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Figure 1: Our method enables real-time performance on inverse rendering tasks on heightfields. For instance, we use our
renderer to optimize a heightfield geometry with texture (left) such that the “open” sign appears during the day and the “closed”

sign appears in the afternoon.

ABSTRACT

We investigate the problem of accelerating a physically-based differ-
entiable renderer for heightfields based on path tracing with global
illumination. On a heightfield with 1 million vertices (1024x1024
resolution), our differentiable renderer requires only 4 ms per sam-
ple per pixel when differentiating direct illumination, orders of
magnitude faster than most existing general 3D mesh differentiable
renderers. It is well-known that one can leverage spatial hierar-
chical data structures (e.g., the maximum mipmaps) to accelerate
the forward pass of heightfield rendering. The key idea of our ap-
proach is to further utilize the hierarchy to speed up the backward
pass—differentiable heightfield rendering. Specifically, we use the
maximum mipmaps to accelerate the process of identifying scene
discontinuities, which is crucial for obtaining accurate derivatives.
Our renderer supports global illumination. we are able to opti-
mize global effects, such as shadows, with respect to the geometry
and the material parameters. Our differentiable renderer achieves
real-time frame rates and unlocks interactive inverse rendering
applications. We demonstrate the flexibility of our method with
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terrain optimization, geometric illusions, shadow optimization, and
text-based shape generation.
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1 INTRODUCTION

A heightfield is a 2D grid of scalar values indicating a height over a
base elevation. Heightfields are a common geometric representation
for terrains, depth, and geometric details in the form of displacement
maps. Efficient rendering of heightfield data plays a critical role
in visual effects and interactive applications. Such importance has
motivated the development of many specialized data structures to
construct levels of detail and to accelerate the (forward) rendering
of heightfields.

The heightfield is also a popular geometric representation for
inverse problems in computer vision, such as shape from shading.
A key challenge is to simulate light transport in a 3D scene and
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Figure 2: We compare the runtime of our method against
generic 3D mesh differentiable renderers, including [Loubet
et al. 2019; Zhang et al. 2021]. We report the runtime on the
backward pass with varying spatial resolutions. While these
renderers are implemented under different frameworks, our
method (blue) achieves orders of magnitude speedups and
scales to higher resolution geometries. Note that the method
by Loubet et al. [2019] (green) was evaluated on a lower reso-
lution image due to memory constraints.

evaluate the gradient with respect to scene parameters. These gradi-
ents will then inform the optimization on how to manipulate those
scene parameters. Recent progress on differentiable rendering has
led to breakthroughs estimating such derivatives for generic 3D
scenes. Despite being applicable to heightfields, they are slower
than necessary. A generic scene often involves arbitrary topologies
and irregular discretization, which prevents using acceleration data
structures specific to heightfields.

In this work, we propose a differentiable renderer specialized for
heightfield geometry. Our renderer is a physically-based path tracer
with global illumination, thus it supports taking derivatives with
respect to arbitrary scene parameters. Albeit limited to heightfields,
our renderer is orders of magnitude faster than generic differen-
tiable renderers (see Fig. 2). The key ingredient to our efficiency
is to leverage the well-known maximum mipmaps structure, used
for forward rendering, to accelerate the backward pass. We demon-
strate the efficiency and flexibility of our method in many inverse
heightfield problems, including multi-view optimization, geometric
illusions (see Fig. 1), shadow optimization (see Fig. 3), and text-based
shape generation.

1.1 General Differentiable Rendering

Rendering is a process to turn a 3D scene into a 2D image by mod-
eling the flow of light in the scene [Pharr et al. 2016]. Differentiable
rendering models the inverse of the rendering process, inferring
how a pixel intensity changes with respect to changes in scene
parameters. Differentiable rendering has shown to be a powerful
tool for many graphics, vision, and machine learning applications
[Kato et al. 2020].

Differentiable rendering algorithms are closely related to the
rendering approach. Starting with the work by Loper and Black
[2014], the earliest works differentiated through rasterization-based
renderers.
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Figure 3: Our differentiable path tracer enables inverse ren-
dering on global illumination effects, such as shadows. We
optimize the heightfield geometry (left) so that the shadow it
casts looks like a human face, inspired by Kumi Yamashita’s
shadow art (right). Image obtained from flickr.com pho-
tographed by Amaury Laporte under CC BY 2.0

A major focus of this line of work is on approximating derivatives
along the silhouette of an object, because it is not differentiable in
nature;

approaches have used Gaussian filters [Rhodin et al. 2015], lin-
ear approximations [Kato et al. 2018], and sigmoid functions [Liu
et al. 2019a; Petersen et al. 2019]. As anti-aliasing techniques are
often used to improve rendering quality, Laine et al. [2020] propose
an analytic anti-aliasing method to enable visibility derivatives.
These rasterization-based differentiable renderers have demon-
strated their applicability in 3D reconstruction [Chen et al. 2019;
Gao et al. 2020; Munkberg et al. 2021; Wang et al. 2019], geometry
editing [Liu et al. 2018], computing adversarial examples [Liu et al.
2019b], and editing vector graphics [Li et al. 2020].

