
A Unified Differentiable Boolean Operator with Fuzzy Logic
HSUEH-TI DEREK LIU, Roblox, University of British Columbia, Canada
MANEESH AGRAWALA, Stanford University, Roblox, USA
CEM YUKSEL, University of Utah, Roblox, USA
TIM OMERNICK, Roblox, USA
VINITH MISRA, Roblox, USA
STEFANO CORAZZA, Roblox, USA
MORGAN MCGUIRE, Roblox, McGill University, Canada
VICTOR ZORDAN, Roblox, USA

Fig. 1. We develop a unified boolean operator Bc that is differentiable with respect to the type of boolean operations. In the context of inverse CSG,

starting with randomly initialize primitives and boolean operations (left tree), our method enables continuous optimization on both the primitives

and the boolean operations in order to fit the target shape (middle tree). Performing inverse CSG fitting to the ground truth shape (grey) with our

method leads to significant quality improvement (blue) over the traditional boolean operations with the min and max operators (red).

This paper presents a unified differentiable boolean operator for implicit
solid shape modeling using Constructive Solid Geometry (CSG). Traditional
CSG relies on min, max operators to perform boolean operations on implicit
shapes. But because these boolean operators are discontinuous and discrete
in the choice of operations, this makes optimization over the CSG repre-
sentation challenging. Drawing inspiration from fuzzy logic, we present a
unified boolean operator that outputs a continuous function and is differen-
tiable with respect to operator types. This enables optimization of both the
primitives and the boolean operations employed in CSG with continuous op-
timization techniques, such as gradient descent. We further demonstrate that
such a continuous boolean operator allows the modeling of both sharp me-
chanical objects and smooth organic shapes with the same framework. Our
proposed boolean operator opens up new possibilities for future research
toward fully continuous CSG optimization.

ACM Reference Format:
Hsueh-Ti Derek Liu, Maneesh Agrawala, Cem Yuksel, Tim Omernick, Vinith
Misra, Stefano Corazza, MorganMcGuire, and Victor Zordan. 2024. A Unified
Differentiable BooleanOperator with Fuzzy Logic. In Special Interest Group on
Computer Graphics and Interactive Techniques Conference Conference Papers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0525-0/24/07. . . $15.00
https://doi.org/10.1145/3641519.3657484

’24 (SIGGRAPHConference Papers ’24), July 27-August 1, 2024, Denver, CO, USA.

ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3641519.3657484

1 INTRODUCTION
Boolean operations are a central ingredient in Constructive Solid
Geometry (CSG) – a modeling paradigm that represents a complex
shape using a collection of primitive shapes which are combined
together via boolean operations (intersection, union, and differ-
ence). CSG provides a precise, hierarchical representation of solid
shapes and is widely used in computer graphics.

The importance of CSG has motivated researchers to investigate
the inverse problem; constructing a CSG tree for a given 3D model
from a collection of parameterized primitive shapes. A common
approach is to treat this as an optimization problem that involves
choosing the structure of the CSG tree; the type of boolean oper-
ation to perform at each internal node in the tree, as well as the
parameters and type (e.g., sphere, cube, cylinder) of the leaf node
primitive shapes. The optimization is difficult because it contains
a mixture of discrete (type of boolean operation, number and type
of primitive shapes) and continuous (parameters of primitives e.g.,
radius, width, etc.) variables. Moreover, the degrees of freedom
grow exponentially with the complexity of the CSG tree, making
the optimization landscape very challenging to navigate.

Previous attempts either tackle the inverse optimization directly
with evolutionary algorithms [Friedrich et al. 2019], or relax some
of the discrete variables into continuous variables to reduce the
discrete search space. For instance, one of the discrete decisions is

1

https://doi.org/10.1145/3641519.3657484
https://doi.org/10.1145/3641519.3657484

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Liu, et al.

Fig. 2. We present a differentiable boolean operator with respect to

its operands and the operator. Given two implicit shapes, our boolean

operator can control the blend region between two shapes and outputs

a smoothly differentiable function (see the zoom-in part). One can also

continuously switch the operator from one to another, such as from

union (left) to difference (right).

to determine which primitive types (e.g., sphere, cube, cylinder) to
use, and a common relaxation is to optimize over a continuously
parameterized family of primitives, such as quadric surfaces [Yu
et al. 2023, 2022]. This approach allows continuous optimization
(e.g., gradient descent) over choosing the type of each primitive, but
not the entire tree; the choice of boolean operations and the number
of primitives remain discrete variables. As a result, these inverse
CSG methods pre-determine the structure of the tree including both
the boolean operations and the number of primitives and focus on
optimizing the primitive parameters.

In this work, we develop a unified differentiable boolean operator
and show how this operator can be used to further relax inverse CSG
optimization by turning the discrete choice of boolean operation
for each internal CSG node into a continuous optimization vari-
able. Drawing inspiration from Fuzzy Logic [Zadeh 1965], we first
demonstrate how these individual fuzzy logic operations (t-norms,
t-conorms) can be applied to boolean operations on solid shapes
represented as soft occupancy functions. Fuzzy boolean operators
guarantee that the result remains a soft occupancy function, unlike
existing boolean operators (with min/max) that operate on signed
distance functions. These fuzzy booleans on the soft occupancy
naturally generalize CSG from modeling shapes with sharp edges to
modeling smooth organic shapes. We then construct a unified fuzzy
boolean operator that uses tetrahedral barycentric interpolation to
combine the individual fuzzy boolean operations (see Fig. 2). We
show that our unified operator is differentiable, avoids vanishing
gradients and is monotonic making it especially well-suited for

gradient-based optimization. We apply our unified boolean opera-
tor in the context of inverse CSG optimization and find significant
improvements in the accuracy of the resulting tree compared to
previous methods (see Fig. 1).

2 RELATED WORK
Our contribution uses fuzzy logic to design a unified differentiable
boolean operator with applications in gradient-based inverse CSG
optimization. While researchers have formulated inverse CSG as
a program synthesis [Du et al. 2018; Sharma et al. 2018; Wu et al.
2021], combinatorial optimization [Wu et al. 2018], or a global op-
timization [Friedrich et al. 2019; Hamza and Saitou 2004] problem,
we reformulate it as differentiable gradient descent optimization
problem with respect to boolean and primitive parameters. Here, we
consider how our work relates to differentiable CSG optimization
and to other boolean operators used in geometric modeling.

