion data for arbitrary meshed characters,
the guiding principles for defining our spatial-temporal actuation
subspace become energy efficiency and periodicity.

We draw inspiration from modal analysis [Pentland and Williams
1989] and build our subspace startingwith the vibrationmodes of the
character. These are deformations of the character that induce the
least elastic energy, describing motions that the character prefers
to take as visualized on a seal in Fig. 4. While these vibration
modes are most commonly used for accelerating passive simulations
[Barbič and James 2005; Trusty et al. 2023], we show that with the
right actuation energy they form an effective subspace for soft body
character actuation.
Vibration modes are the solutions to the generalized eigenvalue

problem of the elastic energy Hessian 𝑯 ∈ R3𝑛×3𝑛 ,

𝑯𝑫 = 𝑴𝑫𝚲 , (4)

where the eigenvectors 𝑫 ∈ R3𝑛×𝑚 form an𝑚-dimensional basis
of spatial actuation modes. Above, 𝑴 ∈ R3𝑛×3𝑛 is the diagonal
vector-mass matrix and 𝚲 is a diagonal matrix of eigenvalues.

Deformed target positions 𝒅 ∈ R3𝑛 in this basis of actuation
modes can be compactly represented by a low dimensional time-
varying actuation vector 𝒂(𝑡) ∈ R𝑚 as well as the rest geometry
𝒙0 ∈ R3𝑛 ,

𝒅 =
[
𝑫 𝒙0

] [𝒂(𝑡)
1

]
= �̄��̄�(𝑡) . (5)

Where the ¯bar denotes a homogeneous expression of this actuation
space �̄� = [𝑫 𝒙0] ∈ R3𝑛×(𝑚+1) and �̄� = [𝒂(𝑡) 1]𝑇 ∈ R𝑚+1, which
we employ to simplify notation on future expressions.

However, interpreting this actuation subspace as a linear space
for forces [Barbič et al. 2009; Li et al. 2013; Liang et al. 2023] allows
the character for non-physical control over its own net force and net
torque Fig. 3. We show in Sec. 3.2.1 how to use the natural vibrations
to construct a plasticity based actuation, which guarantees rotation
and translation invariance.
With the intuition that most organisms make use of periodic

motion patterns for locomotion, we imbue our actuation subspace

with periodicity. Our temporal actuation subspace is defined via a
sum of 𝑘 sinusoids,

𝒂𝑖 (𝑡) =
𝑘∑︁
𝑗

𝑨𝑖 𝑗 sin
(
2𝜋

( 𝑡

𝑻 𝑖 𝑗
+ 𝜽 𝑖 𝑗

))
. (6)

where𝑨𝑖 𝑗 , 𝑻 𝑖 𝑗 , 𝜽 𝑖 𝑗 are the amplitude, period and phase shift for each
actuation mode 𝑖 and sinusoidal function 𝑗 , which are parameters
that are either learned by Eq. (1), or set by a user.

3.2 Reduced Simulation
With a low-dimensional actuation subspace in hand, we can actuate
a soft body independently of its mesh resolution. However, this
resolution independence does not transfer over to the simulation
of the deformable, impeding forward simulation of high resolution
characters. Worse yet, optimizing the parameters of the actuation
subspace by solving Eq. (1) requires many such forward simulations,
becoming intractable as resolution increases.
For this reason, we follow prior work [Barbič et al. 2009; Liang

et al. 2023] and introduce a separate reduction of the soft body .
We use a linear Skinning Eigenmode subspace [Benchekroun et al.
2023] for our vertex positions,

𝒙 = 𝑩𝒛 (7)

where 𝒛 ∈ R𝑟 are the reduced space vertex positions and 𝑩 ∈ R3𝑛×𝑟

being our Skinning Eigenmode subspace matrix. We refer the reader
to App. A for a refresher on the construction of this subspace.

With our two subspaces for simulation and actuation in hand, we
must now rewrite the simulation optimization problem described
in Eq. (2) entirely in our reduced spaces. We restate the full-space
optimization problem in question,

𝒙 = argmin
𝒙

𝐸𝑝 (𝒙) + 𝐸𝑎 (𝒙, 𝒅)

with the goal of finding a method for solving this optimization
problem, without ever touching the full resolution of the mesh.
Prior work [Barbič and James 2005; Benchekroun et al. 2023; Brandt
et al. 2018; Jacobson et al. 2012] discusses extensively how to reduce
passive soft body simulation and we refer the reader to App. D
for details on the passive simulation, summarizing that we largely
follow the method of Benchekroun et al. [2023] and extend it with
a simple projective ground-plane damping contact model App. E to
arrive at a reduced passive approximation,

𝐸𝑝 (𝒙) ≈ 𝐸𝑝 (𝒛) . (8)

which can be evaluated entirely in a reduced space of 𝑟 skinning
eigenmodes and a set of |C𝑝 |. passive rotation clusters.

3.2.1 Reducing the Actuation Energy 𝐸𝑎 (𝒙, 𝒅). We focus the remain-
der of our discussion on the actuation energy 𝐸𝑎 (𝒙, 𝒅). This energy
aims to make our simulated character 𝒙 take on a target shape 𝒅,
and has the following form [Ichim et al. 2017]:

𝐸𝑎 (𝒙, 𝒅) =
| T |∑︁
𝑒

min
𝛀𝑒

𝛾𝑒𝑉𝑒 | |𝑭𝑒 (𝒙) − 𝛀𝑒𝒀𝑒 (𝒅) | |2𝐹

𝑠 .𝑡 . 𝛀𝑒 ∈ SO(3).
(9)
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where 𝑭 (𝒙) corresponds to the deformation Jacobian of the sim-
ulated character 𝒙 , while 𝒀 (𝒅) is the target deformation Jacobian
of the actuation shape 𝒅. 𝛾𝑒 and 𝑉𝑒 are the per-element actuation
stiffness and volume respectively, the former of which can be tuned
to achieve a stronger/weaker character.
The matrix 𝛀𝑒 is a locally defined best fit rotation matrix, es-

sential for filtering out rotations from our actuation; an actuation
signal 𝒅 should lead to the same motion regardless of how the simu-
lated element shape 𝑭𝑒 (𝒙), and the target element shape 𝒀𝑒 (𝒅) are
oriented.

This also imposes that our actuator conserves angular momentum,
ensuring the character cannot supernaturally create an external
torque. This is not the case for a simple force-based actuation [Liang
et al. 2023] which can introduce spurious linear and angular forces
as shown in Fig. 3.

Plugging our subspaces for simulated positions 𝒙 = 𝑩𝒛 and actu-
ation target 𝒅 = 𝑫𝒂 into this energy,

𝐸𝑎 (𝒛, 𝒂) =
1
2

| T |∑︁
𝑒

min
𝛀𝑒

𝛾𝑒𝑉𝑒 | |𝑭𝑒 (𝒛) − 𝛀𝑒𝒀𝑒 (𝒂) | |2𝐹 ,

𝑠 .𝑡 . 𝛀𝑒 ∈ SO(3),
(10)

leads us to a disappointing result; evaluating this energy requires
the computation of the per-element best fit rotation matrix Ω𝑒 ,
requiring computation that scales with the number of tetrahedra in
the character mesh.