Another line of work focuses on differentiating through phys-
ically based path tracers. Li et al. [2018] proposed to sample dis-
continuities in a scene to compute visibility gradients, and the
efficiency of boundary sampling is further improved by Yan et al.
[2022]. Loubet et al. [2019] propose to use a change of variables to
remove discontinuities in the scene. Bangaru et al. [2020] applied
the divergence theorem to turn the boundary integral into an area
integral and use a boundary-aware convolution to ensure unbiased
gradient estimate and differentiability. Zhou et al. [2021] proposed
to use beam tracing, instead of conventional ray tracing, to ob-
tain and differentiate anti-aliased visibility. Bangaru et al. [2021]
proposed a programmatic solution to automatically differentiating
integrals that involve discontinuities. In addition to handling scene
discontinuities, people have addressed other aspects of accelerat-
ing physically based differentiable rendering. Zhang et al. [2021]
presented a differential path integral equation, the differential coun-
terpart of the path integral formula. Instead of using automatic
differentiation, Nimier-David et al. [2020] proposed to use ray trac-
ing to compute derivatives which leads to a more memory-efficient
solution. Vicini et al. [2021a] proposed to re-use the results from for-
ward path tracing, which leads to a fast differentiable renderer with
linear complexity. Jakob et al. [2022a] further tackled efficiency
by introducing a compiler tailor-made for accelerating differen-
tiable renderers. For a more detailed discussion of physically based
differentiable rendering techniques, please refer to [Zeltner et al.
2021].

Our contribution on accelerated discontinuities complements
the development of physically based differentiable path tracer by
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accelerating the computation when the geometry is a heightfield.
Albeit limited, this choice leads to efficient and accurate computa-
tion of scene discontinuities. Thus, our resulting renderer runs in
real-time and unlock interactive applications (see Sec. 3).

We omit a discussion of neural rendering techniques which often
approximate a physically based renderer with a (differentiable)
neural network, e.g., [Che et al. 2018]. For interested readers, please
refer to [Tewari et al. 2020] for a recent survey.

1.2 Heightfield (Forward) Rendering

A heightfield is a special type of geometry that represents a shape
via a 2D array of height values. Heightfields are commonly used to
represent geometric data such as terrains, depth, and surface details
(ak.a. displacement maps). The regular structure of heightfields, in
contrast to irregular 3D meshes, has the potential to represent high
resolution geometries with faster render times. For instance, one
can construct tree structures to adaptively polygonalize a height-
field at different resolutions [Duchaineau et al. 1997; Taylor 1994].
During render time, these spatial hierarchies can be applied to gen-
erate continuous levels of detail on-the-fly based on an allowable
rasterization error [Lindstrom et al. 1996] or distance to the view-
point [Rottger et al. 1998]. Hoppe [1998] further extended these
techniques to generate temporally-coherent levels of detail. Sev-
eral approaches to ray tracing heightfields leverage the regular
structure of the heightfield to deploy accelerated voxel traversal
algorithms [Amanatides and Woo 1987; Henning and Stephenson
2004; Musgrave 1988; Qu et al. 2003]. One can also construct a
spatial hierarchy to accelerate the computation of ray-height inter-
sections [Cohen-Or et al. 1996; Cohen-Or and Shaked 1993]. Tevs
et al. [2008] introduced a hierarchical data structure called maxi-
mum mipmaps for efficient rendering with low pre-computation
cost. This approach unlocks real-time performance in rendering
heightfields with dynamic changes in height values. Snyder and
Nowrouzezahrai [2008] showed that one can approximate the visi-
bility function with spherical harmonic bases and obtain real-time
performance while rendering soft shadows. Nowrouzezahrai and
Snyder [2009] extended this approach to global illumination ef-
fects, such as inter-reflections and non-diffuse surfaces, on dynamic
heightfields. Despite being efficient, using (low-order) spherical har-
monics bases fails in capturing sharp shadows. Thus, Timonen and
Westerholm [2010] proposeed an efficient method to determine
blocking angles exactly, enabling rendering sharp shadows near
real-time. Recently, Jung et al. [2020] combined the idea of max-
imum mipmaps and dynamic programming to further accelerate
ray tracing on heightfields. Other specialized heightfield rendering
techniques have also been proposed for computing caustics [Yuksel
and Keyser 2009], ambient occlusion [Oat and Sander 2007], and
rendering geometric details [Thonat et al. 2021].