2.1 Gradient-Based CSG Optimization
Optimizing CSG trees requires determining the structure of the
tree, the boolean operations, and the primitive parameters. In order
to deploy continuous optimization techniques (such as gradient
descent), existing solutions rely on pre-defining all the discrete
variables (the tree structure and the boolean operations), and then
only optimizing the primitive parameters. The simplest pre-defined
“CSG tree” is a union of many parts, including convex shapes [Chen
et al. 2020; Deng et al. 2020] and neural implicit functions [Deng
et al. 2022]. Some works have also explored more complicated pre-
defined tree structures with a mixture of intersection, union,
difference operators [Ren et al. 2021; Yu et al. 2023, 2022]. Instead
of pre-determining the boolean operators, Kania et al. [2020] pro-
posed a brute force approach to all possible boolean combinations.
However this approach suffers from scalability issues as the number
of combinations grows exponentially with respect to the depth of
the CSG tree.
Our contribution complements these techniques by introducing

a unified boolean operator which enables continuous optimization
on the choice of boolean operations. This avoids the need for brute
force or pre-determining boolean operations, leading to better re-
construction (Fig. 1).

2.2 Boolean Operators in Geometric Modeling
The importance of boolean operations has stimulated research topics
in differentiable boolean operators in geometric modeling. Despite
having the same name, the term “differentiable boolean” can refer
to (1) boolean operators that output a differentiable function, and
(2) unified boolean operators that can be differentiated with respect
to the type of operations.
The most common usage of “differentiable boolean” refers to

boolean operations that produce differentiable functions, also known
as soft blending. Traditionally, min and max operators are used to
produce intersection and union between two implicit functions.
But the caveat is that their gradients are ill-defined at locations when
the input functions have the same value. This motivated Ricci [1973]
to introduce a soft blending operator using a variant of p-norms

∥𝑥 ∥𝑝 = (∑𝑖 |𝑥 |𝑝)
1/𝑝 to produce smooth and differentiable outputs.

2

A Unified Differentiable Boolean Operator with Fuzzy Logic SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Fig. 3. We show a comparison of our method against a soft boolean

operator, R-function, used in [Pasko et al. 1995]. The R-function does

not satisfy the axioms characterizing the behavior of intersection, it

produces outputs that do not align with the classic (crisp) intersec-

tion. We show that the R-function (top row) produces a nearly empty

shape when intersecting with the full shape multiple times. In contrast,

our method matches the behavior of a crisp intersection.

Later on, Pasko et al. [1995] demonstrated the use of the Rvachev
function (R-function) [Rvachev 1963] to define a soft boolean op-
eration that outputs 𝐶𝑛 continuous implicit functions with user
controllable 𝑛. Several works [Barthe et al. 2004; Gourmel et al.
2013; Wyvill et al. 1999] further extended this soft boolean formu-
lation to provide fine controls on the blended region. Alternative
formulations based on polynomial smoothing [Quilez 2013] or fuzzy
logic [Li and Tian 2008] are viable choices as well. These approaches
enable continuous outputs of individual boolean operations, but,
in contrast to ours, they did not focus on differentiating through
different boolean operations.

Another usage of “differentiable boolean” refers to unified boolean
operators that can differentiably switch from one operation to an-
other. Wyvill et al. [1999] show that a modified R-function is an
instance of a unified boolean operator with a smooth transition
between union and intersection. However, we demonstrate that
the R-function does not satisfy important axioms of boolean opera-
tors (see Sec. 3.2), specifically the boundary condition. This implies
that the R-function is prone to unexpected behavior. For instance,
in Fig. 3 we show that if we intersect a shape with the full shape
multiple times using the R-function, it ends up producing an almost-
empty shape. Our method, instead, possesses the properties of a
valid boolean operator (see Sec. 3.2) and guarantees to match the
expected behavior of classic boolean operations when the inputs
are binary.

Our proposed boolean operator is relevant to both usages of “dif-
ferentiable boolean”; our method outputs continuous functions and
can be differentiated through different boolean types. We demon-
strate applications in modeling smooth shapes and inverse CSG
optimization in Sec. 5.

3 BACKGROUND
The concept of fuzzy logic [Zadeh 1965] has applications in a wide
variety of problem domains [Dzitac et al. 2017]. In computer graph-
ics, fuzzy logic has been used in image processing [Chacón M 2006],
color compositing [Smith 1995], and spline interpolation [Li and
Tian 2008]. Here we summarize the core ideas of fuzzy logic.

3.1 Fuzzy Set
A fuzzy set𝑋 = (𝑃, 𝑓𝑋) is a tuple of the universe of elements 𝑃 = {𝑝}
and a membership function 𝑓𝑋 : 𝑃 → [0, 1] such that 𝑓𝑋 (𝑝) = 0
implies that element 𝑝 is not a member of 𝑋 , 𝑓𝑋 (𝑝) = 1 implies 𝑝 is
a full member of 𝑋 and 0 < 𝑓𝑋 (𝑝) < 1 implies 𝑝 is a partial member
of 𝑋 . Fuzzy sets are a generalization of the classic “crisp” set, whose
membership function only outputs 0 or 1. For instance, suppose we
define a fuzzy set 𝐻 = (𝑃, 𝑓𝐻) of the temperatures one considers
hot. The universe of elements 𝑃 are all possible temperature values.
One might consider some temperature values, such as 40 degrees
Celsius, as full members of 𝐻 so that 𝑓𝐻 (40◦𝐶) = 1. But 25 degrees
Celsius, might only be a partial member 𝑓𝐻 (25◦𝐻) = 0.3. Fuzzy sets
model this notion of partial membership.

