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Fig. 1. Cubic stylization deforms a given 3D shape into the style of a cube while maintaining textures and geometric features. This can be used as a non-realistic

modeling tool for creating stylized 3D virtual world. We obtain 3D assets from sketchfab.com by smeerws and Jesús Orgaz under CC BY 4.0.

We present a 3D stylization algorithm that can turn an input shape into

the style of a cube while maintaining the content of the original shape. The
key insight is that cubic style sculptures can be captured by the as-rigid-
as-possible energy with an ℓ1-regularization on rotated surface normals.

Minimizing this energy naturally leads to a detail-preserving, cubic geometry.

Our optimization can be solved efficiently without any mesh surgery. Our

method serves as a non-realistic modeling tool where one can incorporate

many artistic controls to create stylized geometries.
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1 INTRODUCTION

The availability of image stylization filters and non-photorealistic
rendering techniques has dramatically lowered the barrier of creat-

ing artistic imagery to the point that even a non-professional user

can easily create stylized images. In stark contrast, direct styliza-

tion of 3D shapes or non-realistic modeling has received far less

attention. In professional industries such as visual effects and video

games, trained modelers are still required to meticulously create

non-realistic geometric assets. This is because investigating geomet-

ric styles is more challenging due to arbitrary topologies, curved

metrics, and non-uniform discretization. The scarcity of tools to

generate artistic geometry remains a major roadblock to the devel-

opment of geometric stylization.

Fig. 2. The cubic style have been attracting artists’ attention over centuries,

such as the Serpend à’ Plumes found in Chichén Itzá (left), The Kiss by
Constantin Brâncus, i (middle), and the Taichi by Ju Ming (right). We obtain

images from wikimedia.com photographed by Jebulon under CC0 1.0, from

flickr.com by Art Poskanzer under CC BY 2.0, and from wikimedia.com
by Jeangagnon under CC BY-SA 3.0.
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Fig. 3. A digital art – Anicube – by Aditya Aryanto produces cubic style

images (right). Our method takes an input tiger (left) and outputs a “3D an-

icube” tiger while maintaining geometric details (middle). ©Aditya Aryanto

(right). Used under permission.

Fig. 4. One can control the cubic stylization by incorporating constraints.

For instance, we can fix some parts of a shape to mimic the style of a Jaguar

metate from ancient Costa Rica (top) or add point constraints to mimic the

Assyrian Lamassu wall sculpture (bottom). ©Antiques & Artifacts LLC (top).

Used under permission.

Fig. 5. Our cubic stylization requires no remeshing, thus vertex attributes

such as textures are preserved during the optimization. Our arap term

encourges locally isometric deformations to help maintain nice textures.

In this paper, we focus on the specific style of cubic sculptures. The
cubic style is prevalent across art history, for instance the ancient

sculptures from the post-classic era (900-1250 CE), Maya sculptures,

block statues in Egypt, and modern abstract sculptures such as the

ones from Constantin Brâncus, i and Ju Ming (Fig. 2). In addition,

the cubic style is a popular digital art, such as the award-winning

Anicube by Aditya Aryanto (Fig. 3). Complementing their presence

in art, cubic shapes also present themselves in fabrication and fur-

niture purposes (Fig. 4). We contribute to the rich history of cubic

sculpting by providing a stylization tool that takes a 3D shape as

input and outputs a deformed shape that has the same style as cubic

sculptures.

We present cubic stylization which formulates the task as an en-

ergy optimization that naturally preserves geometric details while

cubifying a shape. Our proposed energy combines an as-rigid-as-
possible (arap) energy with an ℓ1 regularization. This energy can

be minimized efficiently using the local-global approach with al-
ternating direction method of multipliers (ADMM). This variational

approach affords the flexibility of incorporating many artistic con-

trols, such as applying constraints, non-uniform cubeness, and dif-

ferent global/local cube orientations (Sec. 4). Moreover, our method

requires no remeshing (Fig. 5) and generalizes to polyhedral styl-

ization (Fig. 24). Our proposed tool for non-realistic modeling goes

beyond the 2D stylization and opens up the possibility of, for in-

stance, creating non-realistic 3D worlds in virtual reality (Fig. 1).

