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Abstract

In this thesis, we investigate computer algorithms for creating stylized 3D digital content
and numerical tools for processing high-resolution geometric data.

This thesis first addresses the problem of geometric stylization. Existing 3D content
creation tools lack support for creating stylized 3D assets. They often require years of pro-
fessional training and are tedious for creating complex geometries. One goal of this thesis is
to address such a difficulty by presenting a novel suite of easy-to-use stylization algorithms.
This involves a differentiable rendering technique to generalize image filters to filter 3D ob-
jects and amachine learning approach to renovate classicmodeling operations. In addition,
we address the problem by proposing an optimization framework for stylizing 3D shapes.
We demonstrate how these new modeling tools can lower the difficulties of stylizing 3D
geometric objects.

The second part of the thesis focuses on scalability. Most geometric algorithms suffer
from expensive computation costs when scaling up to high-resolutionmeshes. The compu-
tation bottleneck of these algorithms often lies in fundamental numerical operations, such
as solving systems of linear equations. In this thesis, we present two directions to overcome
such challenges. We first show that it is possible to coarsen a geometry and enjoy the effi-
ciency of working on coarsened representation without sacrificing the quality of solutions.
This is achieved by simplifying a mesh while preserving its spectral properties, such as
eigenvalues and eigenvectors of a differential operator. Instead of coarsening the domain,
we also present a scalable geometricmultigrid solver for curved surfaces. We show that this
can serve as a drop-in replacement of existing linear solvers to accelerate several geometric
applications, such as shape deformation and physics simulation.

The resulting algorithms in this thesis can be used to develop data-driven 3D stylization
tools for inexperienced users and for scaling up existing geometry processing pipelines.
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Chapter 1

Introduction

Stylized digital content has played amajor role in visual effects, story-telling, and the meta-
verse industries. Algorithms, such as image stylization and non-photorealistic rendering,
have drastically lowered the difficulty in creating stylized 2D content. However, creating
stylized 3D content remains amajor challenge. Armies of trainedmodelers are still required
to meticulously create stylized geometric assets. This is because characterizing the style of
3D shapes is more challenging due to arbitrary topologies and curved metrics.

Although people have been developing a plethora of 3D modeling techniques to lower
the difficulty in 3D content creation, they lack easy-to-use tools to support the creation
of stylized assets, and a majority of the tools only support low-level operations, such as
manually dragging control points on the geometry. Therefore, stylizing 3D assets remains
a time-consuming process even for a trained modeler with state-of-the-art modeling tools.
For people without professional training, creating a stylized 3D asset of their desire is even
more difficult. This roadblock will unfortunately hinder the development of shaping the
future metaverse collaboratively.

In this document, we address the above-mentioned bottlenecks by proposing a novel
suite of data-driven techniques for creating stylized 3D assets. We further tackle the com-
putational challenges in these algorithms and generic geometry processing by proposing
scalable numerical tools to enable interactive performance on highly-detailed 3D assets.

1.1 Data-Driven Geometry Processing

Recent advances in geometric datasets and 3D scanning technologies have greatly increased
the accessibility of geometric data. Thismotivates the development of data-driven approaches
for geometric data processing. Instead of operating on a single shape, data-driven meth-
ods utilize a collection of shapes jointly to support geometry processing. This could imply
transferring knowledge that existed in a few exemplars to novel 3D shapes. This could also
imply acquiring high-level reasoning learned from a large collection of data. Data-driven
techniques have the potential to achieve high-level shape understandings and could unlock

9



CHAPTER 1. INTRODUCTION 10

Figure 1.1: We explore three different ways to define geometric styles: (1) style of its ren-
derings, (2) difference from its coarsened counterpart, and (3) characterization on surface
normals.

easy-to-use shape manipulation algorithms.
Although the accessibility of geometric datasets has raised significantly, many applica-

tions still suffer from having only a limited amount of geometric data. Existing 3D datasets
have several orders of magnitude less data than image datasets. For domain-specific ap-
plications, collecting data is often the bottleneck of deploying powerful machine learning
techniques. For instance, in dental applications, a dataset of oral scans usually consists of
only a few hundred scans [Zanjani et al., 2019], which is smaller than the scale of multi-
million image datasets. In the context of 3D stylization, collecting stylized 3D assets is even
more challenging because they do not exist in reality, thus requiring many manual hours
by professional artists. The fact that many real-world applications suffer from scarce geo-
metric data motivates us to study more data-efficient methods.

