
Differentiable Heightfield Path Tracing with Accelerated
Discontinuities

Xiaochun Tong

University of Waterloo

Canada

xtong@uwaterloo.ca

Hsueh-Ti Derek Liu

Roblox

Canada

hsuehtil@gmail.com

Yotam Gingold

George Mason University

USA

ygingold@gmu.edu

Alec Jacobson

University of Toronto & Adobe Research

Canada

jacobson@cs.toronto.edu

geometry & texture rendering (morning) rendering (afternoon)

Figure 1: Our method enables real-time performance on inverse rendering tasks on heightfields. For instance, we use our
renderer to optimize a heightfield geometry with texture (left) such that the “open” sign appears during the day and the “closed”
sign appears in the afternoon.

ABSTRACT
We investigate the problem of accelerating a physically-based differ-

entiable renderer for heightfields based on path tracing with global

illumination. On a heightfield with 1 million vertices (1024×1024
resolution), our differentiable renderer requires only 4 ms per sam-

ple per pixel when differentiating direct illumination, orders of

magnitude faster than most existing general 3D mesh differentiable

renderers. It is well-known that one can leverage spatial hierar-

chical data structures (e.g., the maximum mipmaps) to accelerate
the forward pass of heightfield rendering. The key idea of our ap-

proach is to further utilize the hierarchy to speed up the backward

pass—differentiable heightfield rendering. Specifically, we use the

maximum mipmaps to accelerate the process of identifying scene

discontinuities, which is crucial for obtaining accurate derivatives.

Our renderer supports global illumination. we are able to opti-

mize global effects, such as shadows, with respect to the geometry

and the material parameters. Our differentiable renderer achieves

real-time frame rates and unlocks interactive inverse rendering

applications. We demonstrate the flexibility of our method with

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0159-7/23/08. . . $15.00

https://doi.org/10.1145/3588432.3591530

terrain optimization, geometric illusions, shadow optimization, and

text-based shape generation.

CCS CONCEPTS
• Computing methodologies → Rendering.

KEYWORDS
differentiable rendering, inverse rendering, heightfield rendering,

shading-based editing

ACM Reference Format:
Xiaochun Tong, Hsueh-Ti Derek Liu, Yotam Gingold, and Alec Jacobson.

2023. Differentiable Heightfield Path Tracing with Accelerated Discontinu-

ities. In Special Interest Group on Computer Graphics and Interactive Tech-
niques Conference Conference Proceedings (SIGGRAPH ’23 Conference Pro-
ceedings), August 6–10, 2023, Los Angeles, CA, USA. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3588432.3591530

1 INTRODUCTION
A heightfield is a 2D grid of scalar values indicating a height over a

base elevation. Heightfields are a common geometric representation

for terrains, depth, and geometric details in the form of displacement

maps. Efficient rendering of heightfield data plays a critical role

in visual effects and interactive applications. Such importance has

motivated the development of many specialized data structures to

construct levels of detail and to accelerate the (forward) rendering

of heightfields.

The heightfield is also a popular geometric representation for

inverse problems in computer vision, such as shape from shading.
A key challenge is to simulate light transport in a 3D scene and

https://doi.org/10.1145/3588432.3591530
https://doi.org/10.1145/3588432.3591530

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Xiaochun Tong, Hsueh-Ti Derek Liu, Yotam Gingold, and Alec Jacobson

40

30

20

10

0
10 105 6 # vertices

ru
nt

im
e

(m
s)

Figure 2: We compare the runtime of our method against
generic 3D mesh differentiable renderers, including [Loubet
et al. 2019; Zhang et al. 2021]. We report the runtime on the
backward pass with varying spatial resolutions. While these
renderers are implemented under different frameworks, our
method (blue) achieves orders of magnitude speedups and
scales to higher resolution geometries. Note that the method
by Loubet et al. [2019] (green) was evaluated on a lower reso-
lution image due to memory constraints.

evaluate the gradient with respect to scene parameters. These gradi-

ents will then inform the optimization on how to manipulate those

scene parameters. Recent progress on differentiable rendering has

led to breakthroughs estimating such derivatives for generic 3D

scenes. Despite being applicable to heightfields, they are slower

than necessary. A generic scene often involves arbitrary topologies

and irregular discretization, which prevents using acceleration data

structures specific to heightfields.

In this work, we propose a differentiable renderer specialized for

heightfield geometry. Our renderer is a physically-based path tracer

with global illumination, thus it supports taking derivatives with

respect to arbitrary scene parameters. Albeit limited to heightfields,

our renderer is orders of magnitude faster than generic differen-

tiable renderers (see Fig. 2). The key ingredient to our efficiency

is to leverage the well-known maximum mipmaps structure, used
for forward rendering, to accelerate the backward pass. We demon-

strate the efficiency and flexibility of our method in many inverse

heightfield problems, including multi-view optimization, geometric

illusions (see Fig. 1), shadow optimization (see Fig. 3), and text-based

shape generation.

1.1 General Differentiable Rendering
Rendering is a process to turn a 3D scene into a 2D image by mod-

eling the flow of light in the scene [Pharr et al. 2016]. Differentiable
rendering models the inverse of the rendering process, inferring

how a pixel intensity changes with respect to changes in scene

parameters. Differentiable rendering has shown to be a powerful

tool for many graphics, vision, and machine learning applications

[Kato et al. 2020].

Differentiable rendering algorithms are closely related to the

rendering approach. Starting with the work by Loper and Black

[2014], the earliest works differentiated through rasterization-based
renderers.

Figure 3: Our differentiable path tracer enables inverse ren-
dering on global illumination effects, such as shadows. We
optimize the heightfield geometry (left) so that the shadow it
casts looks like a human face, inspired by Kumi Yamashita’s
shadow art (right). Image obtained from flickr.com pho-
tographed by Amaury Laporte under CC BY 2.0

Amajor focus of this line of work is on approximating derivatives

along the silhouette of an object, because it is not differentiable in

nature;

approaches have used Gaussian filters [Rhodin et al. 2015], lin-

ear approximations [Kato et al. 2018], and sigmoid functions [Liu

et al. 2019a; Petersen et al. 2019]. As anti-aliasing techniques are

often used to improve rendering quality, Laine et al. [2020] propose

an analytic anti-aliasing method to enable visibility derivatives.

These rasterization-based differentiable renderers have demon-

strated their applicability in 3D reconstruction [Chen et al. 2019;

Gao et al. 2020; Munkberg et al. 2021; Wang et al. 2019], geometry

editing [Liu et al. 2018], computing adversarial examples [Liu et al.

2019b], and editing vector graphics [Li et al. 2020].

Another line of work focuses on differentiating through phys-
ically based path tracers. Li et al. [2018] proposed to sample dis-

continuities in a scene to compute visibility gradients, and the

efficiency of boundary sampling is further improved by Yan et al.

[2022]. Loubet et al. [2019] propose to use a change of variables to

remove discontinuities in the scene. Bangaru et al. [2020] applied

the divergence theorem to turn the boundary integral into an area

integral and use a boundary-aware convolution to ensure unbiased

gradient estimate and differentiability. Zhou et al. [2021] proposed

to use beam tracing, instead of conventional ray tracing, to ob-

tain and differentiate anti-aliased visibility. Bangaru et al. [2021]

proposed a programmatic solution to automatically differentiating

integrals that involve discontinuities. In addition to handling scene

discontinuities, people have addressed other aspects of accelerat-

ing physically based differentiable rendering. Zhang et al. [2021]

presented a differential path integral equation, the differential coun-
terpart of the path integral formula. Instead of using automatic

differentiation, Nimier-David et al. [2020] proposed to use ray trac-

ing to compute derivatives which leads to a more memory-efficient

solution. Vicini et al. [2021a] proposed to re-use the results from for-

ward path tracing, which leads to a fast differentiable renderer with

linear complexity. Jakob et al. [2022a] further tackled efficiency

by introducing a compiler tailor-made for accelerating differen-

tiable renderers. For a more detailed discussion of physically based

differentiable rendering techniques, please refer to [Zeltner et al.

2021].

Our contribution on accelerated discontinuities complements

the development of physically based differentiable path tracer by

flickr.com

Differentiable Heightfield Path Tracing with Accelerated Discontinuities SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

accelerating the computation when the geometry is a heightfield.