2 RELATED WORK

Our work shares similar motivations to a large body of work on

image stylization [Kyprianidis et al. 2013], non-photorealistic ren-

dering [Gooch and Gooch 2001], and motion stylization [Hertzmann

et al. 2009]. While their outputs are images or stylized animations,

we take a 3D shape as input and output a stylized shape. Thus we

focus our discussion on methods for processing geometry, including

the study of geometric styles and deformation methods that share

technical similarities.

Discriminative Geometric Styles. The growing interest in under-

standing geometric styles has been inspiring recent works on build-

ing discriminative models for style analysis. One of the main chal-

lenges is to define a similarity metric aligned with human perception.

Many works propose to compare projected feature curves [Li et al.

2013; Yu et al. 2018], sub-components of a shape [Hu et al. 2017;

Lun et al. 2015; Xu et al. 2010], or using learned features [Lim et al.

2016]. These models enable users to synthesize style compatible

scenes [Liu et al. 2015] or transfer style components across shapes

[Berkiten et al. 2017; Lun et al. 2016; Ma et al. 2014]. However, these

methods are designed for discerning and transfering styles, instead

of generating 3D stylized shapes directly.

Generative Geometric Styles. Direct 3D stylization has been an

important topic in computer graphics. Many generative models have

been proposed for producing specific styles, without relying on

identifying and transferring style components from other shapes.

This includes creating the collage art [Gal et al. 2007; Theobalt et al.

2007], voxel/lego art [Luo et al. 2015; Testuz et al. 2013], neuronal
homunculus [Reinert et al. 2012], the manga style shapes [Shen et al.

2012], shape abstraction [Kratt et al. 2014; Mehra et al. 2009; Yumer

and Kara 2012], and bas-relief sculptures [Bian and Hu 2011; Kerber

et al. 2009; Schüller et al. 2014; Song et al. 2007; Weyrich et al. 2007].

While not pitched as stylization techniques, many geometric flows

and filters can also be used for creating stylized geometry, such as

creating edge-preserving smoothing geometry [Zhang et al. 2018],

piece-wise planar [He and Schaefer 2013; Stein et al. 2018b] or de-

velopable shapes [Stein et al. 2018a], and stylized shapes prescribed

by image filters [Liu et al. 2018] (see Fig. 6). Our method contributes

to the field of direct 3D stylization, focusing on the style of cubic

sculptures (Fig. 7).
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input [Zhang et al. 2018] [Stein et al. 2018a] ours

Fig. 6. Our energy-based deformation shares similarities with many energy-

based geometric flows and mesh filters, such as the methods of [Zhang

et al. 2018] and [Stein et al. 2018a].

Fig. 7. Cubic style sculptures are common throughout history, such as the

Draped Seated Woman by Henry Moore (right). Our cubic stylization offers

an instrument to create cubic geometry (middle). We obtain the the photo

from flickr.com photographed by puffin11k under CC BY-SA 2.0.

[Huang et al. 2014] oursinput [Liu et al. 2018]

Fig. 8. Paparazzi [Liu et al. 2018] with image quantization and polycube

method (e.g., [Huang et al. 2014]) can create cubic style shapes (red, green),

but unlike our method (blue) they do not preserve geometric details.

Shape Deformation. Many works deal with the question of how to

deform shapes given modeling constraints. One of the most popular

choices is the arap energy [Chao et al. 2010; Igarashi et al. 2005; Liu

et al. 2008; Sorkine and Alexa 2007], which measures local rigidity

of the surface and leads to detail-preserving deformations. Not just

deformations, similar formulations to arap can also be extended to

other tasks such as constrained shape optimization [Bouaziz et al.

2012], parameterization [Liu et al. 2008], and simulating mass-spring

systems [Liu et al. 2013]. Ever since, optimizing the arap energy

has been substantially accelerated by a large amount of work, such

as [Kovalsky et al. 2016; Peng et al. 2018; Rabinovich et al. 2017;

Shtengel et al. 2017; Zhu et al. 2018]. However, having nearly inter-

active performance on highly detailed meshes still remains a major

challenge. An alternative strategy to speed it up is to use the hierar-

chical deformation which optimizes arap on a low resolution model

and then recover the original details back afterwards [Manson and

Schaefer 2011]. This class of accelerations shares similar character-

istics to multiresolution modeling (see [Garland 1999; Zorin 2006]).