Despite a significant amount of work on the forward process of
heightfield rendering, the backward pass—differentiable heightfield
rendering—has received far less attention. The closest approach to
our work is by Zienkiewicz et al. [2016]. They proposed a simplified
differentiable heightfield renderer that only considers primary rays
and ignores discontinuities in the scene. In contrast, our differen-
tiable heightfield renderer is a general-purpose differentiable path
tracer. Our approach handles discontinuities and supports global
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illumination. We can take derivatives with respect to many scene
parameters, such as height values, lighting, and materials, while en-
joying the efficiency of heightfield rendering. We believe our work
can serve as an important ingredient in many other heightfield
optimization tasks, e.g., [Sellan et al. 2020].

2 METHOD

Spatial data structures, such as the maximum-mipmap [Tevs et al.
2008], have traditionally been used to accelerate heightfield render-
ing. The key idea of our approach is to leverage such a powerful
tool used in the forward rendering to accelerate the backward pass
— differentiable heightfield rendering. We enable the backward pass
by reparameterizing scene discontinuities (Sec. 2.1). We illustrate
how to apply the reparameterization in the context of differentiable
heightfield rendering in Sec. 2.2 and apply a mipmap to accelerate
the backward passes in Sec. 2.3. We describe how to integrate with
a constant memory backpropagation algorithm [Nimier-David et al.
2020] in App. B.

2.1 Reparameterization

Differentiable rendering with respect to the heightfield geometry
requires differentiating through an integral (the light transport
equation [Pharr et al. 2016]) with integral parameters depending on
the scene geometry. We illustrate the main idea of our method by
first focusing on a simplified 1D integral and defer the discussion
on the full light transport equation in Sec. 2.2.

Let us consider a 1D integral I(h) where the integral bounds
a(h),b(h) and the integrand f(x, h) contain discontinuities that
depend on the heightfield parameter h.

b(h)
I(hy = / , feohx o)

We can split the integral domain into M intervals {[r;(h), rj+1(h))},
with r1(h) = a(h), rpr41(h) = b(h). These intervals are computed
based on the scene geometry so that each integrand f;(x, h) within
the interval j is continuous.

M rj+1(h)
h) = i(h i(h) = i(x,h)d
=250 & 10 Lo fitemis @

Tj

where {fj} are f restricted to the j-th interval. Computing dI/oh by
using Monte Carlo estimation requires one to estimate derivatives
of both the integrand f; and the integral bound r; with respect to
the scene geometry h. Naively applying automatic differentiation to
compute derivatives will miss contributions of the integral bounds
rj as they have zero measure. One could rely on dedicated sam-
pling techniques, such as edge sampling [Li et al. 2018], to estimate
the derivative of integral bounds. However, edge sampling scales
poorly when the scene involves complex geometric discontinuities.
We overcome this limitation by reparameterizing the integral to
convert it into an equivalent integral with constant bounds and
move the contribution of r;(h) into the integrand. For each j, we
find a differentiable sampling technique x;(u, h) = Tj(u, h) to map
u to [rj(h),rj+1(h)), where u is uniformly distributed on [0, 1). In
our case, we choose the reparameterization

Tj(u h) = (1 = wrj(h) +urjri(h) (3)
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The change of variable to T will introduce an additional term, the
determinant of the Jacobian | det Ir; (u, h)|, to accommodate the
change in “volume” due to the reparameterization. One can also
view it as the reciprocal probability density 1/p; (x;,h) of sample x;
according to the technique T;. Thus, incorporating the reparame-
terization into Eq. (2) results in

du

1
MM=/ MwmmM

U F Gy (), )
=) e o @

ol —ZZ d f](xj(u h) h) 5)
ahpj(x](u h), h)

det Ny (u, h)

However, evaluating the derivative accurately for all intervals
jointly is impractically expensive because it requires densely sam-
pling each interval. Oftentimes, we are limited to just sampling
one interval at a time. In such cases, we randomly select an interval
Jj according to a discrete distribution p(j, h) to obtain the Monte
Carlo estimator.

ol 1 1 9 fi(xj(u,h),h)
%~ﬁ;pum%mmmmw

(6)

2.2 Differentiable Rendering on Heightfields

We can apply this gradient estimator in the context of differentiable
heightfield rendering. We start with the light transport equation:

um%w=umm+fuwwmvm%mmm¢ @)
Q

where L;, L, are the input/output radiance, w;, w, are the incom-
ing/outgoing lighting directions, x is a point on the surface, f is
the bidirectional reflectance distribution function (BRDF) function,
a)#‘ is the projected solid angle, and h is the scene parameter, such
as geometry, lighting, and material. Usually, we only integrate over
the hemisphere that aligns with the surface normal. However, in
our method we need to integrate over the entire unit sphere. We
will explain why this is required shortly.

Differentiable rendering aims to compute the derivative of out-
going radiance L, with respect to rendering parameters h. When
the integrand is continuous, it is relatively easy to compute the
derivatives. We can apply automatic differentiation and use the ra-
diative backpropagation method [Nimier-David et al. 2020; Zeltner
et al. 2021] or equivalently the path replay backpropagation [Vicini
et al. 2021b].