Albeit limited, this choice leads to efficient and accurate computa-

tion of scene discontinuities. Thus, our resulting renderer runs in

real-time and unlock interactive applications (see Sec. 3).

We omit a discussion of neural rendering techniques which often

approximate a physically based renderer with a (differentiable)

neural network, e.g., [Che et al. 2018]. For interested readers, please

refer to [Tewari et al. 2020] for a recent survey.

1.2 Heightfield (Forward) Rendering
A heightfield is a special type of geometry that represents a shape

via a 2D array of height values. Heightfields are commonly used to

represent geometric data such as terrains, depth, and surface details

(a.k.a. displacement maps). The regular structure of heightfields, in

contrast to irregular 3D meshes, has the potential to represent high

resolution geometries with faster render times. For instance, one

can construct tree structures to adaptively polygonalize a height-

field at different resolutions [Duchaineau et al. 1997; Taylor 1994].

During render time, these spatial hierarchies can be applied to gen-

erate continuous levels of detail on-the-fly based on an allowable

rasterization error [Lindstrom et al. 1996] or distance to the view-

point [Röttger et al. 1998]. Hoppe [1998] further extended these

techniques to generate temporally-coherent levels of detail. Sev-

eral approaches to ray tracing heightfields leverage the regular

structure of the heightfield to deploy accelerated voxel traversal

algorithms [Amanatides and Woo 1987; Henning and Stephenson

2004; Musgrave 1988; Qu et al. 2003]. One can also construct a

spatial hierarchy to accelerate the computation of ray-height inter-

sections [Cohen-Or et al. 1996; Cohen-Or and Shaked 1993]. Tevs

et al. [2008] introduced a hierarchical data structure called maxi-
mum mipmaps for efficient rendering with low pre-computation

cost. This approach unlocks real-time performance in rendering

heightfields with dynamic changes in height values. Snyder and

Nowrouzezahrai [2008] showed that one can approximate the visi-

bility function with spherical harmonic bases and obtain real-time

performance while rendering soft shadows. Nowrouzezahrai and

Snyder [2009] extended this approach to global illumination ef-

fects, such as inter-reflections and non-diffuse surfaces, on dynamic

heightfields. Despite being efficient, using (low-order) spherical har-

monics bases fails in capturing sharp shadows. Thus, Timonen and

Westerholm [2010] proposeed an efficient method to determine

blocking angles exactly, enabling rendering sharp shadows near

real-time. Recently, Jung et al. [2020] combined the idea of max-

imum mipmaps and dynamic programming to further accelerate

ray tracing on heightfields. Other specialized heightfield rendering

techniques have also been proposed for computing caustics [Yuksel

and Keyser 2009], ambient occlusion [Oat and Sander 2007], and

rendering geometric details [Thonat et al. 2021].

Despite a significant amount of work on the forward process of

heightfield rendering, the backward pass—differentiable heightfield

rendering—has received far less attention. The closest approach to

our work is by Zienkiewicz et al. [2016]. They proposed a simplified

differentiable heightfield renderer that only considers primary rays

and ignores discontinuities in the scene. In contrast, our differen-

tiable heightfield renderer is a general-purpose differentiable path

tracer. Our approach handles discontinuities and supports global

illumination. We can take derivatives with respect to many scene

parameters, such as height values, lighting, and materials, while en-

joying the efficiency of heightfield rendering. We believe our work

can serve as an important ingredient in many other heightfield

optimization tasks, e.g., [Sellán et al. 2020].

2 METHOD
Spatial data structures, such as the maximum-mipmap [Tevs et al.

2008], have traditionally been used to accelerate heightfield render-

ing. The key idea of our approach is to leverage such a powerful

tool used in the forward rendering to accelerate the backward pass

— differentiable heightfield rendering. We enable the backward pass

by reparameterizing scene discontinuities (Sec. 2.1). We illustrate

how to apply the reparameterization in the context of differentiable

heightfield rendering in Sec. 2.2 and apply a mipmap to accelerate

the backward passes in Sec. 2.3. We describe how to integrate with

a constant memory backpropagation algorithm [Nimier-David et al.

2020] in App. B.

2.1 Reparameterization
Differentiable rendering with respect to the heightfield geometry

requires differentiating through an integral (the light transport

equation [Pharr et al. 2016]) with integral parameters depending on

the scene geometry. We illustrate the main idea of our method by

first focusing on a simplified 1D integral and defer the discussion

on the full light transport equation in Sec. 2.2.

Let us consider a 1D integral 𝐼 (ℎ) where the integral bounds

𝑎(ℎ), 𝑏 (ℎ) and the integrand 𝑓 (𝑥, ℎ) contain discontinuities that

depend on the heightfield parameter ℎ.

𝐼 (ℎ) =
∫ 𝑏 (ℎ)

𝑎 (ℎ)
𝑓 (𝑥, ℎ)𝑑𝑥 (1)

We can split the integral domain into𝑀 intervals {[𝑟 𝑗 (ℎ), 𝑟 𝑗+1 (ℎ))},
with 𝑟1 (ℎ) = 𝑎(ℎ), 𝑟𝑀+1 (ℎ) = 𝑏 (ℎ). These intervals are computed

based on the scene geometry so that each integrand 𝑓𝑗 (𝑥, ℎ) within
the interval 𝑗 is continuous.

𝐼 (ℎ) =
𝑀∑︁
𝑗=1

𝐼 𝑗 (ℎ) & 𝐼 𝑗 (ℎ) =
∫ 𝑟 𝑗+1 (ℎ)

𝑟 𝑗 (ℎ)
𝑓𝑗 (𝑥, ℎ)𝑑𝑥 (2)

where {𝑓𝑗 } are 𝑓 restricted to the 𝑗-th interval. Computing 𝜕𝐼/𝜕ℎ by

using Monte Carlo estimation requires one to estimate derivatives

of both the integrand 𝑓𝑗 and the integral bound 𝑟 𝑗 with respect to

the scene geometry ℎ. Naively applying automatic differentiation to

compute derivatives will miss contributions of the integral bounds

𝑟 𝑗 as they have zero measure. One could rely on dedicated sam-

pling techniques, such as edge sampling [Li et al. 2018], to estimate

the derivative of integral bounds. However, edge sampling scales

poorly when the scene involves complex geometric discontinuities.

We overcome this limitation by reparameterizing the integral to

convert it into an equivalent integral with constant bounds and

move the contribution of 𝑟 𝑗 (ℎ) into the integrand. For each 𝑗 , we

find a differentiable sampling technique 𝑥 𝑗 (𝑢,ℎ) = 𝑇𝑗 (𝑢,ℎ) to map

𝑢 to [𝑟 𝑗 (ℎ), 𝑟 𝑗+1 (ℎ)), where 𝑢 is uniformly distributed on [0, 1). In
our case, we choose the reparameterization

𝑇𝑗 (𝑢,ℎ) = (1 − 𝑢)𝑟 𝑗 (ℎ) + 𝑢𝑟 𝑗+1 (ℎ) (3)

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Xiaochun Tong, Hsueh-Ti Derek Liu, Yotam Gingold, and Alec Jacobson

The change of variable to 𝑇 will introduce an additional term, the

determinant of the Jacobian | detJ𝑇𝑗
(𝑢,ℎ) |, to accommodate the

change in “volume” due to the reparameterization. One can also

view it as the reciprocal probability density 1/𝑝 𝑗 (𝑥 𝑗 ,ℎ) of sample 𝑥 𝑗
according to the technique 𝑇𝑗 . Thus, incorporating the reparame-

terization into Eq. (2) results in

𝐼 𝑗 (ℎ) =
∫

1

0

𝑓𝑗 (𝑥 𝑗 (𝑢,ℎ), ℎ)
���detJ𝑇𝑗

(𝑢,ℎ)
���𝑑𝑢

=

∫
1

0

𝑓𝑗 (𝑥 𝑗 (𝑢,ℎ), ℎ)
𝑝 𝑗 (𝑥 𝑗 (𝑢,ℎ), ℎ)

𝑑𝑢 (4)

𝜕𝐼

𝜕ℎ
≈ 1

𝑁

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝜕

𝜕ℎ

𝑓𝑗 (𝑥 𝑗 (𝑢,ℎ), ℎ)
𝑝 𝑗 (𝑥 𝑗 (𝑢,ℎ), ℎ)

(5)

However, evaluating the derivative accurately for all intervals

jointly is impractically expensive because it requires densely sam-

pling each interval. Oftentimes, we are limited to just sampling

one interval at a time. In such cases, we randomly select an interval

𝑗 according to a discrete distribution 𝑝 (𝑗, ℎ) to obtain the Monte

Carlo estimator.