3.2.2 Clustering 𝛀𝑒 for Mesh Independence of 𝐸𝑎 (𝒛, 𝒂). To avoid
recomputing Ω𝑒 for each element in the mesh every simulation
step, we derive a clustering scheme for our actuation energy, provid-
ing a reduction from the full number of elements |T |. Specifically,
we allow for multiple elements to share the same rotation matrix
𝛀𝑐 (𝑒 ) , where 𝑐 (𝑒) ∈ |C𝑎 | identifies the actuation cluster 𝑐 , in the
set of actuation clusters |C𝑎 | to which an element 𝑒 belongs. Our
approximation for the actuation energy becomes

𝐸𝑎 (𝒙, 𝒅) ≈ 𝐸𝑎 (𝒙, 𝒂) =
1
2

min
𝛀𝑐

| T |∑︁
𝑒

𝛾𝑒𝑉𝑒 | |𝑭𝑒 − 𝛀𝑐 (𝑒 )𝒀𝑒 | |2𝐹

𝑠 .𝑡 . 𝛀𝑐 (𝑒 ) ∈ SO(3) ∀𝑐 ∈ |C𝑎 |.
(11)

We prove in App. G that the optimal clustered rotation Ω𝑐 mini-
mizing the objective above can be found via a polar decomposition
of the 𝛾𝑉 -weighed sum of the covariance matrix 𝑭𝑒𝒀𝑇𝑒 ,

𝛀𝑐 = polar ©«
| T (𝑐 ) |∑︁

𝑒

𝛾𝑒𝑉𝑒𝑭𝑒𝒀
𝑇
𝑒
ª®¬ = polar (𝑯𝑐 ) , (12)

where polar(𝑯𝑐 ) is a function performing polar decomposition on
𝑯𝑐 in order to achieve its rotational component 𝛀𝑐 (𝑒 ) .
While evaluating this term once again involves a per-element

sum, we notice that this sum is a bilinear form in our two low-
dimensional time-varying quantities, 𝒛 and �̄�. With this intuition,
we show in App. F that by precomputing the appropriate tensor we
can efficiently evaluate this sum at run-time in a manner scaling
only in complexity with our small 𝒛 and �̄�,

Actuation Signal Simulation

1 10 100
#Actuation Clusters

Fig. 5. Decreasing the number of actuation clusters results in amore globally
actuated shape, accelerating the speed at which the simulation matches
the target actuation signal.

𝑯𝑐 =

𝑟∑︁
𝑢

𝑚+1∑︁
𝑣

H𝑐𝑢𝑣𝑧𝑢𝑎𝑣 (13)

Above, we have introduced the tensor H ∈ R | C |×3×3×𝑟×(𝑚+1) ,
which we derive in App. F, that when multiplied against 𝒛 and �̄�,
computes our per-cluster covariance matrix 𝑯 ∈ R | C𝑎 |×3×3. Note
that evaluating 𝑯𝑐 every stimulation step via this tensor product
only requires operations that scale with the number of clusters |C𝑎 |,
the dimension of our reduced positional DOFs 𝒛, and the size of our
actuation �̄�.

As shown in Fig. 5, a low number of actuation clusters allows for
a more globally defined rotation invariance, with every character
tetrahedron sharing the same rest frame. This results in a simulated
character that responds quickly to the actuation signal prescribed.
Increasing the number of clusters actuates each tetrahedron locally,
independently of its neighbors, resulting in a slower response to
actuation.
Finally, with our newfound ability to quickly evaluate our ro-

tations, we arrive at the final form of our reduced and clustered
simulation optimization problem.

𝒛 = argmin
𝒛

𝐸𝑝 (𝒛) + 𝐸𝑎 (𝒛, 𝒂) (14)

Where we have followed prior work in reducing per-element non-
linearities that appear in the passive term [Jacobson et al. 2012].

3.3 Local Global Solver
We make use of a local global solver to solve our reduced simulation
optimization problem. This kind of solver comes with the advantage
of maintaining a constant energy Hessian, allowing us to compute
a factorization for this matrix once, then reuse it throughout the
entire rest of the optimization pipeline. This is comprised of two
main stages, a local step and a global step, that are repeated until a
convergence criterion is met.
The local step first holds 𝒛 fixed and optimizes for 𝛀𝑐 using

Eq. (13) and Eq. (12). Then, the global step holds 𝛀𝑡 fixed, optimizing
for 𝒛. This is resolved using a linear solve we derive in App. D,

𝑸𝒛 = 𝒇 , (15)

with 𝒇 ∈ R𝑟 and 𝑸 ∈ R𝑟×𝑟 given by,

𝑸 = 𝑸𝑝 + 𝑸𝑎 𝒇 = 𝒇𝑝 + 𝒇𝑎 + 𝒇𝑐 . (16)

The constant system matrix 𝑸 is a sum of the passive energy
Hessian 𝑸𝑝 and our actuation energy Hessian 𝑸𝑎 . Details on the
derivation of 𝑸𝑝 and 𝑸𝑎 can be found in App. D.
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 22,892 Vertices 
89,492 Tetrahedra

 2,103 Vertices 
7,887 Tetrahedra 10x

≈

Opt. Time 1093.6s Opt. Time 1130.4s1.03x
Fig. 6. Varying the mesh resolution for the Arc de Triomphe mesh leads to a
very similar locomotion style, with negligible extra optimization time.

The right hand side to the system in Eq. (15) 𝒇 is a sum of the
passive forces 𝑓 𝑝 , actuation forces 𝑓 𝑎 (𝛀), and contact forces 𝒇𝑐 (𝒛).
These contact forces are found in a projective fashion such that
the resulting simulation after the global step Eq. (15) satisfies our
no interpenetration, damping friction contact conditions. Collision
detection and handling is performed on a subset of the mesh vertices
to maintain reduced complexity, as visualized on a tardigrade in the
appendix Fig. 13. More details on the computation of this contact
force can be found in App. E.

4 RESULTS & DISCUSSION
We showcase the rich variety of locomotions our actuation subspace
can generate by specifying the control optimization problem with a
very simple objective Eq. (1)

𝐽 = 𝐽𝑑𝑖𝑠𝑝 · 𝐽𝑎𝑙𝑖𝑔𝑛
𝐽𝑑𝑖𝑠𝑝 = (𝒙𝐶𝑂𝑀 (𝑡0)−𝒙𝐶𝑂𝑀 (𝑡1)) · �̂� 𝐽𝑎𝑙𝑖𝑔𝑛 = min

𝑡
�̂� (𝑡) · �̂�, (17)

where 𝐽𝑑𝑖𝑠𝑝 measures the distance travelled along a target direction
�̂� throughout the episode, and 𝐽𝑎𝑙𝑖𝑔𝑛 encourages the forward direc-
tion of the character, �̂� to point in that same target direction �̂�. We
solve the control optimization problem with open-loop controllers
using an off-the-shelf implementation of the CMAES[Hansen 2006],
using the pycma library [Hansen et al. 2019] and aim to directly
predict the temporal actuation parameters, 𝑨, and 𝑻 , 𝜽 . We can
easily pick a reasonable sampling range for CMAES to explore these
parameters as described in App. H .

Controller Optimization Speed. Our controller optimization is car-
ried out entirely in a reduced space. This allows us to obtain locomo-
tions for characters of arbitrarily high resolutions, with the slowest
mesh we collect statistics on in Table. 1, the octopus, taking just
under an hour to locomote. In contrast, using simulation statistics
from a state of the art full space simulator of Trusty et al. [2022] on
the smaller sized gecko mesh (a mesh smaller than all our examples),
and using the fastest locomotion optimization parameters we’ve
tested (200 simulation steps, 200 CMAES iterations, population size
of 16), would take an expected optimization time of at least 17 hours.
Using this same analysis, all the examples in Table. 1 are generously
at least 17x faster than if we had used a full space simulation to
optimize for their locomotion.

Cage Actuation
Coros et al. [2012]

Modal Actuation
(Ours)

Warping Shuffling Wing Flap!

Fig. 7. Using a cage-based actuation introduces warping effects for low-
resolution cages, or shuffling behaviors at high-resolution cages. Our modal
actuation allows the bat to take more semantically intuitive motions to
locomote, such as flapping its wings.