Lo (X, wo, h)

7]
= :%./QLi(x,wi,h)f(x,wo,wi,h)da)j‘

_ / Ly 01, h)f (% 00, 01, )

- [ Lixopm 2000 g
o oh i

oLi(x, wi, h
+ / Li(x wish) F(%, 00, 01 HYdoE  (8)
Q oh

We omit L, (x, h) term here for simplicity. This derivation is valid if
both f and L; are continuous according to the Leibniz rule. With
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this relationship, we can easily use either method to estimate 9Lo/oh
via Monte Carlo integration.

However, L; often contains discontinuities related to visibility
changes such as object silhouettes and shadows. Accurately iden-
tifying these discontinuities can be difficult in general 3D mesh
rendering. Our observation is that if we parameterize the integral
using a spherical coordinate such that the up-direction is aligned
with the heightfield, we can reduce the 2D integral over the unit
sphere to a nested 1D integral where discontinuities only occur in
1D.

WLOG, assume the scene consists of a single heightfield geome-
try in which the up direction is aligned with the world space z-axis.
We rewrite the integral using world space spherical coordinates,
where 6 and ¢ are the zenith and azimuth angles respectively,

Lo (X, wo, h) = Le(x, h)

2w T
+/ / Li(x, wi, h) f (X, wo, wi, h)|w; - 11| sin®dOdp. (9)
0 0

Li(x, i, ¢, 6, h)

where 1 is the surface normal at a surface point x. For any surface
point, discontinuities in L; (X, w;, h) manifest as a series of curves
rj (4, h). In other words, the discontinuity curve does not contain a
vertical tangent line. If we only consider discontinuities induced
by geometric occlusion, this is indeed true. However, there are also
other types of discontinuities in rendering. For example, the surface
normal jumps discontinuously between texels when we triangulate
the heightfield. If nearest neighbor interpolation were used, the
BRDF is also discrete along the surface. While our method can be
extended to detect these kind of discontinuities, a better approach
is to interpolate these features smoothly so that they remain con-
tinuous over the entire heightfield. As a result, both normals and
BRDF are smooth along the heightfield and no discontinuity curve
has a vertical tangent line. Under such conditions, even if points on
the discontinuity curve can move in the ¢ dimension, its motion
can still be captured by the 1D motion at heightfield vertices. The
movement at the end points of each discontinuity curve cannot
be captured in 1D as they result in discontinuous change in M
w.r.t. to ¢, where M is the number of continuous intervals (Eq. (2)).
However, on a smoothly interpolated heightfield, the end points
of one curve always lie on another discontinuity curve. Thus if M
changes at 6, / I:i(x, wi, ¢, 0, h) dO evaluates to the same value as
0 — 0’.In such cases, the integral is continuous and the change in
M does not induce a discontinuity in ii(x, wij, ¢, 0, h). Thus we can
ignore the change in M.

For each ¢, discontinuity curves separate [0, 7) into a series of
intervals where L(x, wj, ¢, 6) is continuous w.r.t 6.

27T rjv1(¢p.h)
Lo (X, wo, ) = Le(x, h)+/ Z/ ’

(¢:h)

o 8 Ly 00 00w ). )

= e 5 d
LeCohe | ;[: PO gy
(10

where p;(0, ¢, h) is the probability density of sample 6 according to
h and ¢ in the j-th interval. While discontinuity r; is absent from
the bottom equation, determining the reparameterized sampling

Li(x, wi, ¢, 0, h)dOdg
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Figure 4: Discontinuities in a heightfield are a subset of the
peaks in a heightfield. We characterize a peak with respect to
a point x with two conditions: (1) line x, y must be a tangent
line at y and (2) the curvature of y along direction d must be
negative.

heightfield

A4

level n-2
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Figure 5: We use the maximum mipmaps to accelerate finding
discontinuities in the backward pass.

pj requires knowledge of r;. In rendering, L; itself is a recursive
integral. Thus evaluating Eq. (10) as is requires exponential complex-
ity w.r.t. path length which is prohibitively expensive. We instead
stochastically sample one interval at a time. By using Eq. (6), where
we sample the interval according to a probability distribution pj,
we can derive the following estimator.

0L (%, wo, ) - OLe(x, h)

oh oh
N

1 1 9 Li(x, wi, ¢, 0(u, h), h)
N 2 50 h ah ;00w B), h)p(9)

i=1

(11)

However, to evaluate this expression, we need to construct
the reparameterized sampling strategy p; (0, ¢, h) that depends on
the location of discontinuity r;(¢, h). Identifying discontinuities
rj(¢, h) is often the bottleneck when computing oLo/oh.

2.3 Accelerate Discontinuities Searching

Identifying discontinuities boils down to identifying peaks on the
slice of the heightfield along d (see Fig. 4). These peaks can be
identified by tracking derivatives. According to the notation in
Fig. 4, a peak at distance t along d must satisfy

h(o+td) — h(o) _ oh(o+td) Phio+1d) 0

t ad ad? > 03
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where the first condition says that the line from the location x
to the discontinuity y must be a tangent line at the location of
discontinuity y. The second condition indicates that y should be
concave (like a mountain).