In this thesis, we explore different possibilities to stylize 3D shapes without a large
amount of geometric data. One possibility is tomanually craft an energy and stylize shapes
byminimizing the energy (e.g. Chapter. 5, 6). This approach is often the most effective one
in terms of performance and supports incorporating artistic controls. However, coming
up with an energy formulation is not trivial and is limited to relatively simple styles that
can be characterized by mathematical equations. In response, we also explore alternatives
in building generic data-driven stylization methods. For example, in Chapter. 2, we show
that one can leverage image datasets to build an image generative model and then use a
differentiable renderer to “translate” the image model to work on 3D geometries. This alle-
viates the need to have geometric data by learning from image data. Instead of leveraging
image datasets, in Chapter. 4 we propose a self-supervised training framework and a mesh
learning architecture that can effectively train a mesh generative model from only a few (or
even one) 3D objects. These data-efficient methods show the possibilities of learning from
a handful of 3D examples and generalizing to unseen geometries.

1.2 Geometric Stylization

Before delving into a core part of the thesis – creating stylized 3D shapes, we have to first
understand “What is style?” and “How to characterize the style of a 3D object?”.

Despite the fact that the notion of style is abstract and subjective, in art history, there
is still a widely accepted definition that defines style as a distinctive manner which permits
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the grouping of works into related categories by Fernie [1995]. In other words, the definition
of geometric styles is the method or the element that allows us to classify geometric ob-
jects into categories. This definition naturally leads us to study “What are the elements of
geometric style?” Answering this question is key to quantifying style similarity. It could
further enable us to develop mathematical expressions and algorithms to generate stylized
geometries.

Discovering the element of geometric style is the central subject to classifying architec-
tures from different time periods and cultures [Blumenson, 1995]. The threemost common
elements are the shape of architectural components, proportions, and the shape of charac-
teristic curves in the architecture. The effectiveness of these ingredients in classifying ar-
chitectures into categories has motivated the graphics community to build geometric style
classifiers (e.g., [Lun et al., 2015]). However, these elements of architectural styles only
cover a limited span of geometric styles. For instance, they are not applicable to identifying
the style of detailed geometric textures. Furthermore, these elements are mainly used for
classification. It is challenging to develop generative methods that can create novel shapes
given a target style.

In the first part of the thesis, our contributions involve proposing three different charac-
terizations of geometric styles. In addition, we present a novel suite of algorithms based on
differentiable rendering, machine learning, discretemesh correspondences, and variational
methods for creating stylized geometry.

The first characterization explored in the thesis is to characterize the style of geometry
with the style of its rendered images. Given a rich amount of image style definitions, our
characterization of geometric styles enables one to “translate” those image style definitions
to 3D geometry in order to quantify style similarity between a 3D shape and a 2D image.
Built on top of this core idea, in Chapter. 2, we propose a fast differentiable renderer tailor-
made for geometric optimization to enable generating novel 3D shapes given a desired 2D
style. The overall procedure is to first render a 3D shape to a set of 2D images, apply the im-
age stylization algorithm of choice on the rendered image, and then use our differentiable
renderer to pull the pixel changes back to change the vertices of the 3D shape. We show
that our method enables plug-and-play of different image stylizations or even image filters
in 3D so that one can create novel 3D content as easily as we use image filters in our daily
lives. In Chapter. 3, we further demonstrate the applicability of differentiable renderers for
vision and machine learning tasks, beyond stylization. Specifically, we extend our differ-
entiable render to also propagate gradients from pixels to the lighting. This enables us to
construct adversarial geometry and adversarial lighting conditions to increase the robustness
of deep learning image classifiers against the change of objects’ appearance and natural
lighting conditions. This is crucial when deploying deep learning systems to reality.

Another characterization of geometric styles presented in the thesis is to define the style
of geometric details as the difference between a shape and its simplified counterpart.
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This definition of style motivated us to formulate a learning-based upsampling problem,
we call neural subdivision in Chapter. 4. The key idea is to train a neural network to add
the geometric style by upsampling a simplified geometry back to the original input shape.
To enable this training, we propose a self-supervised training framework for one to learn
from a single training shape. We further propose a novel method for computing bijective
correspondences between shapeswith different triangulations and a novel architecture that
enables machine learning on irregular triangle meshes. This neural subdivision method
enables generating stylized details on a 3D object. Beyond stylization, neural subdivision
achieves a better result by “smartly” figuring out how to subdivide a shape conditioned on
local geometric features (e.g., curvatures) compared to traditional subdivision schemes.

Last but not least, we explore the third characterization by defining geometric style
similarity by the similarity of surface normals. This characterization enables us to de-
velop a mathematical expression to quantify certain geometric styles and efficiently gen-
erate novel stylized geometry with energy minimization. Specifically, in Chapter. 5, we
introduce a mathematical equation that governs the style of cubic shapes (different from
cubism). In Chapter. 6, we further generalize the cubic style energy to different styles pre-
scribed by users. Tackling stylization with such a variational method leads to efficient and
easy-to-control methods of stylizing 3D geometries.