We take advantage of the arap energy for detail preservation and

adapt the method of Manson and Schaefer [2011] to accelerate our

cubic stylization to meshes with millions of faces.

Axis-Alignment in Polycube Maps. Axis-alignment is an important

property for many geometry processing tasks, such as [Muntoni

et al. 2018; Stein et al. 2019]. Especially, this concept is one of the

main instruments in the construction of polycube maps [Tarini et al.

2004], including defining polycube segmentations [Fu et al. 2016;

Livesu et al. 2013; Zhao et al. 2018] and the cost function for polycube

deformations [Gregson et al. 2011; Huang et al. 2014]. Although

polycube methods can obtain cubic geometry, they fail to preserve

detail (Fig. 8) because they are not desirable for intended applications

such as parameterization and hexahedral meshing [Cherchi et al.

2016; Fang et al. 2016; García Fernández et al. 2013; He et al. 2009;

Lin et al. 2008; Wang et al. 2007, 2008; Yu et al. 2014].

One tempting direction of creating cubic geometry is to use vox-

elization. However, voxelization fails to capture the details depicted

by the artists and cannot capture the wide spectrum of cubeness

across cubic sculptures. Another tempting direction is to recover

geometric features from the polycube results. This would lead to a

multi-step algorithm and suffer from limitations of particular detail

encoding schemes (e.g., bump maps). Even if we stop the polycube

algorithm earlier such as the method of

[Gregson et al. 2011] to maintain details,

it does not provide a satisfactory solu-

tion (see the inset for a comparison with

Fig. 5 in [Gregson et al. 2011]). More

importantly, many artistic controls in

Sec. 4 would be nontrivial to add on.

Building stylization on top of polycube

methods would also suffer from slow

performance. For instance, Huang et al.

[2014] propose a polycube method that minimizes the ℓ1-norm of

the normals on the deformed tetrahedral mesh with arap for reg-

ularization. Their formulation involves minimizing a complicated

non-linear function and requires minutes to hours to optimize. Thus

a stylization built on top of this method would be even slower. In

contrast, our formulation is a single energy optimization which

can easily incorporate many artistic controls (Sec. 4). Our energy

is similar to the polycube energy of [Huang et al. 2014] in that we

also minimize the arap energy with a ℓ1 regularization, but the key

difference is that we define the ℓ1-norm on the rotated normals of
the original mesh instead. This allows us to optimize our energy

much faster using the local-global approach with ADMM in only a

few seconds (Table 1).

3 METHOD

The input of our method is a manifold triangle mesh with/without

boundaries. Our method outputs a cubified shape where each sub-

component has the style of an axis-aligned cube. Meanwhile, our

stylization will maintain the geometric details of the original mesh.

Let V be a |V| × 3 matrix of vertex positions at the rest state and

Ṽ be a |V| × 3 matrix containing the deformed vertex positions. We

denote di j = [vj − vi ]
⊤
and d̃i j = [̃vj − ṽi ]

⊤
be the edge vectors

between vertices i, j at the rest and deformed states respectively.
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input mesh

Fig. 9. One can control the cubeness by changing the λ parameter in Eq. 1.

The energy for our cubic stylization is as follows

minimize

Ṽ, {Ri }

∑
i ∈V

∑
j ∈N(i)

wi j

2

∥Ridi j − d̃i j ∥
2

F︸                  ︷︷                  ︸
arap

+ λai ∥Ri n̂i ∥1︸        ︷︷        ︸
cubeness

. (1)

The first term is the arap energy [Sorkine and Alexa 2007], where

Ri is a 3-by-3 rotation matrix,wi j is the cotangent weight [Pinkall

and Polthier 1993], andN(i) denotes the “spokes and rims” edges of

the ith vertex [Chao et al. 2010] (see the inset). In the second term,

n̂i denotes the unit area-weighted normal vector of a vertex i in R3.
The ai ∈ R

+
is the barycentric area of vertex i , which is crucial for

λ to exhibit the similar cubeness across different mesh resolutions.