𝜕𝐼

𝜕ℎ
≈ 1

𝑁

𝑁∑︁
𝑖=1

1

𝑝 (𝑗, ℎ)
𝜕

𝜕ℎ

𝑓𝑗 (𝑥 𝑗 (𝑢,ℎ), ℎ)
𝑝 𝑗 (𝑥 𝑗 (𝑢,ℎ), ℎ)

(6)

2.2 Differentiable Rendering on Heightfields
We can apply this gradient estimator in the context of differentiable

heightfield rendering. We start with the light transport equation:

𝐿𝑜 (x, 𝜔𝑜 , ℎ) = 𝐿𝑒 (x, ℎ) +
∫
Ω
𝐿𝑖 (x, 𝜔𝑖 , ℎ) 𝑓 (x, 𝜔𝑜 , 𝜔𝑖 , ℎ) 𝑑𝜔⊥

𝑖 (7)

where 𝐿𝑖 , 𝐿𝑜 are the input/output radiance, 𝜔𝑖 , 𝜔𝑜 are the incom-

ing/outgoing lighting directions, x is a point on the surface, 𝑓 is

the bidirectional reflectance distribution function (BRDF) function,

𝜔⊥
𝑖
is the projected solid angle, and ℎ is the scene parameter, such

as geometry, lighting, and material. Usually, we only integrate over

the hemisphere that aligns with the surface normal. However, in

our method we need to integrate over the entire unit sphere. We

will explain why this is required shortly.

Differentiable rendering aims to compute the derivative of out-

going radiance 𝐿𝑜 with respect to rendering parameters ℎ. When

the integrand is continuous, it is relatively easy to compute the

derivatives. We can apply automatic differentiation and use the ra-
diative backpropagation method [Nimier-David et al. 2020; Zeltner

et al. 2021] or equivalently the path replay backpropagation [Vicini

et al. 2021b].

𝜕𝐿𝑜 (x, 𝜔𝑜 , ℎ)
𝜕ℎ

=
𝜕

𝜕ℎ

∫
Ω
𝐿𝑖 (x, 𝜔𝑖 , ℎ) 𝑓 (x, 𝜔𝑜 , 𝜔𝑖 , ℎ)𝑑𝜔⊥

𝑖

=

∫
Ω

𝜕

𝜕ℎ
𝐿𝑖 (x, 𝜔𝑖 , ℎ) 𝑓 (x, 𝜔𝑜 , 𝜔𝑖 , ℎ)𝑑𝜔⊥

𝑖

=

∫
Ω
𝐿𝑖 (x, 𝜔𝑖 , ℎ)

𝜕𝑓 (x, 𝜔𝑜 , 𝜔𝑖 , ℎ)
𝜕ℎ

𝑑𝜔⊥
𝑖

+
∫
Ω

𝜕𝐿𝑖 (x, 𝜔𝑖 , ℎ)
𝜕ℎ

𝑓 (x, 𝜔𝑜 , 𝜔𝑖 , ℎ)𝑑𝜔⊥
𝑖 (8)

We omit 𝐿𝑒 (x, ℎ) term here for simplicity. This derivation is valid if

both 𝑓 and 𝐿𝑖 are continuous according to the Leibniz rule. With

this relationship, we can easily use either method to estimate 𝜕𝐿𝑜/𝜕ℎ
via Monte Carlo integration.

However, 𝐿𝑖 often contains discontinuities related to visibility

changes such as object silhouettes and shadows. Accurately iden-

tifying these discontinuities can be difficult in general 3D mesh

rendering. Our observation is that if we parameterize the integral

using a spherical coordinate such that the up-direction is aligned

with the heightfield, we can reduce the 2D integral over the unit

sphere to a nested 1D integral where discontinuities only occur in

1D.

WLOG, assume the scene consists of a single heightfield geome-

try in which the up direction is aligned with the world space z-axis.

We rewrite the integral using world space spherical coordinates,

where \ and 𝜙 are the zenith and azimuth angles respectively,

𝐿𝑜 (x, 𝜔𝑜 , ℎ) = 𝐿𝑒 (x, ℎ)

+
∫

2𝜋

0

∫ 𝜋

0

𝐿𝑖 (x, 𝜔𝑖 , ℎ) 𝑓 (x, 𝜔𝑜 , 𝜔𝑖 , ℎ) |𝜔𝑖 · n̂| sin\︸ ︷︷ ︸
𝐿𝑖 (x, 𝜔𝑖 , 𝜙, \,ℎ)

𝑑\𝑑𝜙. (9)

where n̂ is the surface normal at a surface point x. For any surface

point, discontinuities in 𝐿𝑖 (x, 𝜔𝑖 , ℎ) manifest as a series of curves

𝑟 𝑗 (𝜙,ℎ). In other words, the discontinuity curve does not contain a

vertical tangent line. If we only consider discontinuities induced

by geometric occlusion, this is indeed true. However, there are also

other types of discontinuities in rendering. For example, the surface

normal jumps discontinuously between texels when we triangulate

the heightfield. If nearest neighbor interpolation were used, the

BRDF is also discrete along the surface. While our method can be

extended to detect these kind of discontinuities, a better approach

is to interpolate these features smoothly so that they remain con-

tinuous over the entire heightfield. As a result, both normals and

BRDF are smooth along the heightfield and no discontinuity curve

has a vertical tangent line. Under such conditions, even if points on

the discontinuity curve can move in the 𝜙 dimension, its motion

can still be captured by the 1D motion at heightfield vertices. The

movement at the end points of each discontinuity curve cannot

be captured in 1D as they result in discontinuous change in 𝑀

w.r.t. to 𝜙 , where𝑀 is the number of continuous intervals (Eq. (2)).

However, on a smoothly interpolated heightfield, the end points

of one curve always lie on another discontinuity curve. Thus if𝑀

changes at \ ′,
∫
𝐿𝑖 (x, 𝜔𝑖 , 𝜙, \, ℎ) 𝑑\ evaluates to the same value as

\ → \ ′. In such cases, the integral is continuous and the change in

𝑀 does not induce a discontinuity in 𝐿𝑖 (x, 𝜔𝑖 , 𝜙, \, ℎ). Thus we can
ignore the change in𝑀 .

For each 𝜙 , discontinuity curves separate [0, 𝜋) into a series of

intervals where 𝐿(x, 𝜔𝑖 , 𝜙, \) is continuous w.r.t \ .

𝐿𝑜 (x, 𝜔𝑜 , ℎ) = 𝐿𝑒 (x, ℎ) +
∫

2𝜋

0

𝑀∑︁
𝑗=1

∫ 𝑟 𝑗+1 (𝜙,ℎ)

𝑟 𝑗 (𝜙,ℎ)
𝐿𝑖 (x, 𝜔𝑖 , 𝜙, \, ℎ)𝑑\𝑑𝜙

= 𝐿𝑒 (x, ℎ)+
∫

2𝜋

0

𝑀∑︁
𝑗=1

∫
1

0

𝐿𝑖 (x, 𝜔𝑖 , 𝜙, \ (𝑢,ℎ), ℎ)
𝑝 𝑗 (\ (𝑢,ℎ), 𝜙, ℎ)

𝑑𝑢𝑑𝜙

(10)

where 𝑝 𝑗 (\, 𝜙, ℎ) is the probability density of sample \ according to

ℎ and 𝜙 in the 𝑗-th interval. While discontinuity 𝑟 𝑗 is absent from

the bottom equation, determining the reparameterized sampling

Differentiable Heightfield Path Tracing with Accelerated Discontinuities SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

^
do

o

y

^
d ^

do

Figure 4: Discontinuities in a heightfield are a subset of the
peaks in a heightfield. We characterize a peak with respect to
a point x with two conditions: (1) line x, y must be a tangent
line at y and (2) the curvature of y along direction ˆd must be
negative.

level n

heightfield

…

level n-1 level n-2

Figure 5:We use themaximummipmaps to accelerate finding
discontinuities in the backward pass.