Independence on Mesh Resolution. Building further on our reduced
space complexity, Fig. 6 shows the optimized locomotions of two
different Arc de Triomphe meshes: a visibly coarse one, and another
that is finer by a factor of 10. Despite large differences in resolutions
the optimization time, as averaged over 5 different trials, is negligible
between the two meshes. In contrast, traditional full space local-
global simulators [Bouaziz et al. 2014] have an 𝑂 (𝑛2) complexity to
the resolution of the mesh, and an increase in resolution by a factor
of 10 would result in a corresponding optimization time hit by a
factor of 100. Moreover, because our actuation subspace is defined
via the elastic energy Hessian, which is convergent to the continuum
of the geometry, we also get qualitatively similar locomotions across
mesh resolutions.

Comparison to Different Actuation Subspaces. Fig. 7 compares our
actuation subspace with one defined by a coarse embedding cage,
as proposed by Coros et al. [2012]. A bat making use of these em-
bedding cages can indeed find locomotions, however with a cage
that is too low-dimensional, the locomotions make use of unnatural
warping actuations, scaling/shearing the bat excessively. Increas-
ing the resolution of the cage to something that better conforms
to the bat’s geometry quickly increase dimension of the actuation
subspace (for 32 cage vertices, the actuation subspace has 96 DOFs).
This increased dimensionality makes the bat prone to finding lo-
comotions with small, shuffling steps, an observation echoed by
[Pan and Manocha 2018]. In contrast, our modal actuations allow
the bat to take more semantically meaningful deformations, such as
flapping its wings, with only 3 actuation degrees of freedom. An-
other factor that sets us apart from Coros et al. [2012] is our use of
a reduced order physics model, which allows us to find locomotions
for 3D examples of much higher resolution than theirs.

Exotic Actuation Modes. Although we define our actuation modes
through modal analysis, we also benefit from decades of work ex-
tending and generalizing modal analysis to obtain vibration modes
with different qualities, such as sparsity [Brandt and Hildebrandt
2017], locality [Melzi et al. 2017], discretization independence [Chang
et al. 2023] and non-linearity [Duenser et al. 2022; Sharp et al. 2023].
Our method can leverage such advancements; We use the method
of Melzi et al. [2017] to design the actuation modes of the octopus
to be locally bound to each individual tentacle. Fig. 2 shows such a
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Table 1. Locomotion optimization statistics for some of the locomotions shown in Fig. 1. All these locomotions are found through 200 iterations of CMAES
with a population size of 16, with a single actuation cluster. Below, m is the number of spatial actuation modes, k is the number of temporal sinusoids used, r
is the number of skinning Eigenmodes, | C𝑝 | the number of passive clusters, and | I | the number of contact samples.

Mesh #Vertices # Tets m k r |C𝑝 | |I | J Sim.
Steps

Opt.
Time(s)

Couch 13, 920 64,154 10 2 5 5 20 -0.63 300 9.84𝑒2

Creepy Tree 42,015 200,487 6 2 5 5 40 -0.39 300 3.3𝑒3

Bat 9,266 34,720 3 2 5 10 20 -1.25 300 9.00𝑒2

Bearded Dragon 45,041 180, 406 6 2 7 10 30 -0.97 200 1.27𝑒3

Octopus 13,893 48,514 16 2 6 20 20 -1.07 300 3.59𝑒3

Treefrog 13,771 54,154 5 3 5 10 30 - 1.22 200 1.28𝑒3

Mode 0 Mode 5 Mode 2 Mode7

Fig. 8. Using an actuation subspace composed of spatial modes moving the
gorilla’s limbs in sync (Left) vs. out of sync (Right). The synchronity of the
limbs in the actuation subspace is reflected in the final optimized gait.

local modal actuation, and Fig. 9 shows the resulting locomotions
these can generate.

1e3

5e3

3e3

Time (s)
0

-1

-2

-3

Objective

5 11 17
  #Actuation Modes m

Varying Actuation Subspace
Dimension. We motivate the im-
portance of making use of a
low dimensional actuation sub-
space in our optimization. We
optimize a gorilla’s locomotion
parameters using an increas-
ing number of spatial actuation
modes, and track the resulting
objective and total computation
time until convergence. The inset shows that an increased dimen-
sionality for our spatial actuation prior is met with a plateauing
of the character locomotion’s objective, while requiring more opti-
mization time until convergence.

Motion Style Control. Aside from allowing a user to select local
bounds to each actuation mode, our actuation subspace provides
other intuitive avenues for control.
By selecting which vibration modes to construct the actuation

subspace, a user can generate different locomotion gaits. For exam-
ple, Fig. 8 shows a user picking different sets of actuation modes,
one set that have the gorilla’s limbs moving asynchronously, and
another with limbs moving in synchrony. The resulting synchronic-
ity of the limbs in the actuation subspace is intuitively reflected in
the locomotion generated.
Yet another way to imbue user guidance into our framework is

by having users constrain different parts of the temporal actuation
parameters. Fig. 9 shows a user specifying target periods our tem-
poral sinusoids take on in order to generate locomotions varying in

T=0.6s

T=0.2s

Fig. 9. A user can design faster-paced gaits by specifying the frequencies
with which to actuate the actuationmodes, and letting the optimizer identify
the sinusoidal amplitudes 𝑨 and phase shifts 𝜽 .

style. Larger periods create more of a sluggish crawl for the octopus,
while the smaller period makes the octopus skitter across the terrain
with smaller steps.

Co-Optimizing for Actuation Modes. While we have found select-
ing the first 10 actuation modes as a default to usually generate
viable locomotions, we can also ask our CMAES optimization to se-
lectwhich subset of the top𝑚 actuationmodes to use. This requires a
simple tweak in our optimization, where we add to our optimization
degrees of freedom an actuation mode participation vector 𝝈 ∈ R𝑚 ,
whose highest valued entries chose the selected actuation modes
used in the optimization. Note that these can rapidly be queried
and updated throughout the optimization without requiring any
full-space matrix recomputations. Fig. 12 shows the resulting loco-
motion for the bat, changing the number of desired queried control
modes from 2 to 3. While both provide locomotion, querying for
three modes unexpectedly converges to a less optimal solution than
querying only for two. This happens due to the non-linear nature of
our optimization problem with respect to the actuation parameters,
making it susceptible to local minima.

Penalizing Work Done. As shown in Fig. 10 We can obtain slower
styles of motion by appending an objective to 𝐽 (𝒙 (𝑡)) that penalizes
energy expenditure from actuation:
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α = 1e-6 α = 1e-7 α = 0

Fig. 10. Varying weighting of the work done objective penalizes energy
expenditure by the gorilla. Too strong of a penalization (left), results in no
motion after 200 timesteps. Decreasing 𝛼 towards 0 allows the gorilla to
travel further in less time.

𝐽𝑤𝑜𝑟𝑘 = 𝛼

𝑡1∑︁
𝑡𝑖=𝑡0

(𝒛 (𝑖) − 𝒛 (𝑡𝑖−1))𝑇 (𝒇𝑎 (𝑡𝑖 ) − 𝑸𝑎𝒛 (𝑡𝑖 ))𝑑𝑡 (18)

A low value for 𝛼 ignores energy expenditure, allowing the gorilla
to locomote as fast as possible. A high value for 𝛼 penalizes energy
expenditure, and inhibits how far the gorilla can move. Setting this
parameter too high can result in no locomotion at all.

Jumping. While our focus is on locomotion, Fig. 11 shows our
actuation subspace can also be used to generate jumping motions
for the bat. The only change required in our controller optimization
lies in replacing the 𝐽𝑑𝑖𝑠𝑝 objective with an objective that rewards
mean center of mass height, 𝐽ℎ𝑒𝑖𝑔ℎ𝑡 = mean(𝒙𝑐𝑜𝑚𝑦

).

Note on Realism. The locomotions we obtain for many biologically
inspired characters like the octopus are not realistic, in the sense that
a real living octopus wouldn’t move forward by pushing against its
back tentacles as shown in Fig. 9. This isn’t surprising, our actuation
structure by design has no concept of the real-world anatomy of an
octopus. Instead, our actuation forms a fictionalvirtual musculature,
generating motions that are geometrically plausible, requiring little
manual effort from the user to achieve a viable locomotion.