Intuitively, minimizing the ℓ1-norm of

the rotated normal encourages Ri n̂i
to align with one of coordinate axes

because ℓ1-norm encourages sparsity.

Combining the two, the optimal rota-

tion {R⋆i } would simultaneously pre-

serve the local structure (arap) and en-

courage axis alignment (cubeness).

We adapt the standard local-global

update strategy to optimize our energy [Sorkine and Alexa 2007]

(see Alg. 1). Our global step, updating Ṽ, is achieved by solving a

linear system, the same as the Equation 9 in Sorkine and Alexa

[2007]. Our local step, finding the optimal rotation, is however

different from the previous literature due to the ℓ1 term.

3.1 Local-Step

Our local step for each vertex i can be written as

R
⋆
i = argmin

Ri ∈SO(3)

1

2

∥RiDi − D̃i ∥
2

Wi
+ λai ∥Ri n̂i ∥1, (2)

whereWi is a |N(i)| × |N(i)| diagonal matrix of cotangent weights,

Di and D̃i are 3 × |N(i)| matrices of rim/spoke edge vectors at the

rest and deformed states respectively. We denote ∥X∥2
Y
= Tr(XYX⊤)

for notational convenience. By setting z = Ri n̂i , we can rewrite

Eq. 2 as

minimize

z,Ri ∈SO(3)

1

2

∥RiDi − D̃i ∥
2

Wi
+ λai ∥z∥1 (3)

subject to z − Ri n̂i = 0.

Fig. 10. We turn 3D shapes into the cubic style (blue) with Alg. 1. ©Angelo

Tartanian (top left), Splotchy Ink (top), Dan Slack (top right) under CC BY.

Eq. 3 is a standard ADMM formulation. We solve this local step

using the scaled-form ADMM updates [Boyd et al. 2011]:

R
k+1
i ← argmin

Ri ∈SO(3)

1

2

∥RiDi − D̃i ∥
2

Wi
+
ρk

2

∥Ri n̂i − z
k + uk ∥2

2
(4)

z
k+1 ← argmin

z

λai ∥z∥1 +
ρk

2

∥Rk+1i n̂i − z + u
k ∥2

2
(5)

ũ
k+1 ← u

k + Rk+1i n̂i − z
k+1

(6)

ρk+1 , uk+1 ← update (ρk ) (7)

where ρ ∈ R+ is the penalty and u is the scaled dual variable.

Eq. 4 is an instance of the orthogonal Procrustes [Gower et al. 2004]

R
k+1
i ← argmax

Ri ∈SO(3)

Tr(RiMi )

Mi =
[
Di n̂i

] [Wi
ρk

] [
D̃
⊤
i

(zk − uk )⊤

]
.

One can derive the optimalRi from the singular value decomposition

of Mi = UiΣiV
⊤
i :

R
k+1
i ←ViU

⊤
i , (8)

up to changing the sign of the column ofUi so that det(Ri ) > 0.

ACM Trans. Graph., Vol. 38, No. 6, Article 197. Publication date: November 2019.

hsuehtil
Sticky Note
We have a typo in Eq.3 in the original paper; we edited this pdf accordingly.



Cubic Stylization • 197:5

Fig. 11. We can also turn meshes with boundaries (red) into the cubic style.

©Takeshi Murata (left) under CC BY.

(rescaled) log energy

#iteration
0 75 150

(rescaled) log energy

#iteration
0 75 150

small cubeness

large cubeness

Fig. 12. We show the convergence behavior of different meshes in Fig. 10

(left, blue), Fig. 16 (left, green), and different cubenesses in Fig. 9 (right).

Note that the dotted line imply the optimization has stopped.