However, naively tracking the o
derivative conditions for all loca-
tions is expensive. We can lever-
age the fact that a lower peak
will be blocked by a higher peak o
and have no effect in the radiance
splitting Eq. (10) to accelerate the o
computation. In Fig. 6, we can see
that the peak located at ¢, has no
influence on the outgoing radi-
ance at x because it is blocked by
the peak at ;.

To identify the peaks that have
influence to a location x, we com-
pare the slope from the origin x

h

Figure 6: We accelerate the
computation by only search-
ing for the discontinuities
that have (primary) influ-
ence on the incoming radi-
ance. For example, we ig-
nore the peak at t; because

to the peak locz{tions. Let t;, tj be it is blocked by the peak at
the horizontal distance to the two t; and has no contribution

peaks that cause discontinuities {4 the inc oming radiance
at x and t; < tj. We can compute
the slope k(t) from x = [0, h(0)] to the location [0 + td, k(o + td)]

k(1) = h(o+ tdt) — h(o) (13)
If the peak at t; does not block the peak at ¢}, then they must satisfy
k(t;) < k(tj). Therefore, once a discontinuity is found at ¢;, we
can skip the locations where their slopes are smaller than k(%;).
This can be efficiently achieved via maximum mipmaps (Fig. 5).
For completeness, we provide pseudocode in Alg. 1. Once we are
able to identify the location of discontinuities, we then estimate
the derivatives with the method by Nimier-David et al. [2020]. We
describe the integration with Nimier-David et al. [2020] in detail
in App. A.2 and App. B. We extend our method to handle primary

visibility and direct lighting in App. A.1.

3 EXPERIMENTS

We implemented our renderer in Rust using the JIT framework in
LuisaRender [Zheng et al. 2022]. To verify the correctness of our
method, we compare the derivatives computed with our method
against the finite difference approximation. In Fig. 7, we can observe
that our efficient lighting and geometry derivatives are correctly
computed and converge to finite differences.

We compare the numerical quality of gradient in a similar cone
scene. In Fig. A1, we include the gradient images computed by finite
differences, Mitsuba 3 [Jakob et al. 2022b], and our method. The
reference image was computed using 8192 SPP and the gradient
image was computed using 16 SPP. We computed the mean squared
error of the gradient image computed by each renderer with its
corresponding finite difference image. Under equal sample, our
method has 7.7x lower error compared to Mitsuba 3.

We pick a set of inverse rendering tasks to demonstrate the
generality of our differentiable heightfield renderer. We show that
our method is capable of optimizing the geometry, shadow, and
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Figure 7: We evaluate the accuracy of our method by com-
paring against finite differences. On a cone geometry (left),
our lighting and geometry gradients (right) converge to the
finite difference results (middle). Note that the light source
is moving up-and-down w.r.t the image and the geometry is
perturbed along the z-axis. The magnitude is the derivative
of the pixel intensity w.r.t the lighting/geometry movements.

optimized rendering

initial rendering target image

optimized height field with optimized texture

Figure 8: Given a set of target images of a terrain (top right),
we optimize a heightfield (top middle) from a plane (top left)
to match the target images by changing the geometry and
texture. We visualize the optimized terrain model on the
bottom row.

texture of the heightfield. We further demonstrate that our method
is able to be used jointly with machine learning tasks.

Geometry & Texture Optimization. The simplest task to evaluate

our method is to do inverse geometry and texture optimization.

Specifically, given a set of target images, we want to optimize a

single heightfield from multiple views [Seitz and Kutulakos 1998].

To quantitatively evaluate our method, we design a toy task where
ground truth is available. Given textured terrain data T, we render
T into a set of target images using a set of lighting and camera
parameters {6;}. Then we use the same rendering parameter 6; to
optimize a heightfield H to match the target images by minimizing
the squared L2 pixel difference across all views. Specifically, our
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BIE R

0%

optimized height target height error

Figure 9: We visualize the error (right) between our optimized
heightfield (left) and the ground truth heightfield (middle) in
Fig. 8. We can observe that our method faithfully reproduces
the target heightfield.

initial rendering user erases shadow  optimized rendering

P P
N . N

.,A.,,‘”,;q:‘qf‘_‘:_,' ;,‘;‘"k"- _‘_'_,'

initial geometry optimized geometry

Figure 10: Our approach enables interactive inverse ren-
dering editing. Given a heightfield (top left), the geometry
changes interactively (top right) when one erases part of the
shadow (top middle). We visualize the results under a differ-
ent lighting at the bottom.

optimization can be written as

minimize R(6:;, H) = R(0;, T)|I3 14

i ievziejwsn (61 H) = R(6: D13 (14)
where we use R(6;, H) to denote the rendered image of the height-
field H under the i-th camera parameter 0;. We optimize this energy
with the ADAM optimizer [Kingma and Ba 2015] and the Laplacian
preconditioner [Nicolet et al. 2021]. In Fig. 8, we can observe the
effectiveness of our method in turning an initial heightfield (a plane)
into a textured terrain. We further visualize the difference between
the ground truth terrain and our optimized terrain in Fig. 9.