Robustness Across Geometries. Finally, and most importantly, our
method provides a framework for designing locomotions for charac-
ters of arbitrary geometry, without burdening the user with metic-
ulous design of muscle fibers and bone connectivity [Geijtenbeek
et al. 2013; Min et al. 2019; Tan et al. 2012]. Fig. 1 shows locomotion
on 11 very different high resolution soft body characters, each with
their own unique actuation space and locomotion behavior.

Discussion on choice of CMAES. Our method reduces the con-
troller optimization problem from Eq. (1) to one with a small, low
dimensional set of open-loop control parameters.

Fig. 11. Using only a single control mode to parameterize our motion prior,
we can create an open loop jumping controller for the bat.

Mode 3 Mode 4
2 Optimized Actuation Modes

Mode 0 Mode 4 Mode 5
3 Optimized Actuation Modes

Fig. 12. We can optimize for which control modes the bat should use to
locomote, instead of selecting them arbitrarily.

CMAES is known for its ability to solve such low-dimensional
optimization problems [Hansen 2006], and has already been used
for similar control tasks in graphics [Tan et al. 2011a].

In contrast, while Deep Reinforcement Learning (DRL) can learn
more sophisticated high-dimensional optimization problems it is
notoriously sample inefficient [Jain et al. 2020] and hyper-parameter
sensitive [Hämäläinen et al. 2020], requiring more simulation evalu-
ations to converge to a viable locomotion.

Alternatively, gradient-based optimization techniques [Shen et al.
2024] guarantee convergence to a locally optimal solution, but re-
quire much user guidance [Mordatch et al. 2012; Pan and Manocha
2018], either in the form of a strong initial guess, or through the use
of guiding data. These methods further require the availability of
simulation gradients [Geilinger et al. 2020], where differentiating
through contact remains an open challenge, with even less work
providing solutions for a reduced-space regime. While extending
our actuation subspace to a DRL or gradient-based optimization
scheme remains exciting future work, the off-the-shelf simplicity
of CMAES highlights the effectiveness of our actuation space for
generating natural locomotion.

5 CONCLUSION AND FUTURE WORK
We have shown that the pairing of a periodic, energy efficient actua-
tion subspace with a reduced space soft body simulation provides a
simple but powerful framework for designing locomotion for highly
detailed characters with arbitrary deformable geometries.

We have many exciting avenues for future work. First, our actua-
tion subspace is built entirely off the elastic vibration modes of the
character in isolation. However, we believe a stronger actuation sub-
space could be built if we additionally made us of prior information
regarding expected contact points and forces.
While our local-global solver is fast for softer characters, these

solvers are known to converge slowly for highly stiff elastic materi-
als [Brown and Narain 2021]. If one wanted to model locomotions
for characters composed of extremely stiff materials, like steel and
bones, we would recommend switching to other reduced solvers that
are better equipped for dealing with such stiffnesses [Trusty et al.
2023], which would come at the cost of abandoning our fast constant
system factorization or introducing additional discretization [Li
et al. 2020] .
Finally, we are especially excited about the possibility of com-

bining our framework for more general and robust control tasks in
order to make soft-body characters replace articulated rigid ones as
the default in the field of character animation.
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A SKINNING EIGENMODE POSITIONAL SUBSPACE
We reduce our positional degrees of freedom 𝒙 with a linear Skinning
Eigenmode subspace [Benchekroun et al. 2023],

𝒙 = 𝑩(𝑾 )𝒛 (19)

where 𝒛 ∈ R𝑟 are the reduced space vertex positions.
𝑩(𝑾 ) ∈ R3𝑛×𝑟 is a subspace matrix, parameterized by a set of

Linear Blend Skinning weights𝑾 ∈ R𝑤 , with 𝑟 = 12𝑤 . We obtain
these weights from a modal analysis on the elastic energy Laplacian,
𝑳 =∈ R𝑛×𝑛 ,

𝑳𝑾 = 𝑴𝑾𝚲. (20)

𝑩 is then constructed from𝑾 via the equation:

𝑩 = 𝑰 3 ⊗ (𝑾 ⊗ 1𝑇4 ) ⊙ (1𝑇𝑚 ⊗ [𝑿 1𝑛]), (21)

Where 𝑿 ∈ R𝑛×3 is a matrix of stacked vertex positions at rest.

B FULL SPACE PASSIVE ENERGY
The passive term is standardly comprised of a kinetic energy 𝐸𝑘 ,
an external potential energy for gravity 𝐸𝑓 , and an elastic potential
energy which we choose to be ARAP [Kim and Eberle 2022; Sorkine
and Alexa 2007] for all our examples 𝐸𝑣 ,

𝐸𝑝 (𝒙) = 𝐸𝑘 (𝒙) + 𝐸𝑓 (𝒙) + 𝐸𝑣 (𝒙) (22)

𝐸𝑘 (𝒙) =
1

2ℎ2 | |𝒙 −𝒚 | |2𝑴 ,

𝐸𝑓 (𝒙) = 𝒙𝑇𝑴𝒈,

𝐸𝑣 (𝒙) =
1
2

| T |∑︁
𝑒

min
𝑹𝑒

𝜇𝑒𝑉𝑒 | |𝑭𝑒 (𝒙) − 𝑹𝑒 | |2𝐹 𝑠 .𝑡 . 𝑹𝑒 ∈ SO(3) .

(23)

Above, ℎ is the simulation timestep size, 𝒚 ∈ R3𝑛 are inertial
positions, 𝒈 ∈ R3𝑛 is the acceleration due to gravity acting on
each vertex, |T | is the set of all mesh elements, 𝜇𝑒 and 𝑉𝑒 are the
per-element elastic stiffness and volume respectively. 𝑭𝑒 (𝒙) is the
per-element deformation Jacobian of the simulated character, while
𝑹𝑒 is its corresponding best fit rotation matrix.

C REDUCING THE PASSIVE ENERGY
We seek to detach the evaluation of the passive energy 𝐸𝑝 (𝒙), de-
fined in App. B, with the resolution of the mesh. We follow an
approach similar to [Benchekroun et al. 2023], where we approxi-
mate our full space positions 𝒙 = 𝑩𝒛, with the Skinning Eigenmode
subspace from App. A. To mitigate the evaluation of per-element
rotations 𝑹𝑒 in the elastic potential energy, we make use of the
clustering scheme from [Jacobson et al. 2012], where multiple ele-
ments may share the same rotation. We call these clusters passive,
as they group together rotations from our passive elastic energy
term. These are distinct from our active clusters, which also allow
for elements in a cluster to share the same rotation matrix.
Our active term finds the rotation matrix that aligns 𝑭𝑒 (𝒛) to

𝒀𝑒 (𝒂), whereas the passive term finds the rotation matrix that aligns
𝑭𝑒 (𝒛) to the identity. A distinction that can incur significant imple-
mentational differences in reduction.

Skinning Eigenmodes Passive ClustersContact Samples

Fig. 13. We visualize the three simulation subspace parameters, namely 4
Skinning Eigenmodes, 10 passive muscle clusters and 30 contact sample
points.
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Fig. 14. Timings of 200 simulation steps as we vary three simulation sub-
space parameters of our reduced simulation, the number of skinning eigen-
modes, contact samples, and passive muscle clusters. With the default for all
quantities not being varied are 5 skinning eigenmodes, 40 contact samples,
and 5 passive clusters.

Plugging in our active positional subspace and our rotation clus-
tering scheme brings us to the reduced form of the passive elastic
energy, which can be evaluated entirely in a reduced space.