𝑝 𝑗 requires knowledge of 𝑟 𝑗 . In rendering, 𝐿𝑖 itself is a recursive

integral. Thus evaluating Eq. (10) as is requires exponential complex-

ity w.r.t. path length which is prohibitively expensive. We instead

stochastically sample one interval at a time. By using Eq. (6), where

we sample the interval according to a probability distribution 𝑝 𝑗 ,

we can derive the following estimator.

𝜕𝐿𝑜 (x, 𝜔𝑜 , ℎ)
𝜕ℎ

≈ 𝜕𝐿𝑒 (x, ℎ)
𝜕ℎ

+ 1

𝑁

𝑁∑︁
𝑖=1

1

𝑝 (𝑗, ℎ)
𝜕

𝜕ℎ

𝐿𝑖 (x, 𝜔𝑖 , 𝜙, \ (𝑢,ℎ), ℎ)
𝑝 𝑗 (\ (𝑢,ℎ), ℎ)𝑝 (𝜙)

(11)

However, to evaluate this expression, we need to construct

the reparameterized sampling strategy 𝑝 𝑗 (\, 𝜙, ℎ) that depends on
the location of discontinuity 𝑟 𝑗 (𝜙,ℎ). Identifying discontinuities

𝑟 𝑗 (𝜙,ℎ) is often the bottleneck when computing 𝜕𝐿𝑜/𝜕ℎ.

2.3 Accelerate Discontinuities Searching
Identifying discontinuities boils down to identifying peaks on the

slice of the heightfield along
ˆd (see Fig. 4). These peaks can be

identified by tracking derivatives. According to the notation in

Fig. 4, a peak at distance 𝑡 along ˆd must satisfy

ℎ(o + 𝑡 ˆd) − ℎ(o)
𝑡

=
𝜕ℎ(o + 𝑡 ˆd)

𝜕 ˆd
&

𝜕2ℎ(o + 𝑡 ˆd)
𝜕 ˆd2

< 0, (12)

where the first condition says that the line from the location x
to the discontinuity y must be a tangent line at the location of

discontinuity y. The second condition indicates that y should be

concave (like a mountain).

Figure 6: We accelerate the
computation by only search-
ing for the discontinuities
that have (primary) influ-
ence on the incoming radi-
ance. For example, we ig-
nore the peak at t2 because
it is blocked by the peak at
t1 and has no contribution
to the incoming radiance.

However, naively tracking the

derivative conditions for all loca-

tions is expensive. We can lever-

age the fact that a lower peak

will be blocked by a higher peak

and have no effect in the radiance

splitting Eq. (10) to accelerate the

computation. In Fig. 6, we can see

that the peak located at 𝑡2 has no

influence on the outgoing radi-

ance at x because it is blocked by

the peak at 𝑡1.

To identify the peaks that have

influence to a location x, we com-

pare the slope from the origin x
to the peak locations. Let 𝑡𝑖 , 𝑡 𝑗 be

the horizontal distance to the two

peaks that cause discontinuities

at x and 𝑡𝑖 < 𝑡 𝑗 . We can compute

the slope 𝑘 (𝑡) from x = [o, ℎ(o)] to the location [o + 𝑡 ˆd, ℎ(o + 𝑡 ˆd)]

𝑘 (𝑡) = ℎ(o + 𝑡 ˆd) − ℎ(o)
𝑡

(13)

If the peak at 𝑡𝑖 does not block the peak at 𝑡 𝑗 , then they must satisfy

𝑘 (𝑡𝑖) < 𝑘 (𝑡 𝑗). Therefore, once a discontinuity is found at 𝑡𝑖 , we

can skip the locations where their slopes are smaller than 𝑘 (𝑡𝑖).
This can be efficiently achieved via maximum mipmaps (Fig. 5).

For completeness, we provide pseudocode in Alg. 1. Once we are

able to identify the location of discontinuities, we then estimate

the derivatives with the method by Nimier-David et al. [2020]. We

describe the integration with Nimier-David et al. [2020] in detail

in App. A.2 and App. B. We extend our method to handle primary

visibility and direct lighting in App. A.1.

3 EXPERIMENTS
We implemented our renderer in Rust using the JIT framework in

LuisaRender [Zheng et al. 2022]. To verify the correctness of our

method, we compare the derivatives computed with our method

against the finite difference approximation. In Fig. 7, we can observe

that our efficient lighting and geometry derivatives are correctly

computed and converge to finite differences.

We compare the numerical quality of gradient in a similar cone

scene. In Fig. A1, we include the gradient images computed by finite

differences, Mitsuba 3 [Jakob et al. 2022b], and our method. The

reference image was computed using 8192 SPP and the gradient

image was computed using 16 SPP. We computed the mean squared

error of the gradient image computed by each renderer with its

corresponding finite difference image. Under equal sample, our

method has 7.7x lower error compared to Mitsuba 3.

We pick a set of inverse rendering tasks to demonstrate the

generality of our differentiable heightfield renderer. We show that

our method is capable of optimizing the geometry, shadow, and

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Xiaochun Tong, Hsueh-Ti Derek Liu, Yotam Gingold, and Alec Jacobson

finite difference our estimation

finite difference

lighting

scene

geometry

our estimation

.2

-.2
1.0

-1.0

Figure 7: We evaluate the accuracy of our method by com-
paring against finite differences. On a cone geometry (left),
our lighting and geometry gradients (right) converge to the
finite difference results (middle). Note that the light source
is moving up-and-down w.r.t the image and the geometry is
perturbed along the z-axis. The magnitude is the derivative
of the pixel intensity w.r.t the lighting/geometrymovements.

initial rendering optimized rendering target image

optimized height field with optimized texture

Figure 8: Given a set of target images of a terrain (top right),
we optimize a heightfield (top middle) from a plane (top left)
to match the target images by changing the geometry and
texture. We visualize the optimized terrain model on the
bottom row.

texture of the heightfield. We further demonstrate that our method

is able to be used jointly with machine learning tasks.

Geometry & Texture Optimization. The simplest task to evaluate

our method is to do inverse geometry and texture optimization.

Specifically, given a set of target images, we want to optimize a

single heightfield from multiple views [Seitz and Kutulakos 1998].

To quantitatively evaluate our method, we design a toy task where

ground truth is available. Given textured terrain data T, we render
T into a set of target images using a set of lighting and camera

parameters {\𝑖 }. Then we use the same rendering parameter \𝑖 to

optimize a heightfield H to match the target images by minimizing

the squared L2 pixel difference across all views. Specifically, our

3%

5%

6%

4%

2%

1%

0%
optimized height target height error

Figure 9:We visualize the error (right) between our optimized
heightfield (left) and the ground truth heightfield (middle) in
Fig. 8. We can observe that our method faithfully reproduces
the target heightfield.

initial rendering user erases shadow optimized rendering

initial geometry optimized geometry

Figure 10: Our approach enables interactive inverse ren-
dering editing. Given a heightfield (top left), the geometry
changes interactively (top right) when one erases part of the
shadow (top middle). We visualize the results under a differ-
ent lighting at the bottom.

optimization can be written as

minimize

H

∑︁
𝑖∈views

∥R(\𝑖 ,H) − R(\𝑖 , T)∥22 (14)

where we use R(\𝑖 ,H) to denote the rendered image of the height-

fieldH under the 𝑖-th camera parameter \𝑖 . We optimize this energy

with the ADAM optimizer [Kingma and Ba 2015] and the Laplacian

preconditioner [Nicolet et al. 2021]. In Fig. 8, we can observe the

effectiveness of our method in turning an initial heightfield (a plane)

into a textured terrain. We further visualize the difference between

the ground truth terrain and our optimized terrain in Fig. 9.

Geometric Illusions. We use our method to create a geometric

illusion. The goal is to generate a single shape whose renderings

look like different objects from different views. People have worked

on this problem under different settings, such as shadow projection

[Mitra and Pauly 2009; Sadekar et al. 2022] or wire geometry [Hsiao

et al. 2018]. In our case, we focus on optimizing the heightfield

geometry with textures to achieve the illusion. Our setup is similar

to the problem considered in [Alexa and Matusik 2010] where

they consider illusions that can be achieve with shading changes

[Gingold and Zorin 2008; Panozzo and Sorkine-Hornung 2014].