Geometric Illusions. We use our method to create a geometric
illusion. The goal is to generate a single shape whose renderings
look like different objects from different views. People have worked
on this problem under different settings, such as shadow projection
[Mitra and Pauly 2009; Sadekar et al. 2022] or wire geometry [Hsiao
et al. 2018]. In our case, we focus on optimizing the heightfield
geometry with textures to achieve the illusion. Our setup is similar
to the problem considered in [Alexa and Matusik 2010] where
they consider illusions that can be achieve with shading changes
[Gingold and Zorin 2008; Panozzo and Sorkine-Hornung 2014].
However, the key difference is that our method is optimized under
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initial rendering

user edits reflection optimized rendering

Figure 11: Our method is able to handle glossy reflection. We
can observe the optimized geometry (right) produces a glossy
reflection that accurately matches the edited image (middle).

global illumination with complex light transport behavior. In Fig. 1,
we provide a target image of “OPEN” |; with a manually defined
lighting condition 6; in the morning and a target image of “CLOSED”
I, with another lighting condition 07 in the evening. Then given an
initial heightfield of a plane H, we minimize the squared L2 pixel
difference between the rendered heightfield and the target images
by changing the geometry of heightfields as

minimize IR(B1, H) = 11]|% + [IR(62, H) — 1|3 (15)

Similar to Eq. (14), we use ADAM with the Laplacian preconditioner
in the optimization.

Shadow Optimization. We use a similar setup to optimize a ge-
ometry to cast a shadow of a predefined shape. In Fig. 3, we specify
the target image to be a human face and minimize the L2 loss. How-
ever, simply optimizing the geometry will result in a non-desirable
local minimum where the dark face mainly comes from shading
changes, rather than a shadow. Thus, we constrain the left half of
the heightfield to be zero so that the dark face can only appear from
the shadow cast by the right part of the heightfield.

Shading-Based Editing. The efficiency of our method further
enables us to do interactive shadow editing. In Fig. 10, we erase
a part of the shadow and we can interactively observe geometry
changes. Our method can also optimize glossy reflection. In Fig. 11,
we optimize geometry to match user edited reflection. We minimize
the L2 loss on the lower half of rendered and edited image by
optimizing for the geometry of the mountain. We use 32 samples
per pixel in each iteration and the Laplacian preconditioner [Nicolet
et al. 2021]. Albeit using uniform BRDF sampling on a highly glossy
surface, we are still able to optimize the geometry to closely match
the edited reflection.

CLIP Shape Generation. We further show the applicability of our
method in learning-based generative tasks. CLIP [Radford et al.
2021] is a pre-trained model that can either encode text or an image
into a feature vector. The model is trained in the way that if the
text prompt and the image content are similar, then their feature
embeddings will be similar. We leverage the power of CLIP to
generate a heightfield based on a given text prompt. We set up the
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CLIP text prompt

“crater on the moon” ‘“volcano and ariver of lava”

initial geo.
optimized geo.

geo. only

Figure 12: We use our differentiable renderer jointly with
CLIP [Radford et al. 2021] to generate a heightfield (second
row) given a text prompt (bottom). We also provide the vi-
sualization of the initial heightfield (top) and the optimized
heightfield without textures (third row).

optimization to minimize the negative cosine similarity as

minimize Z 1 — CosSimilarity(fiext, fimage (R(6:, H)),  (16)
H ieviews
N Xy
CosSimilarity(x,y) = ———— (17)
Il -yl

where CosSimilarity is the cosine similarity function which mea-
sures the similarity between the feature of the text prompt fiext and
the encoded feature of the rendering fimage- Similar to the previous
experiments, we optimize it with respect to multiple camera views
i. We optimize this energy with the network regularization inspired
by [Michel et al. 2021]. Specifically, the displacement and the texture

of the heightfield is the output of a multilayer perceptron.

4 CONCLUSION & FUTURE WORK

Our method leverages the max- 4 =
imum mipmap technique [Tevs =]
et al. 2008] to accelerate differen- z *

tiable renderers on heightfield ge-
ometry. Jakob et al 2022

As a significant speedup can 1 f
be obtained with the dedicated /
compiler proposed in Jakob et al. w
[2022a] (see inset), we would like to explore using [Jakob et al.
2022a] jointly with our mipmap acceleration to further improve
efficiency.