3.2 Fuzzy Logic
Fuzzy logic develops boolean operations on fuzzy sets. Given two
fuzzy sets 𝑋 = (𝑃, 𝑓𝑋) and 𝑌 = (𝑃, 𝑓𝑌), a boolean operation is
defined on the membership function. For instance, intersection
∩, union ∪, and complement ¬ between fuzzy sets are defined as

𝑋 ∩ 𝑌 = (𝑃, 𝑓𝑋∩𝑌), 𝑋 ∪ 𝑌 = (𝑃, 𝑓𝑋∪𝑌), ¬𝑋 = (𝑃, 𝑓¬𝑋) . (1)

A core question in fuzzy logic research is how to define these boolean
membership functions 𝑓𝑋∩𝑌 , 𝑓𝑋∪𝑌 , 𝑓¬𝑋 . A very common approach
is to define them using the min,max operators [Gödel 1932] as

𝑓𝑋∩𝑌 = min

(
𝑓𝑋 (𝑝), 𝑓𝑌 (𝑝)

)
= min(𝑥,𝑦), (2)

𝑓𝑋∪𝑌 = max

(
𝑓𝑋 (𝑝), 𝑓𝑌 (𝑝)

)
= max(𝑥,𝑦), (3)

𝑓¬𝑋 = 1 − 𝑓𝑋 (𝑝) = 1 − 𝑥 . (4)

To simplify notation, here and for the rest of the paper, we use the
lowercase letter 𝑥 to refer to 𝑓𝑋 (𝑝), the membership function of 𝑋
applied to a generic element 𝑝 ∈ 𝑃 . Similarly, 𝑦 refers to 𝑓𝑌 (𝑝).
Fuzzy Intersection. Fuzzy logic researchers have explored other
definitions of 𝑓𝑋∩𝑌 [Klir and Yuan 1995]. Suppose 𝑓𝑋∩𝑌 = ⊤(𝑥,𝑦).
They define ⊤ as a valid intersection function when the following
axioms hold:

⊤(𝑥, 1) = 𝑥 (boundary condition)
⊤(𝑥,𝑦) ≤ ⊤(𝑥, 𝑧), if 𝑦 ≤ 𝑧 (monotonicity)
⊤(𝑥,𝑦) = ⊤(𝑦, 𝑥) (commutativity)
⊤(𝑥,⊤(𝑦, 𝑧)) = ⊤(⊤(𝑥,𝑦), 𝑧) (associativity)

where 𝑥 = 𝑓𝑋 (𝑝), 𝑦 = 𝑓𝑌 (𝑝), 𝑧 = 𝑓𝑍 (𝑝) ∈ [0, 1] are fuzzy mem-
bership values for generic element 𝑝 . Any function that satisfies
these axioms is called a t-norm ⊤ [Menger 1942]. These axioms
ensure that the behavior of the fuzzy intersection operator con-
verges to the classic intersection (AND) operator when membership
values are binary. Some popular t-norms include Gödel’s [1932]
minimum where ⊤(𝑥,𝑦) = min(𝑥,𝑦), product ⊤(𝑥,𝑦) = 𝑥 · 𝑦,
Łukasiewicz ⊤(𝑥,𝑦) = max(0, 𝑥 +𝑦 − 1), and Yager [1980] ⊤(𝑥,𝑦) =
max(1 − ((1 − 𝑥)𝑝 + (1 − 𝑏)𝑝)1/𝑝 , 0).

3

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Liu, et al.

Fuzzy Union. Similarly, suppose 𝑓𝑋∪𝑌 = ⊥(𝑥,𝑦). In fuzzy logic, ⊥
is a valid union function if:

⊥(𝑥, 0) = 𝑥 (boundary condition)
⊥(𝑥,𝑦) ≤ ⊥(𝑥, 𝑧), if 𝑦 ≤ 𝑧 (monotonicity)
⊥(𝑥,𝑦) = ⊥(𝑦, 𝑥) (commutativity)
⊥(𝑥,⊥(𝑦, 𝑧)) = ⊥(⊥(𝑥,𝑦), 𝑧) (associativity)

The functions that satisfy these axioms are known as t-conorms

⊥. Common t-conorms include Gödel’s [1932] maximum ⊥(𝑥,𝑦) =
max(𝑥,𝑦), probabilistic sum ⊥(𝑥,𝑦) = 𝑥 + 𝑦 − 𝑥 · 𝑦, bounded sum
⊥(𝑥,𝑦) = min(𝑥 + 𝑦, 1), and Yager [1980] ⊥(𝑥,𝑦) = min((𝑥𝑝 +
𝑦𝑝)1/𝑝 , 1).
Fuzzy Complement. The set of axioms for defining a valid comple-
ment function 𝑓¬𝑋 = C(𝑥) are

C(0) = 1, C(1) = 0 (boundary condition)
if 𝑥 ≤ 𝑦, then C(𝑥) < C(𝑦) (monotonicity)

Valid complement functions include cosine C(𝑥) = 1+cos(𝜋𝑥)/2,
Sugeno C(𝑥) = 1−𝑥/1+𝜆𝑥 with 𝜆 ∈ (−1,∞), and Yager [1980] C(𝑥) =
(1−𝑥𝜆)1/𝜆 . The widely used complement C(𝑥) = 1−𝑥 , is the Yager
complement with 𝜆 = 1.

Fuzzy Difference. In fuzzy logic,
the difference operator \ is usu-
ally derived from the De Mor-
gan’s laws (see inset), which
state the relationship between
the union, intersection, and
complement operators,

¬(𝑋 ∪ 𝑌) = ¬𝑋 ∩ ¬𝑌, (5)

and the relationship between difference and the other operators

𝑋 \ 𝑌 = 𝑋 ∩ ¬𝑌 . (6)

For the De Morgan’s law to hold, one has to jointly define the
intersection, union, and complement operators so that they
satisfy Eq. 5. Then a valid difference operator \ can be derived
from intersection and complement using Eq. 6 as

𝑓𝑋\𝑌 = ⊤(𝑥, C(𝑦)) . (7)

4 A UNIFIED DIFFERENTIABLE BOOLEAN OPERATOR
To apply fuzzy logic to CSG modeling, we interpret a solid shape,
represented by a soft occupancy function, as a fuzzy set𝑋 = {𝑃, 𝑓𝑋 }.
Here, 𝑃 = {𝑝} denotes the universe of points 𝑝 ∈ R𝑑 and the mem-
bership function 𝑓𝑋 : 𝑃 → [0, 1] is the soft occupancy function
representing the probability of a point lying inside the shape. Then
we can directly apply the fuzzy boolean operations presented in
Sec. 3. However, we must choose intersection, union, and com-
plement appropriate to our task. We first present our choice for
each of these functions (Sec. 4.1) and then describe how to combine
them into a unified boolean operator (Sec. 4.2).