𝐸𝑘 (𝒛) =
1

2ℎ2 | |𝒛 − 𝒒 | |2𝑵
𝐸𝑓 (𝒛) = 𝒛𝑇𝑩𝑇𝑴𝒈,

𝐸𝑣 (𝒛) =
1
2

min
𝑹𝑐

| T |∑︁
𝑒

𝜇𝑒𝑉𝑒 | |𝑭𝑒 (𝒛) − 𝑹𝑐 (𝑒 ) | |2𝐹

𝑠 .𝑡 . 𝑹𝑐 ∈ SO(3)∀𝑐 ∈ |C𝑝 |.

(24)

Fig. 13 visualize our Skinning Eigenmode Subspace and passive
clusters on the tardigrade, while Fig. 14 explores how thease two
parameters affect simulation computation time.

D GLOBAL STEP DERIVATION FOR LOCAL-GLOBAL
SOLVER

To solve for the character vertex locations in the reduced space 𝒛,
we make use of a local-global solver. The local step optimize for a
set of rotations both from our passive energy, and from our actua-
tion energy, holding 𝒛 fixed. These optimal rotations are derived in
App. G. The global step requires us to optimize for 𝒛, while holding
our rotation variables fixed.

We state our reduced space optimization problem

𝒛 = argmin
𝒛

𝐸𝑝 (𝒛) + 𝐸𝑎 (𝒛, 𝒂)

= 𝐸𝑘 (𝒛) + 𝐸𝑓 (𝒛) + 𝐸𝑣 (𝒛) + 𝐸𝑎 (𝒛, 𝒂) (25)

with all of our reduced space energies defined as,
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𝐸𝑘 (𝒛) =
1

2ℎ2 | |𝒛 − 𝒒 | |2𝑵
𝐸𝑓 (𝒛) = 𝒛𝑇𝑩𝑇𝑴𝒈,

𝐸𝑣 (𝒛) =
1
2

min
𝑹𝑐

| T |∑︁
𝑒

𝜇𝑒𝑉𝑒 | |𝑭𝑒 (𝒛) − 𝑹𝑐 (𝑒 ) | |2𝐹

𝑠 .𝑡 . 𝑹𝑐 ∈ SO(3)∀𝑐 ∈ |C𝑝 |.

𝐸𝑎 ( 𝒂) =
1
2

min
𝛀𝑐

| T |∑︁
𝑒

𝜇𝑒𝑉𝑒 | |𝑭𝑒 (𝒛) − 𝛀𝑐 (𝑒 )𝒀𝑒 (𝒂) | |2𝐹

𝑠 .𝑡 . 𝛀𝑐 ∈ SO(3)∀𝑐 ∈ |C𝑎 |

(26)

The global step assumes we’ve already found the minimizing
rotations 𝑹𝑐 and 𝛀𝑐 for the current iterate, and so we can treat
these as constants and drop the two nested minimization problems
for these two quantities, as well as the constraints that had appeared
in the full energy Eq. (11).
Our strategy will be to expand all energies in Eq. (26) and drop

any terms that explicitly do not depend on 𝒛, as they have no bearing
on our optimization task.

D.1 Expanding the Elastic Energy 𝐸𝑣 (𝒛)
Starting with the passive energy in Eq. (26), we expand out the
Frobenius norm and obtain,

𝐸𝑣 (𝒛) =
1
2

| T |∑︁
𝑒

𝜇𝑒𝑉𝑒 | |𝑭𝑒 − 𝑹𝑐 (𝑒 ) | |2𝐹 ,

=

| T |∑︁
𝑒

𝜇𝑒𝑉𝑒

2
𝑡𝑟 (𝑭𝑇𝑒 𝑭𝑒 ) − 𝜇𝑒𝑉𝑒𝑡𝑟 (𝑭𝑇𝑒 𝑹𝑐 (𝑒 ) ) + const. (27)

We deal with the first term 𝜇𝑒𝑉𝑒𝑡𝑟 (𝑭𝑇𝑒 𝑭𝑒 ), and rewrite the integrand
inside the sum in index notation, reintroducing our definition for
𝑭𝑒𝑖 𝑗 = J𝑩

𝑒𝑖 𝑗𝑘𝑧𝑘 from App. F.

𝜇𝑒𝑉𝑒𝑡𝑟 (𝑭𝑒𝑇 𝑭𝑒 ) = 𝜇𝑒𝑉𝑒 (J𝑩
𝑒𝑖 𝑗𝑘𝑧𝑘 ) (J𝑩

𝑒𝑖 𝑗𝑙 )𝑧𝑙 ,

= 𝜇𝑒𝑉𝑒J𝑩
𝑒𝑖 𝑗𝑘J𝑩

𝑒𝑖 𝑗𝑙𝑧𝑘𝑧𝑙 ,

= 𝑄𝑣
𝑒𝑘𝑙
𝑧𝑘𝑧𝑙 ,

with 𝑄𝑣
𝑒𝑘𝑙

= 𝜇𝑒𝑉𝑒J𝑩
𝑒𝑖 𝑗𝑘J𝑩

𝑒𝑖 𝑗𝑙 . Plugging this back into the sum
gives us

| T |∑︁
𝑒

𝑄𝑣
𝑒𝑘𝑙
𝑧𝑘𝑧𝑙 = 𝑧𝑘 (

| T |∑︁
𝑒

𝑄𝑣
𝑒𝑘𝑙

)𝑧𝑙 = 𝒛𝑇𝑸𝑣𝒛, (28)

where we’ve exposed the Laplacian matrix for our actuation energy
𝑸𝑣 = 𝑩𝑇 𝑱𝑇 (𝑽 𝑣 ⊗ 𝑰 9)𝑱 𝑩 ∈ R𝑟×𝑟 , and 𝑽 𝑣 ∈ R | T |× |T | being the
diagonal 𝜇-weighed volume matrix 𝑉 𝑣

𝑒𝑒 = 𝜇𝑒𝑉𝑒 .
We turn our attention to the second term in this energy, 𝜇𝑒𝑉𝑒𝑡𝑟 (𝑭𝑇𝑒 𝑹𝑐 (𝑒 ) ).

With a similar treatment, we rewrite it in index notation,

𝜇𝑒𝑉𝑒𝑡𝑟 (𝑭𝑇𝑒 𝑹𝑐 (𝑒 ) ) = 𝜇𝑒𝑉𝑒 (𝑭𝑇𝑒 𝑹𝑐 (𝑒 ) )𝑖𝑖 , (29)
= 𝜇𝑒𝑉𝑒𝐹𝑖 𝑗𝑅𝑐 (𝑒 )𝑖 𝑗 ,

= 𝜇𝑒𝑉𝑒 (J𝑩
𝑒𝑖 𝑗𝑘𝑧𝑘 ) (𝑃𝑒𝑐𝑅𝑐𝑖 𝑗 ),

= (𝜇𝑒𝑉𝑒J𝑩
𝑒𝑖 𝑗𝑘𝑃𝑒𝑐 )𝑅𝑐𝑖 𝑗𝑧𝑘 , (30)

where we have made use of a |T | × |C| cluster selection matrix 𝑷
to select out the tetrahedron inside each cluster.

𝑃𝑒𝑐 =

{
1 if 𝑒 ∈ T (𝑐),
0 otherwise.