1.3 Scalable Geometry Processing

Data-driven stylization is built around learning on geometric data and optimization. This
inevitably involves computational problems such as solving systems of linear equations.
However, existing numerical tools for geometric data are only applicable for shapes atmod-
erate resolution. For example, the most widely used sparse Cholesky factorization in ge-
ometry processing fails to operate on meshes with millions of nodes (e.g., a fossil scan).
This limits data-driven methods for modeling micro-scale geometric details (e.g., wrinkles
on human faces) and large-scale 3D scenes.

We contributed to scalable geometry processing by studying coarsening algorithms. In
Chapter. 7, wepropose a spectral coarsening technique to compress a 3D shapewhile preserv-
ing the spectral properties. As these properties are crucial for many geometric operations,
this technique enables one to enjoy the efficiency of working with a coarsened geometric
representation without sacrificing solution quality.

Another direction to address the scalability issue is to replace existing solvers with a
more scalable one. Multigrid is an ideal candidate due to its reputation of being one of the
most scalable solvers. However, this ideal option cannot be deployed for geometry pro-
cessing because most multigrid approaches require the domain to be regular (e.g., image
grid). In Chapter. 8, we propose a novel multigrid method for curved triangle meshes that
surpasses other alternatives, such as algebraic multigrid methods. This enables geometry
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processing algorithms to enjoy the efficiency of the multigrid method and unlock applica-
tions that require interactive frame rates on large-scale content.

This document is organized to introduce the contributions on data-driven geometric
stylization from Chapter. 2-6 and scalable geometry processing from Chapter. 7-8. The text
and figures have significant overlap with my publications over my PhD studies, including:

• Hsueh-Ti Derek Liu, Michael Tao, Alec Jacobson. “Paparazzi: surface editing byway
of multi-view image processing”. ACM Transactions on Graphics (2018)

• Hsueh-Ti Derek Liu, Michael Tao, Chun-Liang Li, Derek Nowrouzezahrai, Alec Ja-
cobson. “Beyond Pixel Norm-Balls: Parametric Adversaries using an Analytically
Differentiable Renderer”. International Conference on Learning Representations (2019)

• Hsueh-Ti Derek Liu, Alec Jacobson, Maks Ovsjanikov. “Spectral Coarsening of Ge-
ometric Operators”. ACM Transactions on Graphics (2019)

• Hsueh-Ti Derek Liu, Alec Jacobson. “Cubic Stylization”. ACMTransactions on Graph-
ics (2019)

• Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aigerman,
Alec Jacobson. “Neural Subdivision”. ACM Transactions on Graphics (2020)

• Hsueh-Ti Derek Liu, Alec Jacobson. “Normal-Driven Spherical Shape Analogies”.
Computer Graphics Forum (2021)

• Hsueh-Ti Derek Liu, Jiayi Eris Zhang, Mirela Ben-Chen, Alec Jacobson. “Surface
Multigrid via Intrinsic Prolongation”. ACM Transactions on Graphics (2021)



Chapter 2

Paparazzi: Surface Editing by way of
Multi-View Image Processing

Figure 2.1: Paparazzi enables plug-and-play image processing algorithms on 3D shapes.
For instance, superpixel produces aMosaic style shape; L0 normmakes the shape piecewise
planar but preserves features such as the noses; style transfer synthesizes the artistic style
from a painting to the geometry. Note that the images are just for showing the 2D effects,
they are not in the Paparazzi optimization loop.

The image processing pipeline boasts a wide variety of complex filters and effects. Trans-
lating an individual effect to operate on 3D surface geometry inevitably results in a bespoke
algorithm. Instead, we propose a general-purpose back-end optimization that allows users
to edit an input 3D surface by simply selecting an off-the-shelf image processing filter. We
achieve this by constructing a differentiable trianglemesh renderer, with whichwe can back
propagate changes in the image domain to the 3D mesh vertex positions. The given image
processing technique is applied to the entire shape via stochastic snapshots of the shape:
hence, we call our method Paparazzi. We provide simple yet important design considera-
tions to construct the Paparazzi renderer and optimization algorithms. The power of this
rendering-based surface editing is demonstrated via the variety of image processing filters
we apply. Each application uses an off-the-shelf implementation of an image processing
method without requiring modification to the core Paparazzi algorithm.

14
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2.1 Introduction

Decades of digital image processing research has culminated in a wealth of complex fil-
ters and effects. These filters are not only important as pre- and post-processes to other
techniques in the image-processing pipeline, but also as useful tools for graphic designers,
consumers, and social media users. Many of these filters depend heavily on the regular
structure of pixel grids. For example, convolutional neural networks leverage this regular-
ity to enable high-level, advanced filtering operations, such as neural style transfer.