4.1 Product Fuzzy Logic
Motivated by our goal of continuous optimization, we would like
each of our individual fuzzy boolean operations intersection ⊤,
union ⊥ and complement C to be differentiable and have non-
vanishing (i.e. non-zero) gradients with respect to their inputs. Van-
ishing gradients can result in plateaus in the energy landscape
making gradient-based optimization difficult.
Boolean operators as defined by the product fuzzy logic meet

these criteria. Specifically they are defined as

𝑓𝑋∩𝑌 = ⊤(𝑥,𝑦) = 𝑥𝑦 (8)
𝑓𝑋∪𝑌 = ⊥(𝑥,𝑦) = 𝑥 + 𝑦 − 𝑥𝑦 (9)
𝑓¬𝑋 = C(𝑥) = 1 − 𝑥 (10)

where 𝑋 and 𝑌 are two solid shapes and 𝑥 = 𝑓𝑋 (𝑝), 𝑦 = 𝑓𝑌 (𝑝) ∈
[0, 1] are their soft occupancy values at a generic point 𝑝 . These
definitions satisfy the axioms of valid boolean operators (see Sec. 3).
They correspond to valid t-norm ⊤, t-conorm ⊥, and complement C
functions, respectively, in fuzzy logic. They also satisfy De Morgan’s
law Eq. 5, allowing us to compute difference as

𝑓𝑋\𝑌 = 𝑥 − 𝑥𝑦, 𝑓𝑌\𝑋 = 𝑦 − 𝑥𝑦 (11)

The product fuzzy logic boolean
functions are differentiable with
respect to their inputs 𝑥 and
𝑦. Other fuzzy logic functions,
such as Gödel’s [1932] min/max,
t-norm/t-conorm, are not differ-
entiable at singularities. In addi-
tion, the product fuzzy logic func-
tions are also much less prone to
vanishing gradients compared to many other fuzzy logic function
definitions [van Krieken et al. 2022]. More formally vanishing gra-
dients occur when the partial derivatives 𝜕/𝜕𝑥, 𝜕/𝜕𝑦 equal zero (or
become very small). In the inset, we illustrate a 1D example where
occupancy values 𝑥 are strictly larger than or equal to 𝑦. Defining
union with the Gödel’s max operator results in a zero gradient
for 𝑦, as 𝜕/𝜕𝑦 = 0. In contrast, using the union defined in Eq. 8
still possesses non-zero gradients for both 𝑥,𝑦. In Fig. 4, we further
demonstrate the importance of avoiding vanishing gradient in a sim-
ple example of our inverse CSG task with continuous optimization
(see Sec. 5.2 for implementation details).

4.2 Unifying Boolean Operations
To create a unified fuzzy boolean operator that is differentiable with
respect to the type of boolean operation (intersection, union,
difference), our approach is to interpolate their respective mem-
bership functions using a set of interpolation control parameters c.
Our goal is to design an interpolation scheme that is continuous and
monotonic in the parameters c so that the interpolation function
avoids unnecessary local minima.

A naive solution is to use bilinear interpolation between the four
boolean operations 𝑓𝑋∩𝑌 , 𝑓𝑋∪𝑌 , 𝑓𝑋\𝑌 , 𝑓𝑌\𝑋 . While such interpola-
tion can look smooth, bilinear interpolation exhibits non-monotonic
changes and creates local minima in the interpolated occupancy (see
Fig. 5). This is because bilinear interpolation implicitly forces the

4

A Unified Differentiable Boolean Operator with Fuzzy Logic SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Fig. 4. We demonstrate the importance of avoiding vanishing gradi-

ents in an inverse CSG for fitting the union of two circles. Using the

traditional max[Gödel 1932] operator suffers from vanishing gradients,

leading to a primitive (left, red) remaining unchanged throughout the

optimization and thus failing to reconstruct the target shape. In con-

trast, our method presented in Eq. 8 avoids vanishing gradient and is

able to recover the ground truth (right).

Fig. 5. Naive bilinear interpolation introduces additional local min-

ima in the occupancy value (top plot) when interpolating between, for

instance, union(top left) and difference (bottom right).

average between 𝑓𝑋∪𝑌 , 𝑓𝑌\𝑋 and the average between 𝑓𝑋∩𝑌 , 𝑓𝑋\𝑌 to
be equivalent. In many cases, these averages are not equivalent and
thus the constraint forces the interpolation to be non-monotonic.

Instead of this, we use tetrahedral barycentric interpolation. More
specifically we treat individual boolean operations (union, inter-
section, and two differences) as vertices of a tetrahedron and

Fig. 6. We use barycentric interpolation to produce monotonic inter-

polation between different boolean operators. This avoids undesired

local minima in occupancy interpolation.

define our unified boolean operator function Bc as barycentric in-
terpolation within it as

Bc (𝑥,𝑦) = (𝑐1 + 𝑐2)𝑥 + (𝑐1 + 𝑐3)𝑦 + (𝑐0 − 𝑐1 − 𝑐2 − 𝑐3)𝑥𝑦 (12)

where c = {𝑐0, 𝑐1, 𝑐2, 𝑐3} are parameters that control the type of
boolean operations and they satisfy the properties of barycentric
coordinates

0 ≤ 𝑐𝑖 ≤ 1 and 𝑐0 + 𝑐1 + 𝑐2 + 𝑐3 = 1 . (13)

When the parameter c is a one-hot vector, i.e. the barycentric coor-
dinates for the vertices of a tetrahedron, it exactly reproduces the
product logic operators

B1,0,0,0 (𝑥,𝑦) = 𝑥𝑦 = 𝑓𝑋∩𝑌 (14)
B0,1,0,0 (𝑥,𝑦) = 𝑥 + 𝑦 − 𝑥𝑦 = 𝑓𝑋∪𝑌 (15)
B0,0,1,0 (𝑥,𝑦) = 𝑥 − 𝑥𝑦 = 𝑓𝑋\𝑌 (16)
B0,0,0,1 (𝑥,𝑦) = 𝑦 − 𝑥𝑦 = 𝑓𝑌\𝑋 (17)

From Eq. 12, we can immediately
observe that our unified opera-
tor is continuously differentiable
with respect to both the inputs
𝜕Bc/𝜕𝑥, 𝜕Bc/𝜕𝑦 and the control pa-
rameters 𝜕Bc/𝜕𝑐𝑖 by design.More-
over, our operator Bc provides monotonic interpolation between
the individual boolean operations at the vertices because interpola-
tion along the edge of a tetrahedron is equivalent to a 1D convex
combination (Fig. 6). Empirically, using barycentric interpolation
leads to a smaller error compared to using bilinear interpolation
(see inset).