. (31)

With this selection matrix in hand, we can rewrite the second term
going through the full summation,

−
| T |∑︁
𝑒

𝜇𝑒𝑉𝑒𝑡𝑟 (𝑭𝑇𝑒 𝑹𝑐 (𝑒 ) ) = −𝑧𝑘 (
| T |∑︁
𝑒

𝜇𝑒𝑉𝑒J𝑩
𝑒𝑖 𝑗𝑘𝑃𝑒𝑐 )𝑅𝑐𝑖 𝑗 ,

= 𝑧𝑘𝐾
𝑣
𝑖 𝑗𝑘𝑐

𝑅𝑐𝑖 𝑗 ,

= 𝒛𝑇 (K𝑣 : 𝑹), (32)

Where we’ve revealed the tensor K𝑣 ∈ R𝑟×3×3×|C | , given by

K𝑣 = reshape(−𝑩𝑇 𝑱𝑇 ((𝑽 𝑣𝑷 ) ⊗ 𝑰 9), {𝑟, 3, 3, |C|}) . (33)

Abstracting this away further we arrive at

−
| T |∑︁
𝑒

𝜇𝑒𝑉𝑒𝑡𝑟 (𝑭𝑇𝑒 𝑹𝑐 (𝑒 ) ) = 𝒛𝑇𝒇 𝑣, (34)

Finally, we can rewrite the reduced clustered passive muscle
energy as a quadratic,

𝐸𝑣 (𝒛) =
1
2
𝒛𝑇𝑸𝑣𝒛 + 𝒛𝑇𝒇 𝑣 + const, (35)

D.2 Expanding 𝐸𝑎 (𝒛, 𝒂)
Starting with the actuation energy in Eq. (11), we expand out the
Frobenius norm:

𝐸𝑎 (𝒛) =
| T |∑︁
𝑒

𝛾𝑒𝑉𝑒 | |𝑭𝑒 − 𝛀𝑐 (𝑒 )𝒀𝑒 | |2𝐹 , (36)

=

| T |∑︁
𝑒

𝛾𝑒𝑉𝑒𝑡𝑟 (𝑭𝑇𝑒 𝑭𝑒 ) − 2𝛾𝑒𝑉𝑒𝑡𝑟 (𝑭𝑇𝑒 𝛀𝑐 (𝑒 )𝒀𝑒 ) + const. (37)

Just like the first section App. D.1, the first term amounts to the
simple quadratic form

| T |∑︁
𝑒

𝛾𝑒𝑉𝑒𝑡𝑟 (𝑭𝑇𝑡 𝑭 𝑡 ) = 𝒛𝑇𝑸𝑎𝒛 (38)

with the actuation muscle Laplacian 𝑸𝑎 = 𝑩𝑇 𝑱𝑇 (𝑽 𝑣 ⊗ 𝑰 9)𝑱 𝑩 ∈
R𝑟×𝑟 , where 𝑽 𝑣 ∈ R | T |× |T | is the 𝛾 weighed diagonal volume
matrix such that 𝑉 𝑣

𝑒𝑒 = 𝑉𝑒𝛾𝑒 .
For the second term we follow the same procedure as in the

previous section, rewriting the integrand in index notation.

−𝛾𝑡 𝑡𝑟 (𝑭𝑇𝑡 𝛀𝑐 (𝑡 )𝒀 𝑡 ) = −𝛾𝑡 𝐹𝑡𝑤𝑖Ω𝑐 (𝑡 )𝑤𝑘𝑌𝑡𝑘𝑖

= −𝛾𝑡 (J𝑩
𝑡𝑤𝑖𝑑𝑧𝑑 ) (𝑃𝑡𝑐Ω𝑐𝑤𝑘 ) (J𝑫

𝑡𝑘𝑖𝑙𝑎𝑙 )

= 𝒛𝑑 (−𝛾𝑡J𝑩
𝑡𝑤𝑖𝑑J𝑫

𝑡𝑘𝑖𝑙𝑃𝑡𝑐 )Ω𝑐𝑤𝑘𝑎𝑙
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Plugging this into the sum allows us to express it in a our canonical
form

| T |∑︁
𝑒

−𝛾𝑒𝑉𝑒𝑡𝑟 (𝑭𝑇𝑒 𝛀𝑐 (𝑒 )𝒀𝑒 ),

= 𝑧𝑑 (
| T |∑︁
𝑒

−𝛾𝑒𝑉𝑒J𝑩
𝑒𝑤𝑖𝑑J𝑫

𝑒𝑘𝑖𝑙𝑃𝑒𝑐 )Ω𝑐𝑤𝑘𝑎𝑙 ,

= 𝑧𝑑O𝑤𝑘𝑑𝑙𝑐Ω𝑐𝑤𝑘𝑎𝑙 ,

= 𝒛𝑇 ((O
.
.
. 𝛀) : 𝑎),

= 𝒛𝑡𝒇𝑎,

(39)

with O ∈ R3×3×𝑟×𝑚𝑠×|C | . where 𝒇𝑎 = ((𝑶
.
.
. 𝛀) : 𝑎) ∈ R𝑟 . We can

finally rewrite our actuation energy as the quadratic,

𝐸𝑎 (𝒛) = 𝒛𝑇𝑸𝑎𝒛 + 2𝒛𝑇𝒇𝑎 + const. (40)

D.3 Expanding Inertial Energy 𝐸𝑘 (𝒛)

𝐸𝑘 (𝒛) =
1

2ℎ2 | |𝒛 − 𝒒 | |2𝑵 =
1

2ℎ2 𝒛
𝑇𝑵𝒛 − 1

ℎ2 𝒛
𝑇𝑵𝒒 + const. (41)

Introducing 𝑸𝑘 = 1
ℎ2 𝑵 ∈ R𝑟×𝑟 , as well as 𝒇𝑘 = − 1

ℎ2 𝑵𝒒 ∈ R𝒓 , we
can write the kinetic energy simply as the quadratic energy,

𝐸𝑘 (𝒛) =
1
2
𝒛𝑇𝑸𝑘𝒛 + 𝒛𝑇𝒇𝑘 + const (42)

D.4 Expanding External Potential Energy 𝐸𝑓 (𝒛)
This term is basically all expanded already, we only have to simplify
it in our canoncial form,

𝐸𝑓 (𝒛) = 𝒛𝑇𝑩𝑇𝑴𝒈, (43)

= 𝒛𝑇𝒇 𝑓 , (44)

with 𝒇 𝑓 = 𝑩𝑇𝑴𝒈.

D.5 Putting it All Together
Assembling all the terms of our energy that depend on 𝒛 leaves us
with the total quadratic energy,

𝐸 (𝒛) = 1
2
𝒛𝑇 (𝑸𝑎 + 𝑸𝑣 + 𝑸𝑘 )𝒛 + 𝒛𝑇 (𝒇𝑎 + 𝒇 𝑣 + 𝒇𝑘 + 𝒇 𝑓 ) + const.

(45)

Taking the minimizer of this quadratic energy finally reveals the
system (without contact) we need to solve every timestep:

(𝑸𝑣 + 𝑸𝑎 + 𝑸𝑘 )𝒛 = (𝒇𝑎 + 𝒇 𝑣 + 𝒇𝑘 )
𝑸𝒛 = 𝒇 (46)

Note that 𝑸𝑣 + 𝑸𝑎 + 𝑸𝑘 are constant matrices, and so the system
factorization can be solved once and reused throughout the course
of the entire optimization problem.
Fig. 15 shows our iteration step cost breakdown on the Arc de

Triomphe character.

7.4e-5s 4.7e-5s 1.2e-5s 2.3e-6sPassive Local Step

C
ontact Step

G
lobal Step

A
ctive Local Step

Fig. 15. Timing breakdown for an average simulation step with our default
10 local-global iterations on the Arc de Triomphe character.