Generalizing to multilevel heightfields [Weiss et al. 2020] and
displacement maps on curved geometry [Thonat et al. 2021] will
extend real-time differentiable renderers to support a wider variety
of geometries. It is also possible to use the spherical coordinate
reparameterization to compute derivatives of more general geom-
etry such as triangle meshes. It would require an efficient data

Loubet et al 2019

runtime (ms)

Ours

0 ;
10 # vertices
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structure for plane-triangle or triangle-triangle intersection that is
occlusion-aware to detect discontinuities for a given ¢ in spheri-
cal coordinates. Incorporating other differentiable representations
for the scene, such as spherical harmonics environment maps [Ra-
mamoorthi and Hanrahan 2001], would extend the realm of our
method to more scene parameters.

While we discussed in the method section for any point x on
the heightfield surface, the heightfield geometry cannot produce
a vertical edge. However, when differentiating primary visibility,
the camera is usually not on the surface, vertical edges can still
be appear. For example, when the border of the heightfield is per-
fectly aligned with the camera direction. Extending our method to
handle such cases is left as future work. Our prototype implementa-
tion produces biased gradients for indirect lighting due to our use
of approximate radiance as in Nimier-David et al. [2020]. Further
improvement of our method can be obtained by using analytic im-
portance sampling strategies for non-diffuse BRDFs under global
spherical coordinates. This would improve the numerical efficiency
for sampling highly glossy materials and unify the sampling rou-
tine for the forward and backward pass, enabling integration with
[Vicini et al. 2021b] to further improve the performance.

If few discontinuities are visible from a viewpoint, the maximum
mipmap does not provide a large acceleration because the algo-
rithm cannot skip through the heightfield if no peaks are found. In
the worst case where there is no discontinuity, the algorithm has
to march along every texel across the heightfield. We analyze this
problem and proposed a method to alleviate this issue in App. C. Ef-
ficiently detecting and skipping regions that have no discontinuities
would further improve scalability.

We notice that the text-based shape generation with CLIP often
requires a meaningful initialization to prevent bad local minima.
For instance, our initialization in Fig. 12 is a bumpy heightfield,
rather than a flat plane. Future work on better regularization or
multilevel optimization could further improve the generation.
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Algorithm 1: Trace Discontinuities
Param.: MipHeight
Input :p

d

h

kmin

Output: ts

1. t=0
ts =]
. while (p + td) is in the heightfield do

b4

@

1. | if MipHeight(p + td) > h(p) + kpmint then

5. if level == 0 then

6. k(t) = (h(p+td) — h(p))/t

7. tprev = distance to previous edge

s. tnext = distance to next edge

9. kprev = (h(p+td) - h(p+ tprevd))/(t - tprev)
10. knext = (h(p + tnextd) — h(p + td)) / (tnext — t)
11 if k(t) < kpreo and k(t) > knex: then

12. Add t to ts

13. kmin = k(t)

14. else

15. Decrease level

16. B continue
17. t = thext
18. if p+ td is at Mip Cell Boundary then

19. L Increase level

20. return fts

A IMPLEMENTATION DETAILS

Our implementation separates the computation of the forward and
backward pass. We compute forward rendering using a traditional
path tracer. The backward pass is handled via our method. This
not only ensures that all memory usage is local to each thread
and ephemeral, but also the forward render does not suffer from

increased noise due to suboptimal sampling in the backward pass.

We performed our experiments on an RTX 3070 Ti Laptop GPU
with 8GB of VRAM. For the performance comparison, we use the
terrain heightfield in Fig. 8and measure the average time per sample
for each renderer to compute the gradients of height values under
direct illumination. We use the ADAM optimizer [Kingma and Ba
2015] with learning rate of 5 - 1073 with 1200 iterations for the
inverse rendering task.

A.1 Primary Visibility & Direct Lighting

The computation of primary visibility includes performing area
sampling on each pixel to generate a primary ray. The color for
pixel p can be written as

b=[ @l

r\q
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Figure A1: We compute the variance of gradient estimation
with Mitsuba 3 under same sample count. Our method is able
to capture discontinuity induced gradients very efficiently.

where p and q are pixel coordinates, hy(q) is the value of the pixel
filter centered at p and L(q) is the radiance returned from Eq. (7)by
tracing a primary ray starting at g. To use our method, we need to
convert the area sampling of each pixel into a sampling of spherical
coordinates. For each pixel, we first determine the integral domain
along ¢ axis. After sampling a ¢, we construct a vertical plane in
the ¢ direction and then intersect the plane with the image plane
to determine the bounds in 6. Once the integral bound in 6 is
identified, we can find discontinuities within the 6 interval and
perform reparameterization. This sampling method is not limited
to sample pixels but can be applied to sample an arbitrary shape,
as long as we can determine the bounds in 8 after a ¢ is sampled.
Direct lighting involving area lights can be handled in a similar
way.