Eq. 5 is an instance of the lasso problem [Boyd et al. 2011; Tibshi-

rani 1996], which can be solved with a shrinkage step:

z
k+1 ← Sλai/ρk (R

k+1
i n̂i + u

k ) (9)

Sκ (x)j = (1 − κ/|x j |)+ x j

We update the penalty ρ (Eq. 7) according to Sec. 3.4.1 in [Boyd et al.

2011] where u needs to be rescaled accordingly after updating ρ.
In short, local fitting is performed by running Eq. 8, 9, 6, and 7

iteratively until the norm of primal/dual residuals are small. Warm

starting the local-step parameters from the previous iteration can

significantly speed up the optimization. Specifically, we initialize z, u

with zeros, and set the initial ρ = 10
−4
, ϵabs = 10

−5
, ϵrel = 10

−3
, µ =

10, and τ incr = τ decr = 2 (the same notation as used in Sec. 3 of [Boyd

et al. 2011]). Then z, u, ρ are reused in consecutive iterations. Note

that for extremely large λ one may need to increase the initial value

of ϵabs accordingly in order to avoid bad local minima. We stop the

Fig. 14. Our method can

cubify non-orientable surfaces

such as the Klein bottle.

optimization when the relative

displacement, the infinity norm of

relative per vertex displacements,

is lower than 3 × 10−3 (see Fig. 12

for the convergence plots). More

elaborate stopping criteria, such

as the method of [Zhu et al. 2018],

could also be used.

At this point we have com-

pleted the cubic stylization algo-

rithm summarized in Alg. 1, en-

abling us to efficiently create cubified shapes (see Fig. 10). In Fig. 11

Fig. 13. The global orientation of the shape influences the ℓ1 term in Eq. 1.

Applying different rotations to the mesh lead to different results. ©My Dog

Justice under CC BY.

Algorithm 1: Cube Stylization (λ)
Input : A triangle mesh V, F

Output : Deformed vertex positions Ṽ

1. Ṽ← V

2. while not converge do
3. R← local-step (V, Ṽ, λ)

4. Ṽ← дlobal-step (R)

Algorithm 2: Fast Cube Stylization (λ,m)
Input : A triangle mesh V, F

Output : Deformed vertex positions Ṽ

// pre-processing
1. m ← target number of faces

2. Vc , Fc ← edge collapses (V, F,m)
// cubic stylization
3. Ṽc ← Vc
4. while not converge do
5. R ← local-step (Vc , Ṽc , λ)

6. Ṽc ← дlobal-step (R)

7. Ṽ, F← affine vertex splits (Ṽc , Fc )

and 14 we show that this formulation is applicable to meshes with

boundaries and non-orientable surface respectively. As the cube-

ness is dependent to the orientation of the mesh, one can apply

different rotations to control how the stylization runs (Fig. 13). We

expose the weighting λ to be a design parameter controlling the

cubeness of a shape (Fig. 9).

However, the “vanilla” cube stylization shares the same caveat as

other distortion minimization algorithms: having slow runtime on

high resolution meshes.

3.2 Affine Progressive Meshes

Manson and Schaefer [2011] propose a hierarchical approach to

accelerate arap deformations. The main idea is to deform a low-

resolution model and recover the details back after convergence.

Specifically, Manson and Schaefer [2011] propose a progressive

mesh [Hoppe 1996] representation which first simplifies a given

ACM Trans. Graph., Vol. 38, No. 6, Article 197. Publication date: November 2019.
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mesh via a sequence of edge collapses, and then represents the mesh

as its coarsest form together with a sequence of vertex splits. After

edge collapse

applying some deformations to

the coarsest mesh, each “de-

formed” vertex split is computed

by fitting the best local rigid trans-

formation. This approach is suit-

able for deformations that are lo-

cally rigid (e.g., arap), but our

cubic stylization is less rigid for

larger λ.
So we fit the best affine trans-

formation in each vertex split,

rather than rigid transformations. Specifically, in each edge col-

lapse we store the displacement vectors from the newly inserted

vertex pi to the endpoints pj , pk (see the inset) together with a

matrix A:

A = (QiQ
⊤
i )
−1
Qi .