E COMPUTING CONTACT FORCES 𝒇𝑐
To account for contact, we add an extra force term to the right hand
side of Eq. (46), 𝒇𝑐 ∈ R𝑟 ,

𝑸𝒛 = 𝒇 + 𝒇𝑐 . (47)

This extra force term 𝒇𝑐 is computed every local-global iteration,
before the global step to ensure 𝒛 upholds the zero interpenetration,
damping friction conditions,

𝑱 𝑐𝑁 ¤𝒛 = 0, (48)
𝑱 𝑐𝑇 ¤𝒛 = 𝜇 𝑱 𝑐𝑇 ¤𝒛𝑝𝑟𝑒𝑣, (49)

where 𝜇 ∈ [0, 1] is a velocity damping coefficient. A low value for 𝜇
results in extreme friction with no allowed tangential velocity, while
a high value results in slipper no-friction. All our examples use 𝜇 =
0.2 𝑱 𝑐

𝑁
∈ R | I𝑐 |×𝑟 is a contact Jacobian that maps from our reduced

velocity ¤𝒛 to per-contact point normal velocities. Likewise 𝑱 𝑐
𝑇

∈
R2 | I𝑐 |×𝑟 maps to tangential velocities. The above two equations can
be summarized by the constraint,

𝑱 𝑐 ¤𝒛 = 𝒗, (50)

where 𝑱 𝑐 = [𝑱 𝑐
𝑁

𝑱 𝑐
𝑇
]𝑇 ∈ R3 | I |×𝑟 is the full contact Jacobian and

𝒗 = [0 𝜇 𝑱 𝑐
𝑇
¤𝒛𝑝𝑟𝑒𝑣]𝑇 .

Through finite differences, we rewrite our constraint on the ve-
locity to act on positions DOFs 𝒛,

𝑱 𝑐
𝒛 − 𝒛𝑐𝑢𝑟𝑟

ℎ
= 𝒗,

𝑱 𝑐𝒛 = ℎ𝒗 + 𝑱 𝑐𝒛𝑐𝑢𝑟𝑟 .
(51)

To compute an 𝒇 that ensures 𝒛 satisfies this condition, we plug
in our global step solve 𝒛 = 𝑸−1 (𝒇 +𝒇𝑐 ) Eq. (47) into this constraint
and obtain,

𝑱 𝑐𝑸−1 (𝒇 + 𝒇𝑐 ) = ℎ𝒗 + 𝑱 𝑐𝒛𝑐𝑢𝑟𝑟 ,

𝑱 𝑐𝑸−1𝒇𝑐 = ℎ𝒗 + 𝑱 𝑐𝒛𝑐𝑢𝑟𝑟 − 𝑱 𝑐𝑸−1𝒇 ,

𝑳𝒇𝑐 = 𝒃,

(52)

With 𝑳 = 𝑱 𝑐𝑸−1 and 𝒃 = ℎ𝒗 + 𝑱 𝑐𝒛𝑐𝑢𝑟𝑟 − 𝑱 𝑐𝑸−1𝒇 . The matrix
𝑸−1 ∈ R𝑟×𝑟 is a densematrix, but it’s also small and constant, and so
the product 𝑳 = 𝑸−1 ∈ R | I |×𝑟 can be precomputed once and reused
throughout the entire optimization procedure. The system described
by Eq. (52) can either be over or underdetermined, depending on
whether the number of contacting degrees of freedom 3|I | is greater
or less than the dimensionalilty of our simulation subspace 𝑟 .
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If it’s overdetermined, we solve for 𝒇𝑐 in a least squares sense,

𝒇𝑐 = argmin
𝒇 𝑐

| |𝑳𝒇𝑐 − 𝒃 | |2,

⇓

𝑳𝑇 𝑳𝒇𝑐 = 𝑳𝑇 𝒃 .

(53)

If it’s underdetermined, we solve for the smallest 𝒇𝑐 satisfying
our constraint,

𝒇𝑐 = argmin
𝒇 𝑐

| |𝒇𝑐 | |2 s.t.𝑳𝒇𝑐 = 𝒃,

⇓

𝒇𝑐 = 𝑳𝑇 (𝑳𝑳𝑇 )−1𝒃 .

(54)

F TENSOR PRECOMPUTATION FOR CLUSTERING
ROTATIONS

We start with the assumption that we have access to the simulation
Skinning Eigenmode Subspace 𝑩 ∈ R3𝑛×𝑟 Eq. (21), 𝑫 ∈ R3𝑛×(𝑚𝑠+1)

obtained from Eq. (4), 𝑱 ∈ R9 |𝑇 |×3𝑛 the standard deformation Jaco-
bian mapping matrix [Kim and Eberle 2022].

We construct the subspace deformation Jacobian mapping matrix
𝑱𝐵 ∈ R9 |𝑇 |×𝑟 and 𝑱𝐷 ∈ R9 |𝑇 |× (𝑚𝑠+1) :

𝑱𝐵 = 𝑱 𝑩 𝑱𝐷 = 𝑱 �̄�

We reorder each of the entries in the form of a new 4-th order
tensor J𝐵 ∈ R |𝑇 |×3×3×𝑟 and J𝐷 ∈ R |𝑇 |×3×3×(𝑚𝑠+1) .

J𝐵 = reshape(𝑱𝐵, {|𝑇 |, 3, 3, 𝑟 }),

J𝑫 = reshape(𝑱𝐷 , {|𝑇 |, 3, 3,𝑚𝑠 + 1})
Which we can use to express the deformation Jacobian and the

control target’s deformation Jacobian matrices, 𝑭 ∈ R | T |×3×3 and
𝒀 ∈ R | T |×3×3, using index notation,

𝐹𝑒𝑖 𝑗 = J𝐵
𝑒𝑖 𝑗𝑘

𝑧𝑘 , 𝑌𝑒𝑖 𝑗 = J𝐷
𝑒𝑖 𝑗𝑙

𝑎𝑙 , (55)

where a repeated index implies a component wise product along
that dimension if the index is also present on the other side of the
equation, or a standard dot product along that dimension if the
index is not repeated on the other side of the equation.
We re-express 𝑭𝑒𝒀𝑒 , the matrix that appears inside the sum of

Eq. (72),

𝐶𝑒𝑖 𝑗 = 𝐹𝑒𝑖𝑘𝑌𝑒 𝑗𝑘 ,

= (J𝐵
𝑒𝑖𝑘𝑢

𝑧𝑢 ) (J𝐷
𝑒 𝑗𝑘𝑣

𝑎𝑣),

= (J𝐵
𝑒𝑖𝑘𝑢

J𝐷
𝑒 𝑗𝑘𝑣

)𝑧𝑢𝑎𝑣,
= K𝑒𝑖 𝑗𝑢𝑣𝑧𝑢𝑎𝑣, (56)

revealing the constant tensor K ∈ R | T |×3×3×𝑟×(𝑚𝑠+1) , which,
when multiplied against the changing 𝒛 and �̄�, provides us with the
per-tet matrix product of 𝑭𝑒𝒀𝑒 every timestep.
We then introduce a grouping matrix 𝑮 ∈ R | C |× |T | , a matrix

that assembles for each cluster a 𝛾-weighed sum of its member
tetrahedra’s scalar quantities.

𝐺𝑐𝑒 =

{
𝛾𝑒 if 𝑒 ∈ T (𝑐)
0 otherwise

(57)

This matrix allows us now to fully express the averaged covari-
ance matrix 𝑯 ∈ R | C |×3×3 in index notation,

𝐻𝑐𝑖 𝑗 = 𝐺𝑐𝑒𝐶𝑒𝑖 𝑗 (58)

Finally, plugging in our expression for 𝐶𝑒𝑖 𝑗 , we have

𝐻𝑐𝑖 𝑗 = 𝐺𝑐𝑒K𝑒𝑖 𝑗𝑢𝑣𝑧𝑢𝑎𝑣

= H𝑐𝑖 𝑗𝑢𝑣𝑧𝑢𝑎𝑣 (59)

Where we finally expose the constant tensor H𝑐𝑖 𝑗𝑢𝑣 , which mul-
tiplies 𝒛 and �̄� and provides the covariance matrices for all clusters
𝑯 .