While some simple image filters (e.g., Laplacian smoothing) have direct analogs for 3D
geometry processing, building analogs of more complex filters often requires special case
handling to accommodate arbitrary topologies, curvedmetrics, and irregular trianglemesh
combinatorics found in 3D surface data. Moreover, many image processing methods are
difficult to redefine for 3D geometry. For instance, artistic styles of paintings can be ef-
fectively captured and transferred across images, but it is not immediately clear how to
transfer the style of a 2D painting to a 3D surface.

In this paper, we develop a novel tool, Paparazzi, to si-
multaneously generalize a large family of image editing tech-
niques to 3D shapes. The key idea is to modify an input 3D
surface mesh by applying a desired image processing tech-
nique on many rendered snapshots of the shape (hence, Pa-
parazzi) to ensure multiview consistency. Essential to the core
of Paparazzi is our differentiable rendering process that allows the propagation of changes
in the image domain to changes in the mesh vertex positions. We first construct a stochas-
tic multi-view optimization for generalizing energy-minimization-based image processing
techniques. We then generalize this algorithm further to accommodate generic iterative
image-processing filters. The renderer and its parameters are carefully constructed to con-
sider view sampling, occlusion, and shading ambiguities. The intermediary and output
trianglemeshes of our optimization are filtered to ensurewatertightness, facilitating down-
stream geometry processing applications, such as 3D printing (see inset for a 3D-printed
L0-smoothing Frog fromFig. 2.1). We demonstrate the versatility and plug-and-play nature
of Paparazzi by generalizing a handful of image filtering techniques to 3D shapes, includ-
ing guided filters, quantization, superpixel, L0-smoothing, and neural style transfer. With
Paparazzi, we generalize these image filters to geometry by simply plugging existing imple-
mentations in.

2.2 Related Work

Our work touches topics across visual computing, including rendering, computer vision,
and geometry processing. We focus our discussion on methods similar in methodology or
application.
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Figure 2.2: We compare runtime per iteration of our approach with two autodiff-based
approaches (256×256 image). Our approach is faster and scales better.

Differential rendering Rendering is the forward process of synthesizing an image given
information about the scene geometry, materials, lighting and viewing conditions. Solv-
ing the inverse problem is tantamount to solving computer vision. Loper and Black [2014]
propose a fully differentiable rendering engine, OpenDR, using automatic differentiation.
Their renderer is differentiable to any input parameter – not just geometry, thus more gen-
eral than ours. Though they demonstrate considerable speedup over naive finite differences
when differentiating with respect to many mesh vertices, our analytical derivative results
in orders of magnitude speedups over their method for the case we consider in this paper
(see Fig. 2.2).

Liu et al. [2017a] propose a neural network architecture to approximate the forward im-
age formation process, and predicts intrinsic parameters, shape, illumination, andmaterial,
from a single image. This neural network approach is differentiable and utilizes existing
data to achieve plausible material editing results. However, it is approximate and requires
a large training effort for each task and for each rendering parameter. Many other differen-
tiable or invertible renderers have been constructed for estimatingmaterials/microgeometry
[Gkioulekas et al., 2013; Zhao, 2014] or lighting conditions [Marschner and Greenberg,
1997; Ramamoorthi and Hanrahan, 2001b]. While our lighting conditions and materials
are quite tame (flat shading with three directional lights), we differentiate the entire image
with respect to all mesh vertex positions.

Our analytic derivatives are faster and scale better than existing automatic differentia-
tion frameworks: OpenDR (forward mode) [Loper and Black, 2014] and the TensorFlow
3DMesh Renderer (reversemode, a.k.a., back propagation) [Genova et al., 2018]. On a sin-
gle machine, Paparazzi can handle problemswithmore than 100,000 variables, but OpenDR
and TensorFlow run out of memory on problems with few thousand and few hundreds
variables respectively. In Fig. 2.2, our runtime (on a 256×256 image) is orders of magni-
tude faster.
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Figure 2.3: Without preventing self-intersections (red), image-driven methods may pro-
duce diverging or sub-optimal results.

Image-based Surface Editing In geometric modeling, a number of previous methods
have proposed interactive or automatic methods to edit a shape by directly specifying its
rendered appearance [Van Overveld, 1996; Kerautret et al., 2005; Tosun et al., 2007]. For ex-
ample, Gingold and Zorin [2008] allow a user to paint darkening and brightening strokes
on a surface rendered with a single light source. To overcome the shading ambiguity —
a thorny issue shared by all shape-from-shading methods — they choose the deformation
that would minimally change the existing surface. Instead, we overcome this ambiguity
by increasing the lighting complexity. Schüller et al. [2014] take advantage of the bas-relief
ambiguity for Lambertian surfaces to create bounded thickness surfaces that have the same
appearance as a given surface from a particular view. A unique contribution of our work is
thatwe optimize for desired appearance over all views of a surface using stochastic gradient
descent.