Qi is a 3 × |N(i)| matrix where each column is the vector from

pi to one of its one-rings neighbors N(i). If (QiQ
⊤
i ) is singular

(e.g., in planar regions), we remedy the issue with the Tikhonov

regularization [Tikhonov et al. 2013]. Then A is used to computed

the deformed displacements for each vertex split as

p̃j − p̃i = Q̃iA
⊤(pj − pi ),

where p̃i denotes the position of vertex i in the cubified coarsened

shape, and Q̃i is a 3 × |N(i)| matrix containing vectors from p̃i to

its one-rings neighbors.

Affine progressive meshes allows us to losslessly recover the

original meshes undergoing affine transformations. For smooth

non-affine transformations such as our cube stylization, it could still

be approximately recovered (see Fig. 15). We summarize our cubic

stylization with the affine progressive mesh in Alg. 2. Note that

the edge collapses is just a pre-processing step. In the online stage,

one only needs to run cubic stylization on the coarsest mesh and

then apply a sequence of vertex splits to visualize the result on the

original resolution. This offers a huge speed-up when interacting

the parameter λ on highly detailed models (see Fig. 16).

An interesting observation is that the number of facesm in the

coarsest mesh not only controls the runtime, but implicitly controls

decimation cubic stylization vertex splits

Fig. 15. Affine progressive meshes allow us run cubic stylization on a low-

resolution model and then recover original details when converged. ©Colin

Freeman under CC BY.

|F|: 2,018,232 |F|: 345,944 |F|: 810,990

Fig. 16. With the affine progressive meshes, we can scale the cubic styliza-

tion to meshes with millions of faces. The Nefertiti mesh (left) was scanned

by Nora Al-Badri and Jan Nikolai Nelles from the Nefertiti bust.

input mesh

Fig. 17. The number of facesm used in the decimated mesh not only con-

trols the runtime but also the frequency level of details that get preserved.

©Joseph Larson under CC BY.

the frequency level of geometric details that gets preserved. In

Fig. 17 we show that, under the same λ, a smallerm keeps details

across a wider frequency range; in contrast, a largerm only keeps

details at higher frequencies. Therefore one can manipulate the level

of preserved features by playing withm.

3.3 Implementation

We implement the cubic stylization in C++ using libigl [Jacobson

et al. 2018] and evaluate our runtime on aMacBook Pro with an Intel

i5 2.3GHz processor. Table 1 lists the parameters and the runtime

of our stylization in Fig. 10 (top) and Fig. 16. We test our methods

on meshes in the Thingi10K [Zhou and Jacobson 2016] and show

that we can obtain stylized geometry within a few seconds. This is

important for users to receive quick feedback on their parameter

choices and iterate on their designs, such as the cubeness λ in Fig. 9

and the the level of detailsm in Fig. 17.

User study. We prototype a

user interface (see the inset)

to conduct an informal user

study with six participants (4

male, 2 female) between the

ages of 24 and 29. Participant

3Dmodeling experience ranged

from none (complete novice)

to three years of hobbyist use.

Each participant was instructed

for three minutes on how to use our software to load a mesh and

control the cubeness parameter λ. Then we asked them to cubify a

shape of their choosing from a collection of ten shapes. The results

of their work is show in Fig. 18. All users reported that they were

satisfied with the cubeness of their resulting shape. One user said

ACM Trans. Graph., Vol. 38, No. 6, Article 197. Publication date: November 2019.
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Table 1. For each example in Fig. 10 and Fig. 16, we report the number

of faces in the original model ( |F |), l1 weight (λ), number of faces of the

coarsest mesh (m), number of iterations (Iters.), pre-processing time (Pre.),
and runtime at the online stage (Runtime).

Model |F | λ m Iters. Pre. Runtime
Fig. 10, left 39K 0.20 n/a 106 n/a 5.08s
Fig. 10, mid. 41K 0.20 n/a 93 n/a 4.50s
Fig. 10, right 21K 0.4 n/a 86 n/a 2.26s
Fig. 16, left 2018K 0.20 20K 83 64.19s 3.93s
Fig. 16, mid. 346K 0.40 20K 222 10.69s 4.59s
Fig. 16, right 811K 0.30 40K 173 30.44s 8.38s

input scene

cubified scene

Fig. 18. Even non-professional users can effortlessly turn an input scene

(top) into a cubified scene (bottom). Different colors are results created

by different users. From left to right, ©Peter Leppik, Cleven, TerenceKing,

MakerBot, TerenceKing, PerryEngel, and Christina Chun under CC BY.

that controlling the cubeness of their resulting shape is very easy

because it only requires tuning a single parameter.