However, the key difference is that our method is optimized under

Differentiable Heightfield Path Tracing with Accelerated Discontinuities SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

initial rendering user edits reflection optimized rendering

Figure 11: Our method is able to handle glossy reflection. We
can observe the optimized geometry (right) produces a glossy
reflection that accurately matches the edited image (middle).

global illumination with complex light transport behavior. In Fig. 1,

we provide a target image of “OPEN” I1 with a manually defined

lighting condition\1 in themorning and a target image of “CLOSED”

I2 with another lighting condition \2 in the evening. Then given an

initial heightfield of a plane H, we minimize the squared L2 pixel

difference between the rendered heightfield and the target images

by changing the geometry of heightfields as

minimize

H
∥R(\1,H) − I1∥22 + ∥R(\2,H) − I2∥22 . (15)

Similar to Eq. (14), we useADAMwith the Laplacian preconditioner

in the optimization.

Shadow Optimization. We use a similar setup to optimize a ge-

ometry to cast a shadow of a predefined shape. In Fig. 3, we specify

the target image to be a human face and minimize the L2 loss. How-

ever, simply optimizing the geometry will result in a non-desirable

local minimum where the dark face mainly comes from shading

changes, rather than a shadow. Thus, we constrain the left half of

the heightfield to be zero so that the dark face can only appear from

the shadow cast by the right part of the heightfield.

Shading-Based Editing. The efficiency of our method further

enables us to do interactive shadow editing. In Fig. 10, we erase

a part of the shadow and we can interactively observe geometry

changes. Our method can also optimize glossy reflection. In Fig. 11,

we optimize geometry to match user edited reflection. We minimize

the L2 loss on the lower half of rendered and edited image by

optimizing for the geometry of the mountain. We use 32 samples

per pixel in each iteration and the Laplacian preconditioner [Nicolet

et al. 2021]. Albeit using uniform BRDF sampling on a highly glossy

surface, we are still able to optimize the geometry to closely match

the edited reflection.

CLIP Shape Generation. We further show the applicability of our

method in learning-based generative tasks. CLIP [Radford et al.

2021] is a pre-trained model that can either encode text or an image

into a feature vector. The model is trained in the way that if the

text prompt and the image content are similar, then their feature

embeddings will be similar. We leverage the power of CLIP to

generate a heightfield based on a given text prompt. We set up the

initial geo.

optimized geo.

geo. only

“volcano and a river of lava”“crater on the moon”

CLIP text prompt

Figure 12: We use our differentiable renderer jointly with
CLIP [Radford et al. 2021] to generate a heightfield (second
row) given a text prompt (bottom). We also provide the vi-
sualization of the initial heightfield (top) and the optimized
heightfield without textures (third row).

optimization to minimize the negative cosine similarity as

minimize

H

∑︁
𝑖∈views

1 − CosSimilarity
(
𝑓text, 𝑓image (R(\𝑖 ,H)

)
, (16)

CosSimilarity(x, y) = x · y
∥x∥ · ∥y∥ (17)

where CosSimilarity is the cosine similarity function which mea-

sures the similarity between the feature of the text prompt 𝑓text and

the encoded feature of the rendering 𝑓image. Similar to the previous

experiments, we optimize it with respect to multiple camera views

𝑖 . We optimize this energy with the network regularization inspired

by [Michel et al. 2021]. Specifically, the displacement and the texture

of the heightfield is the output of a multilayer perceptron.

4 CONCLUSION & FUTUREWORK
Our method leverages the max-

imum mipmap technique [Tevs

et al. 2008] to accelerate differen-

tiable renderers on heightfield ge-

ometry.

As a significant speedup can

be obtained with the dedicated

compiler proposed in Jakob et al.

[2022a] (see inset), we would like to explore using [Jakob et al.

2022a] jointly with our mipmap acceleration to further improve

efficiency.

Generalizing to multilevel heightfields [Weiss et al. 2020] and

displacement maps on curved geometry [Thonat et al. 2021] will

extend real-time differentiable renderers to support a wider variety

of geometries. It is also possible to use the spherical coordinate

reparameterization to compute derivatives of more general geom-

etry such as triangle meshes. It would require an efficient data

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Xiaochun Tong, Hsueh-Ti Derek Liu, Yotam Gingold, and Alec Jacobson

structure for plane-triangle or triangle-triangle intersection that is

occlusion-aware to detect discontinuities for a given 𝜙 in spheri-

cal coordinates. Incorporating other differentiable representations

for the scene, such as spherical harmonics environment maps [Ra-

mamoorthi and Hanrahan 2001], would extend the realm of our

method to more scene parameters.

While we discussed in the method section for any point x on

the heightfield surface, the heightfield geometry cannot produce

a vertical edge. However, when differentiating primary visibility,

the camera is usually not on the surface, vertical edges can still

be appear. For example, when the border of the heightfield is per-

fectly aligned with the camera direction. Extending our method to

handle such cases is left as future work. Our prototype implementa-

tion produces biased gradients for indirect lighting due to our use

of approximate radiance as in Nimier-David et al. [2020]. Further

improvement of our method can be obtained by using analytic im-

portance sampling strategies for non-diffuse BRDFs under global

spherical coordinates. This would improve the numerical efficiency

for sampling highly glossy materials and unify the sampling rou-

tine for the forward and backward pass, enabling integration with

[Vicini et al. 2021b] to further improve the performance.

If few discontinuities are visible from a viewpoint, the maximum

mipmap does not provide a large acceleration because the algo-

rithm cannot skip through the heightfield if no peaks are found. In

the worst case where there is no discontinuity, the algorithm has

to march along every texel across the heightfield. We analyze this

problem and proposed a method to alleviate this issue in App. C. Ef-

ficiently detecting and skipping regions that have no discontinuities

would further improve scalability.

We notice that the text-based shape generation with CLIP often

requires a meaningful initialization to prevent bad local minima.

For instance, our initialization in Fig. 12 is a bumpy heightfield,

rather than a flat plane. Future work on better regularization or

multilevel optimization could further improve the generation.

ACKNOWLEDGMENTS
We would like to thank Otman Benchekroun for sharing his house

model in Fig. 1, Peiyu Yu for offering us inspirations for the geo-

metric illusion, and Shaokun Zheng for his help with our automatic

differentiation implementation in LuisaRender. Our research is

funded in part by NSERC Discovery (RGPIN–2022–04680), the On-

tario Early Research Award program, the Canada Research Chairs

Program, a Sloan Research Fellowship, the DSI Catalyst Grant pro-

gram and gifts by Adobe Systems.

REFERENCES
Marc Alexa and Wojciech Matusik. 2010. Reliefs as images. ACM Trans. Graph. 29, 4

(2010), 60:1–60:7.

John Amanatides and Andrew Woo. 1987. A Fast Voxel Traversal Algorithm for Ray

Tracing. In 8th European Computer Graphics Conference and Exhibition, Eurographics
1987, Amsterdam, The Netherlands, August 24-28, 1987, Proceedings, Guy Maréchal

(Ed.). North-Holland / Eurographics Association.

Sai Praveen Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased warped-area

sampling for differentiable rendering. ACM Trans. Graph. 39, 6 (2020), 245:1–245:18.
Sai Praveen Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, and

Jonathan Ragan-Kelley. 2021. Systematically differentiating parametric discontinu-

ities. ACM Trans. Graph. 40, 4 (2021), 107:1–107:18.
Chengqian Che, Fujun Luan, Shuang Zhao, Kavita Bala, and Ioannis Gkioulekas. 2018.

Inverse Transport Networks. CoRR abs/1809.10820 (2018).

Wenzheng Chen, Huan Ling, Jun Gao, Edward J. Smith, Jaakko Lehtinen, Alec Jacobson,

and Sanja Fidler. 2019. Learning to Predict 3D Objects with an Interpolation-based

Differentiable Renderer. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle,

Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.).

9605–9616.

Daniel Cohen-Or, Eran Rich, Uri Lerner, and Victor Shenkar. 1996. A Real-Time

Photo-Realistic Visual Flythrough. IEEE Trans. Vis. Comput. Graph. 2, 3 (1996),

255–265.

Daniel Cohen-Or and Amit Shaked. 1993. Photo-Realistic Imaging of Digital Terrains.

Comput. Graph. Forum 12, 3 (1993), 363–373.