Image-based methods are widely used for mesh simplification and accelerated render-
ing [Weier et al., 2017]. Thesemethods reduce polygonmeshes for rendering efficiency, but
preserve their perceptual appearance [Hoppe, 1997; El-Sana et al., 1999; Luebke and Erik-
son, 1997; Xia and Varshney, 1996; Lindstrom and Turk, 2000; Luebke and Hallen, 2001;
Williams et al., 2003]. The success of image-driven simplification demonstrates the power
of image-driven methods, but only as a metric. Our method goes one step further, and
utilize rendering similarity to generalize a large family of image processing techniques to
surface editing.

Kato et al. [2018] generalize neural style transfer to 3D meshes by applying image style
transfer on renderings. At a high level, their approach is similar to Paparazzi insofar as
they propagate the image gradient to the geometry, but their derivatives are approximate
while ours are analytical. In particular, they consider whether a pixel is covered by a certain
triangle, which requires approximating a non-differentiable step function with respect to
motions of mesh vertices in 3D. In contrast, we consider how a triangle’s orientation (per-
face normal) changes under an infinitesimal perturbation of a mesh vertex. This captures
the continuous change of each pixel’s color and enables analytical derivatives. Kato et al.
[2018] do not prevent self-intersections (see Fig. 2.3) that inevitably arise during large de-
formations. Self-intersections may lead to diverging or sub-par optimization results. These
differences make Paparazzi a more general image-driven method for creating high-quality,
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even fabricable 3D objects.

Shape from shading Recovering geometry from photographed (or rendered) images is
known as the “shape from shading” problem. This subfield itself is quite broad, sowe defer
to existing surveys [Zhang et al., 1999; Prados and Faugeras, 2006] and focus on the most
relatedmethods. Given insufficient or unreliable data, shape from shading algorithms typ-
ically fall back on assumptions for regularization, such as surface smoothness [Barron and
Malik, 2015], and consequently produce less detailed models. The single view shape from
shading problem is made easier in the presence of per-pixel depth information, where in-
verse rendering can be used to refine the depth geometry to match the shading image [Wu
et al., 2014; Or-El et al., 2016]. Shading-based depth refinement can be extended to full-
shape reconstruction refinement if given multiple depth and shading images from differ-
ent views [Wu et al., 2011; Choe et al., 2017; Robertini et al., 2017]. Gargallo et al. [2007]
exactly differentiate the reprojection error function with respect to the unknown surface.
Delaunoy and Prados [2011] extend this to minimize image-based regularization terms to
aid in multi-view surface reconstruction. All such shape-from-shading methods are built
around assumptions that the input data is captured – however unreliably – from an under-
lying fully realized physical shape. Our problem is similar to multi-view shading-based
geometry refinement but there is a major difference – we have access to a general underly-
ing geometric representation. We utilize this access to develop amore powerful framework
that generalizes various image processing directly to 3D, rather than just geometry refine-
ment.

Single-purpose Geometry Processing Filters In our results, we show examples of var-
ious filters being applied to geometry by simply attaching Paparazzi to existing image-
processing code (e.g., Skimage [Van derWalt et al., 2014]). Our results demonstrate that we
successfully transfer these effects: for example, [Xu et al., 2011] creates piecewise-constant
images, and via Paparazzi we use their method to create piecewise-constant appearance
geometry (see Fig. 2.4 for a single-view example). Some of the image-processing filters
we use for demonstration purposes have previously been translated to triangle meshes as
single-purpose filters. For example, He and Schaefer [2013] introduce a novel edge-based
Laplacian to apply L0 regularization to meshes. Similarly, in order to create a 3D analogy
of guided filters [He et al., 2010] for meshes, Zhang et al. [2015b] design a specific triangle-
clustering method tailored to guided filtering. Extending texture synthesis to 3D geometry
has been an active research area [Gu et al., 2002; Lai et al., 2005; Turk, 1991; Wei and Levoy,
2001; Landreneau and Schaefer, 2010; Knöppel et al., 2015; Dumas et al., 2015], the typical
challenges lie in accounting for curvature and irregular mesh discretizations.

Rather than increment the state of the art for any specific mesh filter or application
(e.g., denoising), our technical contribution is a suite of algorithms to provide a general-
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Figure 2.4: The Bunny is optimized so the gradient of its rendered image for a single view
is minimal in an L0 sense.

purpose, plug-and-playmachinery for directly applying a large family of image processing
filters to 3D. We evaluate our results in terms of how well Paparazzi correctly applies the
image-processing effect to the input geometry.