4 ARTISTIC CONTROLS

In addition to the two parameters λ,m, we expose many variants

of our stylization to incorporate artistic controls. As a non-realistic

modeling tool, this is important for users to realize their creativity.

We first focus our discussion on a variety of artistic controls

that are related to the cubeness parameter λ. Although Eq. 1 only

has a single λ for an entire shape, we can actually specify different

λi for each vertex independently to have non-uniform cubeness,

which leads to the expression λiai ∥Ri n̂i ∥1. In Fig. 19, we use this

approach to make the back of the sheep much more cubic than the

high

small

Fig. 19. We vary λ across the surface to have different cubeness for different

parts. We apply higher λ on the red region and smaller λ for the blue region

to create an ottoman-like shape (middle). ©pmoews under CC BY.

high Gauss map

small

Fig. 20. We can paint the λ function on the Gauss map to have non-uniform

λ over the surface. In the figure, we have higher λ for the original normals

pointing towards left, and vice versa. ©Tom Cushwa under CC BY.

Fig. 21. We can vary λ for different axes to turn inputs into the biased cubic

style (blue) towards x,y,z axes respectively. ©MakerBot (right) under CC BY.

rest of the shape to create an ottoman-like geometry. We can also

specify the non-uniform cubeness λi in a different way, instead

of painting on the surface directly. In Fig. 20 we paint a function
on the Gauss map in which the surface normal pointing towards

left has higher cubeness. When we map this function back to the

surface, we can have a cubified owl that is more cubic when initial

normals pointing towards the left and less cubic when pointing

towards the right. Similarly, we can have different λx , λy , λz for

different axes. In Fig. 21, we replace the cubeness in Eq. 1 with

ai (λx |(Ri n̂i )x | + λy |(Ri n̂i )y | + λz |(Ri n̂i )z |) and specify different

values for each λx , λy , λz to have the style of a rectangular prism.

If one wants to fix certain parts of the shape, we can easily add

constraints in the global step, the sameway as the method of Sorkine

and Alexa [2007]. In Fig. 4 we add the parts constraint by fixing the

position of some vertices when solving the linear system; we add

the points constraint by specifying some deformed vertices Ṽi at

user-desired positions. We can also use the same methodology to
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Fig. 22. We constrain certain parts of the geometry lying on certain planes

to create a 3D printed table clinger (right). ©Morena Protti under CC BY.

Fig. 23. We can define the ℓ1-norm on different coordinate systems for

different parts of the shape, instead of using the world coordinates. In the

figure the hands and the body use different coordinate systems (left). By

changing them, we can vary the cube orientations for different parts. ©David

Hagemann under CC BY.

Fig. 24. We apply a coordinate transformation inside the ℓ1-norm to gen-

eralize cubic stylization to polyhedrons. ©Proto Paradigm (middle), Ola

Sundberg (right) under CC BY.

constrain some parts of the geometry lying on certain planes. For

instance, setting (Ṽi )x = 0 can force vertex i lying on the yz-plane.

In Fig. 22 we use this plane constraint to create a table clinger.

In addition, one can utilize the property of the ℓ1-norm to have

different artistic effects. Because the cubeness term is orientation

dependent, in Fig. 13 we can apply different rotations to the mesh

before the stylization to control the results. Rather than rotating

the mesh, another way is to encode the normal vector in a different

coordinate system λai ∥Ri n̂
local

i ∥1, where we use n̂
local

i to denote

the user-desired coordinate system for vertex i . This perspective
allows us to define the ℓ1-norm on different coordinate systems for

different parts of the shape to obtain different cube orientations

(Fig. 23). Beyond the cubic stylization, in Fig. 24, 25 we apply a

coordinate transformation B inside the ℓ1-norm λai ∥BRi n̂i ∥1 to

achieve polyhedral stylization, for which we provide the details in

App. A. Once we obtain the stylized shapes, they are ready to be

used by standard deformation techniques in animations (Fig. 26).