G OPTIMAL CLUSTERED ROTATIONS
Wewant to derive the optimal rotation𝛀𝑐 for each cluster 𝑐 . Starting
from Eq. (11), computing the optimal rotation 𝛀𝑐 for each 𝑐 amounts
to the following optimization problem

𝛀𝑐 = argmin
𝛀𝑐 ∈SO(3)

|𝑇 (𝑐 ) |∑︁
𝑒

𝛾𝑡𝑉𝑒 | |𝑭𝑒 − 𝛀𝑐𝒀𝑒 | |2𝐹 (60)

As presented in Eq. (12), we will show that the optimal solution is
given by the polar decomposition:

𝛀𝑐 = polar ©«
| T (𝑐 ) |∑︁

𝑒

𝛾𝑒𝑉𝑒𝑭𝑒𝒀
𝑇
𝑒
ª®¬ . (61)

The same derivation for the active clustered rotation 𝛀𝑐 can be
extended to the optimal rotation 𝑹 for the passive term 𝐸𝑣 by setting
𝒀𝑒 = 𝑰 3×3 for every tetrahedral element 𝑒 .

Proof. We start by expanding each term in the summation of
Eq. (61) as

𝛾𝑒𝑉𝑒 | |𝑭𝑒 − 𝛀𝑐𝒀𝑒 | |2𝐹 (62)

= 𝛾𝑒𝑉𝑒𝑡𝑟

(
(𝑭𝑒 − 𝛀𝑐𝒀𝑒 )𝑇 (𝑭𝑒 − 𝛀𝑐𝒀𝑒 )

)
(63)

= 𝛾𝑒𝑉𝑒𝑡𝑟

(
𝑭𝑇𝑒 𝑭𝑒 + 𝒀𝑇𝑒 𝒀𝑒 − 𝑭𝑇𝑒 𝛀𝑐𝒀𝑒 − 𝒀𝑇𝑒 𝛀

𝑇
𝑐 𝐹𝑒

)
(64)

= −𝛾𝑒𝑉𝑒𝑡𝑟
(
2𝑭𝑇𝑒 𝛀𝑐𝒀𝑒

)
+ const (65)

= −𝛾𝑒𝑉𝑒𝑡𝑟
(
2𝛀𝑐𝒀𝑒𝑭

𝑇
𝑒

)
+ const (66)

Above, in the second equality we made use of the identity | |𝑨| |2
𝐹
=

𝑡𝑟 (𝑨𝑇𝑨). In the third equality we expanded the multiplication, and
used the orthogonality of rotation matrices 𝛀𝑇

𝑐 𝛀𝑐 = 𝑰 . In the fourth
equality we dropped terms that do not depend on the variable we
are optimizing over and placed them inside the constant 𝑐 . In the
fifth and final equality we have made use of the trace’s invariance
under permutation of its input. We’ve also used the identity that
the trace is invariant under transposes 𝑡𝑟 (𝐴 +𝐴𝑇 ) = 𝑡𝑟 (2𝐴).
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With the above result, we return to our full optimization problem
(Eq. (61)) and rewrite it as:

𝛀𝑐 = argmin
𝛀𝑐 ∈SO(3)

|𝑇 (𝑐 ) |∑︁
𝑒

−𝛾𝑒𝑉𝑒2𝑡𝑟
(
𝛀𝑐𝒀𝑒𝑭

𝑇
𝑒

)
+ const (67)

= argmax
𝛀𝑐 ∈SO(3)

|𝑇 (𝑐 ) |∑︁
𝑒

𝛾𝑒𝑉𝑒𝑡𝑟

(
𝛀𝑐𝒀𝑒𝑭

𝑇
𝑒

)
(68)

= argmax
𝛀𝑐 ∈SO(3)

𝑡𝑟
©«
|𝑇 (𝑐 ) |∑︁

𝑒

𝛾𝑒𝑉𝑒𝛀𝑐𝒀𝑒𝑭
𝑇
𝑒
ª®¬ (69)

= argmax
𝛀𝑐 ∈SO(3)

𝑡𝑟
©«𝛀𝑐

|𝑇 (𝑐 ) |∑︁
𝑒

𝛾𝑒𝑉𝑒𝑭
𝑇
𝑒 𝒀𝑒

ª®¬ (70)

= argmax
𝛀𝑐 ∈SO(3)

𝑡𝑟 (𝛀𝑐𝑯𝑐 ) (71)

In the second equality we have dropped the const and switched
to a maximization instead of a minimization, while also dropping
the factor of 2 from the optimization. In the third equality we have
made use of the linearity of the trace operator and the sum operator,
allowing them to commute. In the fourth equality, we finally pull out
the per-cluster rotation 𝛀𝑐 from the sum, as all tets in |𝑇 (𝑐) | share
the same rotation matrix by definition. This final form is an instance
of the Orthogonal Procrustes problem, where the target matrix we
are trying to match is 𝑯𝑐 . Based on the proof in Schoenemann
[1964]; Wikipedia contributors [2023], the optimal solution to the
Orthogonal Procrustes problem can be obtained from the polar
decomposition of 𝑯𝑐 .

𝛀𝑐 = polar(𝑯𝑐 ) = polar ©«
| T (𝑐 ) |∑︁

𝑒

𝛾𝑒𝑉𝑒𝑭𝑒𝒀
𝑇
𝑒
ª®¬ (72)

□

H ACTUATION LIMITS
The controller optimization problem defined by the objective Eq. (17)
is ill-defined: there is a large space of undesireable overly energetic
motions that allow a character to locomote, such as an extremely
large initial actuation that launches the character forward into the
air.

As such, our method requires sensible limits to the actuation pa-
rameters in Eq. (6). Fortunately, many of these parameters are intu-
itive to define. We provide typical allowable ranges used throughout
all the experiments above below.

𝑻 𝑖, 𝑗 ∈ [0.2, 0.6] (73)
𝜽 𝑖, 𝑗 ∈ [0, 𝜋/2] (74)
𝑨𝑖, 𝑗 ∈ [−𝑎𝑚𝑎𝑥𝑖 (𝑝), 𝑎𝑚𝑎𝑥𝑖 (𝑝)] (75)

We derive a method to automatically set the maximum actuation
mode amplitude 𝑎𝑚𝑎𝑥𝑖 through a more intuitive unitless scalar pa-
rameter 𝑝 , which can be reused across a wide range of characters,
regardless of scale and proportions.

This parameter 𝑝 describes the maximum amount of unweighed
Dirichlet energy measured by any tetrahedron. It measures the maxi-
mum amount of scale/compression each of our tetrahedra tolerates.

𝑝 = max
𝑡 ∈T

| |𝑭 𝑡 (𝒂) − 𝑰 | |2𝐹 = max
𝑡 ∈T

𝒂𝑇𝑫𝑇 𝑱𝑇𝑡 𝑱 𝑡𝑫𝒂 (76)

We re-express this parameter 𝑝 by further assuming each mode 𝑖 is
actuated independently. Rewriting the above expression, keeping
only the relevant column 𝑫𝑖 of 𝑫 , and entry 𝑎𝑖 of 𝒂:

𝑝 = max
𝑡 ∈T

𝑫𝑇
𝑖 𝑱

𝑇
𝑡 𝑱 𝑡𝑫𝑖𝑎

2
𝑖 = max

𝑡 ∈T
𝑊𝑖𝑡𝑎

2
𝑖 (77)

Where we introduced the scalar 𝑊𝑖𝑡 = 𝑫𝑇
𝑖
𝑱𝑇𝑡 𝑱 𝑡𝑫𝑖 that maps

from an actuation of mode 𝑖 to its resulting stretch/compression at
tetrahedron 𝑡 . Finally, given a target 𝑝 , it’s very easy to go the
other way and determine a corresponding value for each actuation
mode 𝑎𝑚𝑎𝑥𝑖 . This gives:

𝑎𝑚𝑎𝑥𝑖 =
𝑝

√
max𝑡 ∈T𝑊𝑖𝑡

(78)

A value of 0 indicates we tolerate no scaling/compression, and
so 𝑎𝑚𝑎𝑥𝑖 will always give 0. As we increase 𝑝 , we increase the
maximum amount of scaling any one of our character’s tetrahedra
can tolerate. For all experiments we set 𝑝 = 1.
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