2.3 Overview

Paparazzi is a general-purpose framework that allows a user to apply an image-processing
filter to 3D geometry, without needing to redefine that filter for surfaces or even imple-
ment new code for triangle meshes. The input to our method is a non-self-intersecting,
manifold triangle mesh and a specified image-processing technique. The output is a non-
self-intersecting deformation of thismesh, whose appearance has undergone the given pro-
cessing. The core insight is that if we can pull gradients of an image energy with respect
to pixels back from rendered images to vertices then we can apply gradient-descent-based
optimization with respect to vertex positions. We first describe the well-posed scenario
where the specified image-processing technique is described as an energy optimization in
the image domain. Subsequently, we show that a slight modification to our energy-based
method enables us to generalize to the class of iterative image-processing techniques.

2.3.1 Energy-Based Image Filters

Many image editing algorithms can be formulated as the minimization of a differentiable,
image-domain energy E. In the ideal setting, we extend any such energy minimization to
surfaces by considering the integral of this energy applied to all possible rendered images
for a space of camera “views”:

min
V

∫
i∈views

E(Ri(V)),

where Ri is a function mapping a mesh with vertices V to an image.
Minimization is straightforward to write as a gradient descent with respect to vertices
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Figure 2.5: A sphere is deformed to match a source image I′ from a camera.

using the chain rule:

V ← V −
∫

i∈views
∂E
∂Ri

∂Ri

∂V
. (2.1)

The space of views can be tuned to satisfy problem-specific needs. For instance, it could
be as small as a single front-on camera or as large as the space of all cameras where some
amount of geometry is visible. We defer discussion of a good default choice until Sec. 2.6.

Consider the toy example of an energy-based image editing algorithm visible in Fig. 2.5,
where the energy E is simply the L2 distance to a rendering of another shape. In the opti-
mization, we consider only a single view of a sphere. After gradient descent, the sphere’s
geometry is deformed so that this one view is imperceptibly similar to the source image.
For a single view, ourmethod only changes vertices that affect that view’s rendering, which
makes this result appear like a decal.

The presence of the Jacobian ∂Ri/∂V exposes the main requirement of the renderer R:
differentiability with respect to vertex positions. In this paper, we present an as-simple-as-
possible renderer that is analytically differentiable with mild assumptions and is effective
for generating high-quality geometries (see Sec. 2.5).

2.3.2 Stochastic Multi-view Optimization

Whenwe look at a single view, the analytical derivative ∂R/∂V enables the direct generaliza-
tion of image processing algorithms to geometries via Eq. (2.1), but evaluating this integral
over a continuous space or distribution of views is challenging.

We handle this issue by borrowing tools from the machine learning community, which
has extensively applied gradient descent to energies involving integrals or large summa-
tions when training deep networks [Ruder, 2016; Bottou et al., 2016]. Rather than attempt
to compute the integrated gradient exactly, we leverage stochastic gradient descent (SGD)
and update the geometry with the gradient of a small subset of the views, as few as one.
As is common in the machine learning literature, we apply momentum both to regularize
the noise introduced by using a stochastic gradient and to improve general performance
with the Nesterov-Adammethod [Dozat, 2016], a variant of gradient descent that combines
momentum and Nesterov’s accelerated gradient. Our stochastic multi-view optimization
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Figure 2.6: We sample a view per iteration in the multi-view optimization.

is summarized in Alg. 9.
As the mesh deforms according to the optimization, the quality of triangles may de-

grade and self-intersections may (and inevitably will) occur. We discuss the importance of
interleaving a mesh quality improvement stage in our optimization loop in Sec. 2.4.3.

2.3.3 Iterative Image Filters

With only minor modifications we may generalize our method from energy-based defor-
mations to the realm of iterative filters, generically defined as an iterative process acting in
the image domain:

Ij+1 ← f (Ij).

We replace the energy gradientwith the update induced by a single iteration of the filter
by replacing the derivative ∂E/∂R with the difference ∆R := f (R)− R. The update to the
mesh vertex positions becomes:

V ← V −
∫

i∈views
( f (Ri(V))− Ri(V))

∂Ri

∂V
.

This generalization works when no individual application of the iterative filter modifies
the image by too much. In our experiments this is close enough to smoothness to allow for
our method to converge to a geometry that matches the result of the filter from different
views1. If a single application of the filter creates a dramatic effect, then our optimization
can accommodate by using a smaller step size γ. The resulting algorithm is thereforeAlg. 9.

Before demonstrating results (Sec. 2.7), we describe the considerations we made when
designing our renderer and parameters.

2.4 Design Considerations

By working with renderings of geometry, image processing techniques may be applied in
their native form on the rendered images of pixels. This allows Paparazzi to immediately

1When f is an first order explicit Euler over an energy’s gradient this method is precisely our original
method.
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Algorithm 1: Energy-Based Method
Input:
V0, F0 triangle mesh
R renderer
E image energy
Output:
V, F optimized triangle mesh

1. begin
2. V, F ← V0, F0;
3. O← offset surface from V0, F0;
4. while E not converge do
5. i← sample camera from O;
6. ∂E/∂Ri ← compute image derivative for camera i ;
7. ∂Ri/∂V ← compute shape derivative for camera i;
8. V ← V − γ ∂E

∂Ri

∂Ri
∂V ;

9. V, F ← CleanMesh(V, F);

generalize to a large family of image processing techniques, but shifts the burden to design-
ing a rendering setup that faithfully captures the geometry and presents it in a meaningful
way to the image processing technique. Where and how we render the geometry will have
a large impact on the quality of the results.