5 RESULTS
Building on top of fuzzy logic, we first demonstrate our choice of
individual operators from Eq. 8 leads to a natural generalization

5

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Liu, et al.

Fig. 7. The soft boolean operator of Quilez [2013] has been demon-

strated to be an effective way to model smooth shapes (top row). Our

fuzzy boolean operator can also produce smooth boolean results (mid-

dle row) with visually indistinguishable isolines (bottom row).

from modeling sharp solid objects to smooth organic shapes in
Sec. 5.1. When combined with our unified boolean operator (see
Eq. 12), they lead to significant improvements in the inverse CSG
tasks, including fitting a single shape Sec. 5.2 or a collection of
shapes Sec. 5.3.

5.1 Fuzzy CSG System
Using fuzzy boolean operators in CSG gives the ability to model
bothmechanical objects with crisp edges and smooth organic shapes
with the same framework. Specifically, if the underlying implicit
shapes are crisp binary occupancy functions, our method produces
the same sharp results as the traditional CSG. If the input shapes
are soft occupancy functions, our method outputs smooth shapes
based on the “softness” present in the input shape.
This capability allows us to obtain visually indistinguishable re-

sults compared to the popular smoothed min/max [Quilez 2013]
operations on the signed distance function (Fig. 7). Moreover, our
approach is free from artifacts caused by discrepancy between the
input and the output (see Fig. 8). This is because our method is closed:
both the input and the output are guaranteed to be soft occupancy
functions. This is different from the previous method by Quilez
[2013] such that their outputs are not signed distance functions
[Marschner et al. 2023], even though the input is.

As the smoothness is controlled at the primitive level, we can eas-
ily have adaptive smoothness across the shape by simply changing
the softness of each primitive occupancy (see Fig. 9). Specifically,
we consider primitive shapes represented as the signed distance
function 𝑠 , and we convert it to occupancy with the sigmoid func-
tion sigmoid(𝑡 · 𝑠) with different softnesses by adjusting the positive
temperature parameter 𝑡 .

Fig. 8. Using the soft union presented by Quilez [2013] to compute

the boolean expression leads to “floating island” artifacts (top row).

This is because boolean operations on the signed distance function do

not output a correct signed distance function (see [Marschner et al.

2023]). Our boolean operator operates on the occupancy function and

remains an occupancy function after boolean operations. This leads to

soft blending results that are free from artifacts (bottom row).

Fig. 9. Unlike classic CSG which can only model hard booleans (left),

our method enables both crisp and smooth outputs (middle) and can

control the smoothness adaptively (right) at the primitive level.

5.2 Single Shape Inverse CSG with Gradient Descent
Our approach enables us to sim-
ply use gradient descent to op-
timize a CSG tree that outputs
a given shape (see Fig. 10), even
for smooth organic objects (see
inset). Our method starts with a
full binary CSG tree (each boolean node has exactly two children,
each primitive node is a leaf node) with randomly initialized (uni-
fied) boolean operators Bc and primitive parameters (see Fig. 1).
Given a ground truth occupancy function, we minimize the mean
square error between the output occupancy from the CSG tree and
the ground truth with the ADAM optimizer [Kingma and Ba 2015].
To enforce our unified boolean operators converge to one of the
boolean operations, we use a temperetured softmax function (see
App. A for implementation details). At the end of the optimization,

6

A Unified Differentiable Boolean Operator with Fuzzy Logic SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Fig. 10. After fitting, we run the classic CSG tree pruning [Tilove

1984] to reduce the size of the tree from 128 primitives initially down

to 13.

Fig. 11. Our method is applicable to different types of primitives,

including spheres, planes, quadrics, and tiny neural implicit networks.

The choice of primitives will change the inductive bias of the opti-

mization, leading to favoring different results when the amount of

primitives is insufficient.

our result is a set of optimized boolean nodes and primitive pa-
rameters. We then prune the redundant nodes with the classic CSG
pruning [Tilove 1984] to obtain a more compact full binary CSG tree
(see Fig. 10 and App. A for implementation details). Our approach
is independent of the choice of primitive families. We are able to
convert a shape into CSG of spheres, planes, quadrics, or even tiny
neural networks (Fig. 11). Compared to fixing boolean nodes and
only optimizing the primitive parameters, using our unified operator
leads to better reconstruction (see Fig. 12).

5.3 CSG Generative Models
We demonstrate how our method can improve existing methods for
fitting a shape dataset and generating CSG trees. Specifically, we

Fig. 12. Our method (blue) allows optimization of the type of boolean

operations. This leads to a better fitting result compared to the product

logic (green) and the Gödel logic (red) with (randomly initialized) fixed

boolean operations. We present the total number of nodes (primitive +

boolean) before and after the optimization with pruning, showcasing

improvements over different initial tree complexities. We also show the

mean squared error on the occupancy evaluated on 2 million points

sampled uniformly.

Table 1. By swapping the decoder in [Ren et al. 2021] with a decoder

based on our unified boolean operator, we achieve improvements in

quantitative metrics, including the mean squared error (MSE), classi-

fication accuracy, and F-score, on the ShapeNet dataset [Chang et al.

2015]. We provide the maximum number of nodes in the decoder

(#primitives + #boolean nodes) and show that, despite being more com-

pact, our approach still leads to better reconstruction.

MSE Accu. F-score total #nodes

Ren et al. 2021 0.049 0.912 0.938 256+65792
Ours 0.018 0.982 0.978 512+511

focus on improving a hypernetwork approach proposed by Ren et al.
[2021]. In short, given a point cloud, they propose to train a hyper-
network conditioned on the point cloud to output the parameters
of their proposed CSG tree structure with pre-determined boolean
operations. To demonstrate improvements over their method, we
conduct the experiment on the same dataset, loss function, and
hypernetwork, but we replace their CSG tree structure with our
fuzzy boolean CSG tree. With such change, we demonstrate notice-
able improvement over both qualitative Fig. 13 and quantitative
Tab. 1 evaluations. The baseline [Ren et al. 2021] is based on their
implementation and their pre-trained model weights.