Mark Duchaineau, Murray Wolinsky, David E Sigeti, Mark C Miller, Charles Aldrich,

and Mark B Mineev-Weinstein. 1997. ROAMing terrain: Real-time optimally adapt-

ing meshes. In Proceedings. Visualization’97 (Cat. No. 97CB36155). IEEE, 81–88.
Jun Gao, Wenzheng Chen, Tommy Xiang, Alec Jacobson, Morgan McGuire, and Sanja

Fidler. 2020. Learning Deformable Tetrahedral Meshesfor 3D Reconstruction. In

NeurIPS.
Yotam I. Gingold and Denis Zorin. 2008. Shading-based surface editing. ACM Trans.

Graph. 27, 3 (2008), 95.
Christian Henning and Peter Stephenson. 2004. Accelerating the ray tracing of height

fields. In Proceedings of the 2nd international conference on Computer graphics and
interactive techniques in Australasia and South East Asia. 254–258.

Hugues Hoppe. 1998. Smooth view-dependent level-of-detail control and its application

to terrain rendering. In 9th IEEE Visualization Conference, IEEE Vis 1998, Research
Triangle Park, North Carolina, USA, October 18-23, 1998, Proceedings, David S. Ebert,

Holly E. Rushmeier, and Hans Hagen (Eds.). IEEE Computer Society and ACM,

35–42.

Kai-Wen Hsiao, Jia-Bin Huang, and Hung-Kuo Chu. 2018. Multi-view wire art. ACM
Trans. Graph. 37, 6 (2018), 242:1–242:11.

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David, Delio Vicini,

Tizian Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy, and Ziyi Zhang.

2022b. Mitsuba 3 renderer. https://mitsuba-renderer.org.

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. 2022a. Dr.Jit:

A Just-In-Time Compiler for Differentiable Rendering. Transactions on Graphics
(Proceedings of SIGGRAPH) 41, 4 (July 2022). https://doi.org/10.1145/3528223.

3530099

Dawoon Jung, Fridger Schrempp, and Seunghee Son. 2020. Optimally Fast Soft Shadows

on Curved Terrain with Dynamic Programming and Maximum Mipmaps. CoRR
abs/2005.06671 (2020).

Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru Matsuoka, Wadim

Kehl, and Adrien Gaidon. 2020. Differentiable Rendering: A Survey. CoRR
abs/2006.12057 (2020). arXiv:2006.12057 https://arxiv.org/abs/2006.12057

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3DMesh Renderer.

In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018. Computer Vision Foundation / IEEE Computer

Society, 3907–3916.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.

In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann

LeCun (Eds.).

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo

Aila. 2020. Modular primitives for high-performance differentiable rendering. ACM
Trans. Graph. 39, 6 (2020), 194:1–194:14.

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable

Monte Carlo ray tracing through edge sampling. ACM Trans. Graph. 37, 6 (2018),
222:1–222:11.

Tzu-Mao Li, Michal Lukác, Michaël Gharbi, and Jonathan Ragan-Kelley. 2020. Differ-

entiable vector graphics rasterization for editing and learning. ACM Trans. Graph.
39, 6 (2020), 193:1–193:15.

Peter Lindstrom, David Koller, William Ribarsky, Larry F. Hodges, Nickolas Faust,

and Gregory A. Turner. 1996. Real-Time, Continuous Level of Detail Rendering of

Height Fields. In Proceedings of the 23rd Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH 1996, New Orleans, LA, USA, August 4-9, 1996,
John Fujii (Ed.). ACM, 109–118.

Hsueh-Ti Derek Liu, Michael Tao, and Alec Jacobson. 2018. Paparazzi: surface editing

by way of multi-view image processing. ACM Trans. Graph. 37, 6 (2018), 221:1–
221:11.

Hsueh-Ti Derek Liu, Michael Tao, Chun-Liang Li, Derek Nowrouzezahrai, and Alec

Jacobson. 2019b. Beyond Pixel Norm-Balls: Parametric Adversaries using an Ana-

lytically Differentiable Renderer. In 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

Shichen Liu,Weikai Chen, Tianye Li, andHao Li. 2019a. Soft Rasterizer: ADifferentiable

Renderer for Image-Based 3D Reasoning. In 2019 IEEE/CVF International Conference
on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019.
IEEE, 7707–7716.

MatthewM. Loper and Michael J. Black. 2014. OpenDR: An Approximate Differentiable

Renderer. In Computer Vision - ECCV 2014 - 13th European Conference, Zurich,

https://doi.org/10.1145/3528223.3530099
https://doi.org/10.1145/3528223.3530099
https://arxiv.org/abs/2006.12057
https://arxiv.org/abs/2006.12057

Differentiable Heightfield Path Tracing with Accelerated Discontinuities SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

Switzerland, September 6-12, 2014, Proceedings, Part VII (Lecture Notes in Computer
Science, Vol. 8695), David J. Fleet, Tomás Pajdla, Bernt Schiele, and Tinne Tuytelaars

(Eds.). Springer, 154–169.

Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. 2019. Reparameterizing

discontinuous integrands for differentiable rendering. ACM Trans. Graph. 38, 6
(2019), 228:1–228:14.

Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and Rana Hanocka. 2021.

Text2Mesh: Text-Driven Neural Stylization forMeshes. CoRR abs/2112.03221 (2021).

Niloy J. Mitra and Mark Pauly. 2009. Shadow art. ACM Trans. Graph. 28, 5 (2009), 156.
Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex

Evans, Thomas Müller, and Sanja Fidler. 2021. Extracting Triangular 3D Models,

Materials, and Lighting From Images. CoRR abs/2111.12503 (2021).

F KentonMusgrave. 1988. Grid tracing: Fast ray tracing for height fields. Yale University
Dept. of Computer Science Research (1988).

Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. 2021. Large steps in inverse

rendering of geometry. ACM Trans. Graph. 40, 6 (2021), 248:1–248:13.
Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz, and Wenzel Jakob. 2020. Radia-

tive backpropagation: an adjoint method for lightning-fast differentiable rendering.

ACM Trans. Graph. 39, 4 (2020), 146.
Derek Nowrouzezahrai and JohnM. Snyder. 2009. Fast Global Illumination on Dynamic

Height Fields. Comput. Graph. Forum 28, 4 (2009), 1131–1139.

Christopher Oat and Pedro V. Sander. 2007. Ambient aperture lighting. In Proceedings
of the 2007 Symposium on Interactive 3D Graphics, SI3D 2007, April 30 - May 2, 2007,
Seattle, Washington, USA, Bruce Gooch and Peter-Pike J. Sloan (Eds.). ACM, 61–64.

Daniele Panozzo and Olga Sorkine-Hornung. 2014. Appearance-mimicking surfaces.

ACM Trans. Graph. 33, 6 (2014), 216:1–216:10.
Felix Petersen, Amit H. Bermano, Oliver Deussen, and Daniel Cohen-Or. 2019. Pix2Vex:

Image-to-Geometry Reconstruction using a Smooth Differentiable Renderer. CoRR
abs/1903.11149 (2019).

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically based rendering:
From theory to implementation. Morgan Kaufmann.

Huamin Qu, Feng Qiu, Nan Zhang, Arie E. Kaufman, and MingWan. 2003. Ray Tracing

Height Fields. In 2003 Computer Graphics International (CGI 2003), 9-11 July 2003,
Tokyo, Japan. IEEE Computer Society, 202–209.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini

Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen

Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models From

Natural Language Supervision. In Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event (Proceedings of
Machine Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR,

8748–8763.

Ravi Ramamoorthi and Pat Hanrahan. 2001. An efficient representation for irradiance

environment maps. In Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 2001, Los Angeles, California, USA,
August 12-17, 2001, Lynn Pocock (Ed.). ACM, 497–500.

Helge Rhodin, Nadia Robertini, Christian Richardt, Hans-Peter Seidel, and Christian

Theobalt. 2015. A Versatile Scene Model with Differentiable Visibility Applied to

Generative Pose Estimation. In 2015 IEEE International Conference on Computer
Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015. IEEE Computer Society,

765–773.

Stefan Röttger, Wolfgang Heidrich, Philipp Slusallek, and Hans-Peter Seidel. 1998.

Real-time generation of continuous levels of detail for height fields. (1998).

Kaustubh Sadekar, Ashish Tiwari, and Shanmuganathan Raman. 2022. Shadow Art

Revisited: A Differentiable Rendering Based Approach. In IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, WACV 2022, Waikoloa, HI, USA, January
3-8, 2022. IEEE, 628–636.