Fig. 25. We apply non-symmetric coordinate transformations inside the

ℓ1-norm to create irregular polyhedral stylization. ©Johannes under CC BY.

Fig. 26. Once we have the cubic geometry (blue), standard deformation

techniques (e.g., [Sorkine and Alexa 2007]) can be used to manipulate the

cubified shape (yellow).

input mesh |F|: 12,812 |F|: 35,924 |F|: 64,650

Fig. 27. Although exhibiting similar cubenesses, our stylization is still not

invariant to different resolutions.

5 LIMITATIONS & FUTURE WORK

Accelerating the stylization to real-time would enable faster iter-

ations between designs. Developing a more robust stylization to

for bad quality triangles, non-manifold meshes, or even point cloud

could be useful for stylizing real-world geometric data. Guaran-

teeing results to be self-intersection free would be desirable for

downstream tasks. Extending our energy to be invariant to dis-

cretizations could achieve more consistent results across different

resolutions (see Fig. 27). Extending to quadrilateral meshes and

NURBS surfaces could benefit existing modeling or engineering de-

sign softwares. Generalizing to volumetric meshes could have a bet-

ter volume preservation. Exploring different deformation energies

and ℓp -norm could lead to novel stylization tools for non-realistic

modeling. Beyond generating stylized shapes, the mathematical

expression of the cubic geometry could offer insights toward un-

derstanding more intricate styles. For instance, Cubism has been
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considered as a revolutionized artistic style for paintings and sculp-

tures. Cubism has appeared since the early 20th century. Since then,

several attempts have tried to describe [Henderson 1983] and gen-

erate Cubist art [Corker-Marin et al. 2018; Wang et al. 2011], but

more efforts still required to offer scientific explanations to a wide

variety of Cubist art. Our cubic stylization only focuses on a specific

style. We hope this could inspire future attempts to capture different

sculpting styles such as those presented in African art, or even a

generic approach to create different styles in an unified framework.
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A POLYHEDRAL GENERALIZATION

Fig. 28. By specifying different coordinate transformations B inside the

ℓ1-norm, we can encourage polyhedral style.

Simply applying a coordinate transformation B : Rn → Rm

inside the ℓ1-norm can encourage polyhedral results, instead of

cubic results (see Fig. 28). The ℓ1-norm of a vector is defined as the

summation of its magnitudes along each basis vector. Thus applying

a coordinate transformation inside the ℓ1-norm changes its bahavior

because the basis vectors are different. Following the notation in

Eq. 1, polyhedron energy can be written as

minimize

Ṽ, {Ri }

∑
i ∈V

∑
j ∈N(i)

wi j

2

∥RiDi j − D̃i j ∥
2

F + λai ∥BRi n̂i ∥1.

In our case, B is a m-by-3 coordinate transformation matrix for

shapes embedded in R3. Again by setting z = Ri n̂i we can reach

almost the same optimization procedures, except the Eq. 5 now

becomes (we ignore the iteration superscript for clarity)

z
k+1 ← argmin

z

λai ∥Bz∥1 +
ρ

2

∥Ri n̂i − z + u∥
2

2
. (10)

Similar to common techniques for solving the Basis Pursuit problem,

we introduce a variable t ⪰ ∥Bz∥1 to transform Eq. 10 into a small

quadratic program subject to equality constraints

minimize

z,t

[
z
⊤
t
⊤
] [ρ/2 · I3 0

0 0

] [
z

t

]
+
[
−ρ(Ri n̂i + u)

⊤ λai1
⊤
m
] [z

t

]
subject to

[
B −Im
−B −Im

] [
z

t

]
⪯ 0,

where Ix and 1x denote the identity matrix with size x and a column

vector of 1 with size x respectively. We then solve this efficiently

using cvxgen [Mattingley and Boyd 2012]. Note that the results in

Fig. 24 and Fig. 25 usem = 4.
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