7

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Liu, et al.

Fig. 13. By simply replacing the CSG tree structure in [Ren et al. 2021]

with our method, our approach can obtain qualitative improvement

in fitting the ground truth shape over their approach. We also report

the number of nodes (#primitives + #boolean) after pruning for our

method. Note that the raw output of [Ren et al. 2021] requires around

15K boolean operations with many redundant ones. Thus, we do not

report their number because a pruning method for them would be

required for a fair comparison on the compactness of the tree.

6 LIMITATIONS & FUTURE WORK
We introduce a unified differentiable boolean operator for solid
shapes with soft occupancy. Our approach enables optimization of
both the primitives and the boolean operations with continuous
optimization techniques, such as gradient descent. As a preliminary
investigation, the efforts described here open a cast of new directions
for future work as well as room for improvement. We describe next
a set of the limitations and opportunities for additional next steps
and research directions.

Optimizing Tree Structures. Although we have enabled differenti-
ation through boolean and primitive nodes, currently, the structure
of our tree is held fixed during optimization. Despite fitting the
shape well, our approach often leads to complicated CSG trees as a
result, even after pruning. We believe future research in optimizing
among tree structures and identifying when to grow/prune/rotate
the tree nodes would be beneficial to reduce tree complexity.

Tree Properties. The ability to optimize the tree structure could
unlock optimizing the tree to have certain properties, such as com-
pactness or editability. A well-known challenge of inverse CSG is
that a shape can be constructed by an infinite number of different
CSG trees. We suffer from the same issue that our approach only
finds one of the trees, but there is no guarantee that the tree we
obtain is, for instance, the most compact option.

Extended Fuzzy CSG System. In our work, we explore how fuzzy
logic may be applied to CSG modeling. We evaluate the fuzzy coun-
terparts of existing CSG operations (union, intersection, differ-
ence), but there are more fuzzy logic operators that do not exist in
CSG traditionally. For instance, the fuzzy aggregation operator [Klir
and Yuan 1995] can be perceived as a generalization of union or
intersection on a collection of primitive shapes, instead of two.
Adding such operators could enable new possibilities in tree struc-
ture optimization by, for instance, selecting which primitives to use
when performing boolean operations.

Hardware Acceleration. Our current fuzzy CSG system is based
on an un-optimized implementation of fuzzy logic operators. How-
ever, as shown in several other fields, fuzzy logic operators can be
greatly accelerated with parallel hardware implementations (e.g.,
[Ontiveros-Robles et al. 2016]). A hardware-accelerated version of
our CSG system based on fuzzy logic could accelerate our method
to run in real time.

CSG Generative Models. Making CSG systems differentiable could
be beneficial for future exploration on (black boxed) neural symbolic
generative models [Ritchie et al. 2023] that output (white boxed)
CSG tree parameters. As this is orthogonal to our contributions, we
simply evaluate our method based on the off-the-shelf architecture
in Sec. 5.3. Future work on better neural network architectures for
tree generation would be beneficial to empower CSG generation.

CSG modeling with optimization offers alternatives to mesh-based
geometry representations that can be compact and less resolution
dependent. Our exploration of the fuzzy boolean operator brings
the automatic production of CSG models one step closer and opens
avenues for further advances including speed-ups and relaxed con-
straints on CSG hierarchies. Inspired by the connections between
fuzzy logic and other graphics applications (e.g., image/volumetric
compositing), exploring applications of fuzzy logic beyond CSG
could be an interesting future direction.

REFERENCES
Loïc Barthe, BrianWyvill, and Erwin de Groot. 2004. Controllable Binary Csg Operators

for "soft Objects". Int. J. Shape Model. 10, 2 (2004), 135–154.
Mario I ChacónM. 2006. Fuzzy logic for image processing: definition and applications of

a fuzzy image processing scheme. In Advanced Fuzzy Logic Technologies in Industrial

Applications. Springer, 101–113.
Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing

Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong
Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3DModel Repository.
CoRR abs/1512.03012 (2015). arXiv:1512.03012 http://arxiv.org/abs/1512.03012

Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. 2020. BSP-Net: Generating Compact
Meshes via Binary Space Partitioning. In 2020 IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. Computer
Vision Foundation / IEEE, 42–51.

8

https://arxiv.org/abs/1512.03012
http://arxiv.org/abs/1512.03012

A Unified Differentiable Boolean Operator with Fuzzy Logic SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton, and
Andrea Tagliasacchi. 2020. Cvxnet: Learnable convex decomposition. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 31–44.
Boyang Deng, Sumith Kulal, Zhengyang Dong, Congyue Deng, Yonglong Tian, and

JiajunWu. 2022. Unsupervised Learning of Shape Programs with Repeatable Implicit
Parts. In Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates, Inc.,
37837–37850.

Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela
Rus, Armando Solar-Lezama, and Wojciech Matusik. 2018. Inversecsg: Automatic
conversion of 3d models to csg trees. ACM Transactions on Graphics (TOG) 37, 6
(2018), 1–16.

Ioan Dzitac, Florin Gheorghe Filip, and Misu-Jan Manolescu. 2017. Fuzzy logic is not
fuzzy: World-renowned computer scientist Lotfi A. Zadeh. International Journal of
Computers Communications & Control 12, 6 (2017), 748–789.

Markus Friedrich, Pierre-Alain Fayolle, Thomas Gabor, and Claudia Linnhoff-Popien.
2019. Optimizing evolutionary CSG tree extraction. In Proceedings of the Genetic

and Evolutionary Computation Conference, GECCO 2019, Prague, Czech Republic, July

13-17, 2019, Anne Auger and Thomas Stützle (Eds.). ACM, 1183–1191.
K. Gödel. 1932. Zum Intuitionistischen Aussagenkalkül. Anzeiger der Akademie der

Wissenschaften in Wien 69 (1932), 65–66.
Olivier Gourmel, Loic Barthe, Marie-Paule Cani, Brian Wyvill, Adrien Bernhardt, Math-

ias Paulin, and Herbert Grasberger. 2013. A gradient-based implicit blend. ACM
Transactions on Graphics (TOG) 32, 2 (2013), 1–12.