StevenM. Seitz and Kiriakos N. Kutulakos. 1998. Plenoptic Image Editing. In Proceedings
of the Sixth International Conference on Computer Vision (ICCV-98), Bombay, India,
January 4-7, 1998. IEEE Computer Society, 17–24.

Silvia Sellán, Noam Aigerman, and Alec Jacobson. 2020. Developability of heightfields

via rank minimization. ACM Trans. Graph. 39, 4 (2020), 109.
John M. Snyder and Derek Nowrouzezahrai. 2008. Fast Soft Self-Shadowing on Dy-

namic Height Fields. Comput. Graph. Forum 27, 4 (2008), 1275–1283.

David C Taylor. 1994. An algorithm for continuous resolution polygonalizations of a

discrete surface. In Proc. Graphics Interface’94.
Art Tevs, Ivo Ihrke, and Hans-Peter Seidel. 2008. Maximum mipmaps for fast, accurate,

and scalable dynamic height field rendering. In Proceedings of the 2008 Symposium
on Interactive 3D Graphics, SI3D 2008, February 15-17, 2008, Redwood City, CA, USA,
Eric Haines and Morgan McGuire (Eds.). ACM, 183–190.

Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann, Stephen Lombardi, Kalyan

Sunkavalli, Ricardo Martin-Brualla, Tomas Simon, Jason M. Saragih, Matthias

Nießner, Rohit Pandey, Sean Ryan Fanello, Gordon Wetzstein, Jun-Yan Zhu, Chris-

tian Theobalt, Maneesh Agrawala, Eli Shechtman, Dan B. Goldman, and Michael

Zollhöfer. 2020. State of the Art on Neural Rendering. Comput. Graph. Forum 39, 2

(2020), 701–727.

Theo Thonat, Francois Beaune, Xin Sun, Nathan Carr, and Tamy Boubekeur. 2021.

Tessellation-Free Displacement Mapping for Ray Tracing. 40, 6 (2021).

Ville Timonen and Jan Westerholm. 2010. Scalable Height Field Self-Shadowing.

Comput. Graph. Forum 29, 2 (2010), 723–731.

Delio Vicini, Sébastien Speierer, andWenzel Jakob. 2021a. Path replay backpropagation:

differentiating light paths using constant memory and linear time. ACM Trans.
Graph. 40, 4 (2021), 108:1–108:14.

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2021b. Path Replay Backprop-

agation: Differentiating Light Paths using Constant Memory and Linear Time.

Transactions on Graphics (Proceedings of SIGGRAPH) 40, 4 (Aug. 2021), 108:1–108:14.
https://doi.org/10.1145/3450626.3459804

Yifan Wang, Felice Serena, Shihao Wu, Cengiz Öztireli, and Olga Sorkine-Hornung.

2019. Differentiable surface splatting for point-based geometry processing. ACM
Trans. Graph. 38, 6 (2019), 230:1–230:14.

Sebastian Weiss, Florian Bayer, and Rüdiger Westermann. 2020. Triplanar Displace-

ment Mapping for Terrain Rendering. In 41st Annual Conference of the European
Association for Computer Graphics, Eurographics 2020 - Short Papers, Norrköping,
Sweden, May 25-29, 2020 [online only], Alexander Wilkie and Francesco Banterle

(Eds.). Eurographics Association, 53–56.

Kai Yan, Christoph Lassner, Brian Budge, Zhao Dong, and Shuang Zhao. 2022. Efficient

estimation of boundary integrals for path-space differentiable rendering. ACM
Trans. Graph. 41, 4 (2022), 123:1–123:13.

Cem Yuksel and John Keyser. 2009. Fast real-time caustics from height fields. Vis.
Comput. 25, 5-7 (2009), 559–564.

Tizian Zeltner, Sébastien Speierer, Iliyan Georgiev, and Wenzel Jakob. 2021. Monte

Carlo estimators for differential light transport. ACM Trans. Graph. 40, 4 (2021),
78:1–78:16.

Cheng Zhang, Zihan Yu, and Shuang Zhao. 2021. Path-space differentiable rendering

of participating media. ACM Trans. Graph. 40, 4 (2021), 76:1–76:15.
Shaokun Zheng, Zhiqian Zhou, Xin Chen, Difei Yan, Chuyan Zhang, Yuefeng Geng, Yan

Gu, and Kun Xu. 2022. LuisaRender: A High-Performance Rendering Framework

with Layered and Unified Interfaces on Stream Architectures. ACM Trans. Graph.
41, 6, Article 232 (nov 2022), 19 pages. https://doi.org/10.1145/3550454.3555463

Yang Zhou, LifanWu, Ravi Ramamoorthi, and Ling-Qi Yan. 2021. Vectorization for Fast,

Analytic, and Differentiable Visibility. ACM Trans. Graph. 40, 3 (2021), 27:1–27:21.
Jacek Zienkiewicz, Andrew J. Davison, and Stefan Leutenegger. 2016. Real-time height

map fusion using differentiable rendering. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2016, Daejeon, South Korea, October 9-14,
2016. IEEE, 4280–4287.

https://doi.org/10.1145/3450626.3459804
https://doi.org/10.1145/3550454.3555463

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Xiaochun Tong, Hsueh-Ti Derek Liu, Yotam Gingold, and Alec Jacobson

Algorithm 1: Trace Discontinuities
Param. : MipHeight // max-mipmap

Input : p // point location

ˆd // tracing direction

ℎ // heightfield function ℎ : R2 → R
𝑘min // slope of the previous discontinuity

Output : 𝑡𝑠 // list of distances to discontinuities

1. 𝑡 = 0

2. 𝑡𝑠 = []
3. while (p + 𝑡 ˆd) is in the heightfield do
4. if MipHeight(p + 𝑡 ˆd) > ℎ(p) + 𝑘min𝑡 then
5. if level == 0 then
6. 𝑘 (𝑡) = (ℎ(p + 𝑡 ˆd) − ℎ(𝑝))/𝑡
7. 𝑡𝑝𝑟𝑒𝑣 = distance to previous edge

8. 𝑡𝑛𝑒𝑥𝑡 = distance to next edge

9. 𝑘𝑝𝑟𝑒𝑣 = (ℎ(p + 𝑡 ˆd) − ℎ(p + 𝑡𝑝𝑟𝑒𝑣 ˆd))/(𝑡 − 𝑡𝑝𝑟𝑒𝑣)
10. 𝑘𝑛𝑒𝑥𝑡 = (ℎ(p + 𝑡𝑛𝑒𝑥𝑡 ˆd) − ℎ(p + 𝑡 ˆd))/(𝑡𝑛𝑒𝑥𝑡 − 𝑡)
11. if 𝑘 (𝑡) < 𝑘𝑝𝑟𝑒𝑣 and 𝑘 (𝑡) > 𝑘𝑛𝑒𝑥𝑡 then
12. Add 𝑡 to 𝑡𝑠

13. 𝑘𝑚𝑖𝑛 = 𝑘 (𝑡)

14. else
15. Decrease level
16. continue

17. 𝑡 = 𝑡𝑛𝑒𝑥𝑡 // March a step on mipmap [Tevs et al. 2008]

18. if p + 𝑡 ˆd is at Mip Cell Boundary then
19. Increase level

20. return 𝑡𝑠

A IMPLEMENTATION DETAILS
Our implementation separates the computation of the forward and

backward pass. We compute forward rendering using a traditional

path tracer. The backward pass is handled via our method. This

not only ensures that all memory usage is local to each thread

and ephemeral, but also the forward render does not suffer from

increased noise due to suboptimal sampling in the backward pass.

We performed our experiments on an RTX 3070 Ti Laptop GPU

with 8GB of VRAM. For the performance comparison, we use the

terrain heightfield in Fig. 8and measure the average time per sample

for each renderer to compute the gradients of height values under

direct illumination. We use the ADAM optimizer [Kingma and Ba

2015] with learning rate of 5 · 10−3 with 1200 iterations for the

inverse rendering task.