A.2 BRDF Sampling

While it is tempting to reuse the importance sampling strategy for
forward rendering in the backward pass, this approach is incompat-
ible with our method. Forward BRDF importance sampling strategy
is performed under solid angle measure in local frames while our
method requires separate sampling of ¢ and 6 under global spheri-
cal coordinates. Reusing existing BRDF sampling strategies requires
analytic evaluation of the marginal density of ¢ and subsequently
importance sampling the conditional density p(8|¢). It is unknown
how to perform this sampling analytically for non-diffuse BRDFs.
We instead uniformly sample a ¢ and attempt to find discontinuities
on 0 on the entire [0, r) and sample a reparameterized 0 afterward.
Due to geometry occlusion, this effectively reduces to uniform sam-
pling of the hemisphere in the local frame. However, it does not
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introduce BRDF parameter-dependent sampling. Thus we can inte-
grate our method under the framework proposed by Nimier-David
et al. [2020].

B BACKPROPAGATING GRADIENTS

The most straightforward way to integrate our method to compute
gradients is to write a forward rendering pass using our reparame-
terization and use automatic differentiation on the entire forward
pass. However, this comes at a great memory cost as the entire com-
putation graph has to be stored. Instead, we integrate our method
with reparameterized radiative backpropagation [Nimier-David
et al. 2020], [Zeltner et al. 2021], which only requires constant
memory.

0Ly (X, wo)
oh

= [ 2L R0 ) . 00 R ) i ) o
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where R(wj, h) is the reparameterization that removes discontinu-
ities in the integrand. As previously discussed, since our method
performs non-parameter-dependent uniform BRDF sampling, no
additional secondary reparameterization is required [Zeltner et al.
2021]. The reparameterization R(wj, h) in our case is the same as
the sampling strategy. Thus the gradient of Jacobian o |Jr (w;, h)| is
simply the gradient of reciprocal pdf 1/p;(0(u, h), ¢, h) in Eq. (11)

+ / Li(%, R(wi, b)) £ (x, 00, R(e3, b))
Q

C IMPROVING WORST CASE PERFORMANCE

As mentioned in Sec. 4, for heightfields with few discontinuities our
method can reach its worst case where every texel on the heightfield
has to be checked along a direction. We provide a brief analysis of
such cases and propose a preliminary method for alleviating the
performance issue.

The heart of this problem boils down to the fact that our discon-
tinuity searching is not a point query in contrast with ray tracing.
Instead of querying the intersection point in a specific direction wj,
our discontinuity searching queries the scene on a range of values:
for primary visibility and direct lighting, once we project the inte-
gral domain onto spherical coordinates and sampled ¢, we search
for discontinuities in a range of 6, which in the worst case is [0, ),
similarly for global illumination. When the range is large and the
scene doesn’t provide enough discontinuities for acceleration, the
cost of discontinuity searching can be much higher than ray tracing
as the number of texels visited is linear w.r.t height field resolution
compared to the logarithmic cost of ray tracing. We include an
example of such scenes to illustrate the effect in Fig. A2.

Fortunately, if the noise in the gradient is not the biggest concern
for the application, then there is a method to accelerate the dis-
continuity searching so that it has similar computation cost as ray
tracing, at a cost of increased variance. In Eq. (11), our method builds
on the fact that we can reparameterize the integral by splitting the
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Figure A2: We construct a scene where our method achieves
its worst-case complexity. The scene consists of a smooth
bump where the only discontinuities are around the peak. We
create a very large area light source such that discontinuity
searching has to march through the entire heightfield.

—— Worst Case (full range)
—— Worst Case (max angle = 1°)

40
—— Worst Case (max angle = 0.1°)
— Terrain
—— Worst Case (forward pass)
@ 30
g
]
£
g 20
=}
=
10

10° 106
#vertices

Figure A3: We compare the performance of the backward
pass on the worst case scene in Fig. A2 using different 0 search
ranges. Here, “max angle=1"" means that each subrange of 0 is
no more than 1°. The asymptotic complexity of discontinuity
searching is linear w.r.t #vertices compared to log(#vertices)
of ray tracing in forward pass. However, by decreasing the
maximum search range for 0, we can dramatically improve
running time (orange) and even obtain a similar running
time (green) as in average case scenes such as the terrain in
Fig. 8(purple).
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Figure A4: We compare the variance vs time plot for different
0 search ranges. Full-range discontinuity searching (blue)
provides the best numerical quality in gradient estimation
at a cost of slowest per-sample performance. Reducing the
search range (orange) can dramatically improve performance
without introducing too much noise. Further reducing the
search range can improve the performance even more at a
cost of a much higher variance (green).

Xiaochun Tong, Hsueh-Ti Derek Liu, Yotam Gingold, and Alec Jacobson

integrand into continuous intervals. However, the splitting point
does not have to be a discontinuity. We can even split the integrand
at points where it is continuous. Therefore, instead of searching for
discontinuities on the full range of 6, we first divide it into multiple
subranges and only search for discontinuities on one stochastically
chosen subrange. This reduces the computation cost for producing
one sample but increases variance as a discontinuity is more likely
to be missed. We include some preliminary results demonstrating
this performance-variance trade-off in Fig. A3 and A4. It will be
interesting to investigate whether we can importance sample such
intervals before discontinuity searching to reduce variance while
improving performance at the same time.
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