Herbert Grasberger, Jean-Luc Duprat, Brian Wyvill, Paul Lalonde, and Jarek Rossignac.
2016. Efficient data-parallel tree-traversal for BlobTrees. Comput. Aided Des. 70
(2016), 171–181. https://doi.org/10.1016/j.cad.2015.06.013

Karim Hamza and Kazuhiro Saitou. 2004. Optimization of Constructive Solid Geometry
Via a Tree-Based Multi-objective Genetic Algorithm. In Genetic and Evolutionary

Computation - GECCO 2004, Genetic and Evolutionary Computation Conference,

Seattle, WA, USA, June 26-30, 2004, Proceedings, Part II (Lecture Notes in Computer

Science, Vol. 3103), Kalyanmoy Deb, Riccardo Poli, Wolfgang Banzhaf, Hans-Georg
Beyer, Edmund K. Burke, Paul J. Darwen, Dipankar Dasgupta, Dario Floreano,
James A. Foster, Mark Harman, Owen Holland, Pier Luca Lanzi, Lee Spector, Andrea
Tettamanzi, Dirk Thierens, and Andrew M. Tyrrell (Eds.). Springer, 981–992. https:
//doi.org/10.1007/978-3-540-24855-2_110

Kacper Kania, Maciej Zieba, and Tomasz Kajdanowicz. 2020. UCSG-NET-unsupervised
discovering of constructive solid geometry tree. Advances in Neural Information

Processing Systems 33 (2020), 8776–8786.
Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.

In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,

CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann
LeCun (Eds.).

George J. Klir and Bo Yuan. 1995. Fuzzy sets and fuzzy logic - theory and applications.
Prentice Hall.

Qingde Li and Jie Tian. 2008. Blending Implicit Shapes Using Fuzzy Set Operations.
WSEAS Trans. Info. Sci. and App. 5, 7 (jul 2008), 1230–1240.

ZoëMarschner, Silvia Sellán, Hsueh-Ti Derek Liu, and Alec Jacobson. 2023. Constructive
Solid Geometry on Neural Signed Distance Fields. In SIGGRAPHAsia 2023 Conference

Papers, SA 2023, Sydney, NSW, Australia, December 12-15, 2023, June Kim, Ming C.
Lin, and Bernd Bickel (Eds.). ACM, 121:1–121:12.

Karl Menger. 1942. Statistical Metrics. Proceedings of the National Academy of Sciences

of the United States of America 28, 12 (1942), 535–537. http://www.jstor.org/stable/
87805

Emanuel Ontiveros-Robles, JL Gonzalez-Vazquez, Juan R Castro, and Oscar Castillo.
2016. A hardware architecture for real-time edge detection based on interval type-2
fuzzy logic. In 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
IEEE, 804–810.

Alexander A. Pasko, Valery Adzhiev, Alexei Sourin, and Vladimir V. Savchenko. 1995.
Function representation in geometric modeling: concepts, implementation and
applications. Vis. Comput. 11, 8 (1995), 429–446.

Inigo Quilez. 2013. Smooth Minimum. (2013). https://iquilezles.org/articles/smin/
Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li, Haiyong Jiang, Zhongang Cai,

Junzhe Zhang, Liang Pan, Mingyuan Zhang, Haiyu Zhao, and Shuai Yi. 2021. CSG-
Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Pars-
ing. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Mon-

treal, QC, Canada, October 10-17, 2021. IEEE, 12458–12467.
A. Ricci. 1973. A Constructive Geometry for Computer Graphics. Comput. J. 16, 2

(1973), 157–160. https://doi.org/10.1093/comjnl/16.2.157
Daniel Ritchie, Paul Guerrero, R. Kenny Jones, Niloy J. Mitra, Adriana Schulz, Karl

D. D. Willis, and Jiajun Wu. 2023. Neurosymbolic Models for Computer Graphics.
Comput. Graph. Forum 42, 2 (2023), 545–568.

V. L. Rvachev. 1963. On the analytical description of some geometric objects. Reports of
Ukrainian Academy of Sciences 153, 4 (1963), 765–767.

NM Samuel, Aristides Requicha, and SA Elkind. 1976. Methodology and results of an
industrial part survey. (1976).

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji.
2018. CSGNet: Neural Shape Parser for Constructive Solid Geometry. In 2018 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,

UT, USA, June 18-22, 2018. Computer Vision Foundation / IEEE Computer Society,
5515–5523.

Alvy Ray Smith. 1995. Image compositing fundamentals. Microsoft Corporation 5 (1995).
Robert B. Tilove. 1984. A Null-Object Detection Algorithm for Constructive Solid

Geometry. Commun. ACM 27, 7 (jul 1984), 684–694. https://doi.org/10.1145/358105.
358195

Emile van Krieken, ErmanAcar, and Frank vanHarmelen. 2022. Analyzing differentiable
fuzzy logic operators. Artificial Intelligence 302 (2022), 103602.

Q. Wu, K. Xu, and Jun Wang. 2018. Constructing 3D CSG Models from 3D Raw Point
Clouds. Comput. Graph. Forum 37, 5 (2018), 221–232. https://doi.org/10.1111/cgf.
13504

Rundi Wu, Chang Xiao, and Changxi Zheng. 2021. DeepCAD: A Deep Generative Net-
work for Computer-Aided Design Models. In 2021 IEEE/CVF International Conference

on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021. IEEE,
6752–6762.

Brian Wyvill, Andrew Guy, and Eric Galin. 1999. Extending the CSG Tree - Warping,
Blending and Boolean Operations in an Implicit Surface Modeling System. Comput.

Graph. Forum 18, 2 (1999), 149–158.
Ronald R Yager. 1980. On a general class of fuzzy connectives. Fuzzy sets and Systems

4, 3 (1980), 235–242.
Fenggen Yu, Qimin Chen, Maham Tanveer, Ali Mahdavi Amiri, and Hao Zhang. 2023.

DualCSG: Learning Dual CSG Trees for General and Compact CAD Modeling.
https://arxiv.org/abs/2301.11497

Fenggen Yu, Zhiqin Chen, Manyi Li, Aditya Sanghi, Hooman Shayani, Ali Mahdavi-
Amiri, and Hao Zhang. 2022. CAPRI-Net: learning compact CAD shapes with
adaptive primitive assembly. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 11768–11778.
Lotfi A Zadeh. 1965. Fuzzy sets. Information and control 8, 3 (1965), 338–353.