A.1 Primary Visibility & Direct Lighting
The computation of primary visibility includes performing area

sampling on each pixel to generate a primary ray. The color for

pixel 𝑝 can be written as

𝐼𝑝 =

∫
ℎ𝑝 (𝑞)≠0

ℎ𝑝 (𝑞)𝐿(𝑞)𝑑𝑞

Mitsuba 3 FD

Ours FD
MSE 8.5×10-4

Ours gradient

Mitsuba 3 gradient
MSE 6.6×10-3

Figure A1: We compute the variance of gradient estimation
with Mitsuba 3 under same sample count. Our method is able
to capture discontinuity induced gradients very efficiently.

where 𝑝 and 𝑞 are pixel coordinates, ℎ𝑝 (𝑞) is the value of the pixel
filter centered at 𝑝 and 𝐿(𝑞) is the radiance returned from Eq. (7)by

tracing a primary ray starting at 𝑞. To use our method, we need to

convert the area sampling of each pixel into a sampling of spherical

coordinates. For each pixel, we first determine the integral domain

along 𝜙 axis. After sampling a 𝜙 , we construct a vertical plane in

the 𝜙 direction and then intersect the plane with the image plane

to determine the bounds in \ . Once the integral bound in \ is

identified, we can find discontinuities within the \ interval and

perform reparameterization. This sampling method is not limited

to sample pixels but can be applied to sample an arbitrary shape,

as long as we can determine the bounds in \ after a 𝜙 is sampled.

Direct lighting involving area lights can be handled in a similar

way.

A.2 BRDF Sampling
While it is tempting to reuse the importance sampling strategy for

forward rendering in the backward pass, this approach is incompat-

ible with our method. Forward BRDF importance sampling strategy

is performed under solid angle measure in local frames while our

method requires separate sampling of 𝜙 and \ under global spheri-

cal coordinates. Reusing existing BRDF sampling strategies requires

analytic evaluation of the marginal density of 𝜙 and subsequently

importance sampling the conditional density 𝑝 (\ |𝜙). It is unknown
how to perform this sampling analytically for non-diffuse BRDFs.

We instead uniformly sample a 𝜙 and attempt to find discontinuities

on \ on the entire [0, 𝜋) and sample a reparameterized \ afterward.

Due to geometry occlusion, this effectively reduces to uniform sam-

pling of the hemisphere in the local frame. However, it does not

Differentiable Heightfield Path Tracing with Accelerated Discontinuities SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

introduce BRDF parameter-dependent sampling. Thus we can inte-

grate our method under the framework proposed by Nimier-David

et al. [2020].

B BACKPROPAGATING GRADIENTS
The most straightforward way to integrate our method to compute

gradients is to write a forward rendering pass using our reparame-

terization and use automatic differentiation on the entire forward

pass. However, this comes at a great memory cost as the entire com-

putation graph has to be stored. Instead, we integrate our method

with reparameterized radiative backpropagation [Nimier-David

et al. 2020], [Zeltner et al. 2021], which only requires constant

memory.

𝜕𝐿𝑜 (x, 𝜔𝑜)
𝜕ℎ

=

∫
Ω

𝜕

𝜕ℎ
𝐿𝑖 (x, 𝑅(𝜔𝑖 , ℎ)) 𝑓 (x, 𝜔𝑜 , 𝑅(𝜔𝑖 , ℎ)) |𝐽𝑅 (𝜔𝑖 , ℎ) |𝑑𝜔⊥

𝑖

=

∫
Ω
𝐿𝑖 (x, 𝑅(𝜔𝑖 , ℎ))

𝜕𝑓 (x, 𝜔𝑜 , 𝑅(𝜔𝑖 , ℎ))
𝜕ℎ

𝑑𝜔⊥
𝑖

+
∫
Ω

𝜕𝐿𝑖 (x, 𝑅(𝜔𝑖 , ℎ))
𝜕ℎ

𝑓 (x, 𝜔𝑜 , 𝑅(𝜔𝑖 , ℎ))𝑑𝜔⊥
𝑖

+
∫
Ω
𝐿𝑖 (x, 𝑅(𝜔𝑖 , ℎ)) 𝑓 (x, 𝜔𝑜 , 𝑅(𝜔𝑖 , ℎ))

𝜕 |𝐽𝑅 (𝜔𝑖 , ℎ) |
𝜕ℎ

𝑑𝜔⊥
𝑖

where 𝑅(𝜔𝑖 , ℎ) is the reparameterization that removes discontinu-

ities in the integrand. As previously discussed, since our method

performs non-parameter-dependent uniform BRDF sampling, no

additional secondary reparameterization is required [Zeltner et al.

2021]. The reparameterization 𝑅(𝜔𝑖 , ℎ) in our case is the same as

the sampling strategy. Thus the gradient of Jacobian 𝜕ℎ |𝐽𝑅 (𝜔𝑖 , ℎ) | is
simply the gradient of reciprocal pdf 1/𝑝 𝑗 (\ (𝑢,ℎ), 𝜙, ℎ) in Eq. (11)

C IMPROVING WORST CASE PERFORMANCE
As mentioned in Sec. 4, for heightfields with few discontinuities our

method can reach its worst case where every texel on the heightfield

has to be checked along a direction. We provide a brief analysis of

such cases and propose a preliminary method for alleviating the

performance issue.

The heart of this problem boils down to the fact that our discon-

tinuity searching is not a point query in contrast with ray tracing.

Instead of querying the intersection point in a specific direction 𝜔𝑖 ,

our discontinuity searching queries the scene on a range of values:

for primary visibility and direct lighting, once we project the inte-

gral domain onto spherical coordinates and sampled 𝜙 , we search

for discontinuities in a range of \ , which in the worst case is [0, 𝜋),
similarly for global illumination. When the range is large and the

scene doesn’t provide enough discontinuities for acceleration, the

cost of discontinuity searching can be much higher than ray tracing

as the number of texels visited is linear w.r.t height field resolution

compared to the logarithmic cost of ray tracing. We include an

example of such scenes to illustrate the effect in Fig. A2.

Fortunately, if the noise in the gradient is not the biggest concern

for the application, then there is a method to accelerate the dis-

continuity searching so that it has similar computation cost as ray

tracing, at a cost of increased variance. In Eq. (11), ourmethod builds

on the fact that we can reparameterize the integral by splitting the

Figure A2: We construct a scene where our method achieves
its worst-case complexity. The scene consists of a smooth
bumpwhere the only discontinuities are around the peak.We
create a very large area light source such that discontinuity
searching has to march through the entire heightfield.

Figure A3: We compare the performance of the backward
pass on theworst case scene in Fig. A2 using different \ search
ranges. Here, “max angle=1°”means that each subrange of \ is
no more than 1°. The asymptotic complexity of discontinuity
searching is linear w.r.t #vertices compared to log(#𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠)
of ray tracing in forward pass. However, by decreasing the
maximum search range for \ , we can dramatically improve
running time (orange) and even obtain a similar running
time (green) as in average case scenes such as the terrain in
Fig. 8(purple).

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Xiaochun Tong, Hsueh-Ti Derek Liu, Yotam Gingold, and Alec Jacobson

Figure A4:We compare the variance vs time plot for different
\ search ranges. Full-range discontinuity searching (blue)
provides the best numerical quality in gradient estimation
at a cost of slowest per-sample performance. Reducing the
search range (orange) can dramatically improve performance
without introducing too much noise. Further reducing the
search range can improve the performance even more at a
cost of a much higher variance (green).

integrand into continuous intervals. However, the splitting point

does not have to be a discontinuity. We can even split the integrand

at points where it is continuous. Therefore, instead of searching for

discontinuities on the full range of \ , we first divide it into multiple

subranges and only search for discontinuities on one stochastically

chosen subrange. This reduces the computation cost for producing

one sample but increases variance as a discontinuity is more likely

to be missed. We include some preliminary results demonstrating

this performance-variance trade-off in Fig. A3 and A4. It will be

interesting to investigate whether we can importance sample such

intervals before discontinuity searching to reduce variance while

improving performance at the same time.

	Abstract
	1 Introduction
	1.1 General Differentiable Rendering
	1.2 Heightfield (Forward) Rendering

	2 Method
	2.1 Reparameterization
	2.2 Differentiable Rendering on Heightfields
	2.3 Accelerate Discontinuities Searching

	3 Experiments
	4 Conclusion & Future Work
	Acknowledgments
	References
	A Implementation Details
	A.1 Primary Visibility & Direct Lighting
	A.2 BRDF Sampling

	B Backpropagating Gradients
	C Improving Worst Case Performance