2.4.1 Camera Sampling

A good camera placement strategy should “see” every part of the surface with equal prob-
ability. A surface patch that is never seen by any camera will not be changed. On the other
hand, a surface patch that is visible to too many cameras will be updated faster than other
surface regions and result in discontinuity between surface patches.

According to these two criteria: full coverage and uniform
sampling, Paparazzi uniformly samples cameras on an offset
surface at distance σ, whose points are at a fixed distance from
the given shape, facing along inward vertex normals. This
placement ensures that we are less biased to certain views,
have smooth camera views around sharp edges, and have full
coverage for most of the shapes. Increasing and decreasing
σ only affects the near plane because we use an orthographic
camera. We set σ to 5% of the shape’s bounding box diameter
for small-scale deformation and 25% for large-scale deformation (see Sec. 2.6 for values of
each experiment).
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Algorithm 2: Iterative Filter Method
Input:
V0, F0 triangle mesh
R renderer
f image filter
Output:
V, F optimized triangle mesh

1. begin
2. V, F ← V0, F0;
3. O← offset surface from V0, F0;
4. for iteration ¡ max. iterations do
5. i← sample camera from O;
6. ∆Ri ← f (Ri(V))− Ri(V);
7. ∂Ri/∂V ← compute shape derivative for camera i;
8. V ← V − γ∆Ri

∂Ri
∂V ;

9. V, F ← CleanMesh(V, F);

2.4.2 Lighting & Shading

Our image-driven surface editor is designed so that inputs and outputs are both 3D shapes,
thus the quality of intermediate renderings are only important insofar as we achieve the de-
sired output geometry. We propose an as-simple-as-possible default renderer for Paparazzi,
but take special care to avoid lighting and shading ambiguities that would cause artifacts
during optimization.

Shading Ambiguity It is well-known that a single directional light is not sufficient to
disambiguate convex and concave shapes and slope directions (see, e.g., [Liu and Todd,
2004]). Just as this shading ambiguity can confuse human observes, itwill confusePaparazzi’s
optimization. One reason is that a single directional light is not sufficient to disambiguate
convex/concave shapes and slope directions (see Fig. 2.7).

Our simple solution, inspired by photometric stereo [Woodham, 1980], is to increase the
complexity of the lighting. By specifying three axis-aligned direction lightswith R, G, B col-
ors respectively, we effectively render an image of the surface normal vectors. This avoids
the shading ambiguity.

Gouraud Ambiguity Amore subtle, but nonetheless critical ambiguity appears if we fol-
low the common computer graphics practice of smoothing and interpolating per-vertex
lighting/normals within a triangle. When rendering a triangle mesh (especially if low-
resolution), Gouraud shading [Gouraud, 1971] or Phong shading [Phong, 1975] will make
the shape appear smoother than the actual piecewise-linear geometry. While this illusion
is convenient for efficient rendering, its inherent averaging causes an ambiguity. A surface



CHAPTER 2. PAPARAZZI: SURFACE EDITING BY WAY OF MULTI-VIEW IMAGE PROCESSING 24

Figure 2.7: Shading ambiguity. Convex/concave shapes may result in the same image un-
der a single directional light (middle). Adding complexity to the lighting could resolve the
shading ambiguity.

with rough geometry can still produce a smooth rendering under Gouraud shading. We re-
fer to this the Gouraud ambiguity. Using Gouraud shading during optimization in Paparazzi
would immediately introduce a null space, leading to numerical issues and undesirable
bumpy geometries2 (see Fig. 2.8). Instead, we propose using flat shading. This is, in a
sense, the most honest rendering of the triangle mesh’s piecewise-linear geometry.

2.4.3 Mesh Quality

So far, our rendering choices are sufficient forPaparazzi tomake small changes to the surface
geometry but as the mesh continues to deform, the quality of individual triangles will de-
grade and even degenerate. Furthermore, local and global self-intersectionsmay occur. For
many of the image processing filters we consider, we would like sharp creases and corners
to emerge during surface deformation which may not be possible without re-meshing.

These challenges and specifications bear resemblance to re-meshing needed during
surface-tracking fluid simulation. We borrow a state-of-the-art tool from that community,
El Topo [Brochu and Bridson, 2009], a package for robust explicit surface tracking with
triangle meshes. It enables Paparazzi to generate manifold watertight meshes without self-
intersections and refines the mesh in areas of high curvature which allows us to introduce
sharp features without worrying about lacking enough degrees of freedom. In Fig. 2.9, we
can see that shape optimization requires El Topo to mitigate issues with bad mesh quality
and self-intersections, even though the rendered results are comparable.