9

https://doi.org/10.1016/j.cad.2015.06.013
https://doi.org/10.1007/978-3-540-24855-2_110
https://doi.org/10.1007/978-3-540-24855-2_110
http://www.jstor.org/stable/87805
http://www.jstor.org/stable/87805
https://iquilezles.org/articles/smin/
https://doi.org/10.1093/comjnl/16.2.157
https://doi.org/10.1145/358105.358195
https://doi.org/10.1145/358105.358195
https://doi.org/10.1111/cgf.13504
https://doi.org/10.1111/cgf.13504
https://arxiv.org/abs/2301.11497

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Liu, et al.

A IMPLEMENTATION DETAILS FOR INVERSE CSG
Initialization. Our method starts with a randomly initialized full

binary CSG tree that consists of our fuzzy boolean nodes Eq. 12
and primitive shape represented as soft occupancy functions. We
initialize the parameters of the boolean and primitive nodes with
a uniform distribution between -0.5 and 0.5. As the required tree
complexity is unknown, we initialize a “big” CSG tree (e.g., 1024
primitive shapes) to reduce the chance of having an insufficient
number of primitives.

Primitive Choices. In terms of the choice of primitives, except the
one in Fig. 11, we use quadric surfaces 𝑞

𝑞(𝑥,𝑦, 𝑧) = 𝑞0𝑥
2 + 𝑞1𝑦2 + 𝑞2𝑧2 (18)

+ 𝑞3𝑥𝑦 + 𝑞4𝑦𝑧 + 𝑞5𝑧𝑥 + 𝑞6𝑥 + 𝑞7𝑦 + 𝑞8𝑧 + 𝑞9 (19)

in all our experiments partly due to its popularity in industry [Samuel
et al. 1976]. More crucially, we believe using a less expressive primi-
tive (compared to MLPs) give us a clearer signal on the performance
of our proposed boolean operator. This is because an expressive
primitive family, such as a big neural network, is able to fit a shape
even without using any boolean operations. Then we convert the
quadric function into a soft occupancy function with the sigmoid

function

𝑜 (𝑥,𝑦, 𝑧) = sigmoid(𝑠 × 𝑞(𝑥,𝑦, 𝑧)) (20)

where 𝑠 is a trainable “sharpness” parameter to uniformly scale the
quadric function to make it sharper or smoother. This allows the
model to change the sharpness of quadric surface without changing
the shape. Empirically, we notice a better convergence rate with a
trainable sharpness.

Boolean Parameterization. The side effect of having a unified
boolean operator in is the possibility of not converging the one
of the boolean operations. We alleviate this issue by parameterizing
c with c̃ ∈ R4 as

c = softmax(sin(𝜔 c̃) · 𝑡) (21)

where 𝑡 ∈ R is the temperature. We leverage the softmax function to
ensure the resulting c is always a valid barycentric coordinate. We
set the temperature 𝑡 to a high value (e.g., 𝑡 = 103) to encourage c to
be numerically close to a one-hot vector for most parameter choices
of c̃. The sin(𝜔 ·) (with𝜔 = 10) function is to ensure boolean operator
type can still be changed easily in the later stage of the optimization.
Without it, changing c will require many iterations when c̃ has a
large magnitude because each gradient update only updates c̃ a little.
We observe that this parameterization of c converges to a one-hot
vector in all our experiments, even though we only softly encourage
most parameter choices of c̃ to be one-hot vectors. We suspect this
is because any in-between operations will have occupancy values
away from 0 or 1, whereas the target shape has binary occupancy
values, converging to in-between operations can still occur when
imperfect fitting happens.

Optimization. We define the loss function as the mean square
error between the output occupancy from the CSG tree and the
ground truth occupancy, evaluated on some sampled 3D points.
We sample the points with approximately 40% on the surface, 40%

near the surface, and 20% randomly in the volume. We regenerate
these sampled point every couple iterations (e.g., 10) to make sure
we sample most areas in the volume. We use the ADAM optimizer
[Kingma and Ba 2015] with learning rate 1e-3 to train our model.

Pruning. After training, we prune redundant primitive/boolean
nodes with post-processing. To determine redundant nodes, we
follow the definition proposed by Tilove [1984] to characterize each
boolean or primitive node as either W-redundant or ∅-redundant.
Intuitively, given a boolean node and its two child subtrees, if a
subtree can be replaced with a full (soft occupancy with all 1s) or an
empty (soft occupancy with all 0s) function without changing the
output after the boolean operation, then this node is redundant and
can be removed.We generalize such a redundancy definition to fuzzy
boolean operations by setting a small threshold (e.g., mean squared
soft occupancy error 10−3) to determine whether the difference after
replacing a subtree with full/empty function is small enough. With
the notion of redundancy, we visit each node in the CSG tree in post-

order and delete the node (including its children) if it is classified
as a redundant node. We demonstrate the effectiveness of such a
simple pruning strategy to greatly reduce the complexity of the
optimized CSG tree in Fig. 10.

Linear Time CSG Forward Pass. During training, the full binary
tree structure can be implemented in parallel for each layer by lever-
aging the fact that the number of node is pre-determined. However,
after pruning, the tree structure becomes irregular. Running the
forward pass after pruning requires graph traversal from the leaf
primitive nodes to the boolean nodes and all the way to the root
boolean node. To facilitate efficient inference, we employ the linear
time traversal algorithm proposed by Grasberger et al. [2016] to
speed up the forward pass. Their key idea is to traverse the CSG
tree in post-order and push/pop intermediate results from a stack.
This traversal has a continuous memory storage of all the nodes
and only requires reading each node once.

10

	Abstract
	1 Introduction
	2 Related Work
	2.1 Gradient-Based CSG Optimization
	2.2 Boolean Operators in Geometric Modeling

	3 Background
	3.1 Fuzzy Set
	3.2 Fuzzy Logic

	4 A Unified Differentiable Boolean Operator
	4.1 Product Fuzzy Logic
	4.2 Unifying Boolean Operations

	5 Results
	5.1 Fuzzy CSG System
	5.2 Single Shape Inverse CSG with Gradient Descent
	5.3 CSG Generative Models

	6 Limitations & Future Work
	References
	A Implementation Details for Inverse CSG