El Topo handles two types of operations essential to the success of Paparazzi: those that
are critical for maintaining manifold, non-intersecting meshes and those associated with

2We use a fast finite difference approach for the optimization under Gouraud shading.
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Figure 2.8: Gouraud ambiguity. Given a bumpy sphere (left), we minimize image Dirich-
let energy under Gouraud shading to get the smoothed sphere (middle). Comparing the
renderings of the smoothed region, we observe Gouraud ambiguity which the rendering
of a non-smoothed sphere is very similar to the rendered smooth sphere (left column), but
flat shading reveals the difference (right column).

Figure 2.9: Shape optimization without El Topo (bottom) may cause self-intersections
(red), despite the fact that the rendering is similar to the one with El Topo (top). Ad-
ditionally, optimization with El Topo results in lower error (left). Note that the peaks in
the plot are where we perform El Topo.
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Figure 2.10: We show the decomposition of our total runtime, excluding the image process-
ing part. The top half is the time for the derivative computation; The bottom half shows
1/30 of the El Topo runtime.

triangle quality. We feed El Topo the current non-self-intersecting mesh vertices and faces
as well as the new desired vertex locations. El Topo checks whether triangles will collide
or come too close together throughout the continuous motion from the current positions
to the desired positions. This can either result in repulsive forces or in topological changes
depending on user-defined thresholds. In order to improve the quality of the mesh, which
improves the robustness of collision detection, El Topo does standard mesh improvement
operations such as edge splitting and edge flipping, which improve the aspect ratios of
triangles without affecting the overall topology of the mesh. El Topo also subdivides and
decimates meshes to improve the quality of the mesh near high and low curvature regions
respectively by keeping edge angles between a user-defined interval.

Remeshing and collision handling are essential for maintaining high-quality meshes
during and after optimization, but it is also time-consuming — especially compared to
our derivative computation. This is visible in Fig. 2.10, where we can see that El Topo
dominates the total runtime. Because deformations between any individual iteration are
generally small, in practice we invoke El Topo every 30 iterations, providing an empirically
determined balance between computation time and optimization performance.

2.5 Differentiable Renderer

So far, we have discussed the design considerations of Paparazzi. As intermediate render-
ings are not the outputs, we have the flexibility in designing a suitable renderer which
addresses the aforementioned challenges and, more importantly, is differentiable. In par-
ticular we present a differentiable renderer that allows us to analytically compute ∂R/∂V,
and to generalize image processing to 3D geometry.
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2.5.1 Visibility

The rendered image of a triangle mesh with flat shading is continuous away from silhou-
ettes, occluding contours, and triangle edges. It is differentiable almost everywhere: at all
points on the image plane lying inside a triangle, but not across triangle edges or vertices
(a set with measure zero). Therefore, we assume infinitesimal changes of surface positions
will not change the visibility because in practice we only have finite image resolution on
computers.

Visibility may change under large vertex perturbations eventually incurred in our op-
timization loop. Fortunately, due to the efficiency of z-buffering in the real-time rendering
engine OpenGL, updating visibility can be handled efficiently by re-rendering the shape
once every iteration.

2.5.2 Analytic derivative

Given our design choices of local illumination and Lambertian surface, we render m di-
rectional lights with directions ℓ̂i (a unit vector in R3) having corresponding RGB colors
{cR

i , cG
i , cB

i } ∈ [0, 1]. The output color {rR
p , rG

p , rB
p} ∈ [0, 1] at a pixel p is computed by

rR
p = nj ·

m

∑
i=1

ℓ̂icR
i , rG

p = nj ·
m

∑
i=1

ℓ̂icG
i , rB

p = nj ·
m

∑
i=1

ℓ̂icB
i ,

where nj is a unit vector in R3 representing the normal of the jth face of the triangle mesh
V, and the jth face is the nearest face under pixel p.

Without loss of generality, we onlywrite the red component rR
p in our derivation as rG

p , rB
p

share the same formulation. We can analytically differentiate this formula with respect to
the vertex positions to form each row ∂rR

p/∂V ∈ R3|V| of the sparse Jacobian matrix. Only the
position of each vertex vk ∈ R3 at a corner of the jth triangle contributes:

∂rR
p

∂vk
=


∂nj
∂vk

m
∑

i=1
ℓ̂icR

i if vertex k is corner of triangle j,

0 otherwise.

Finally, the 3× 3 Jacobian of face normals nj over triangle vertices vk, ∂nj/∂vk, can be com-
puted analytically. Note thatmoving vk in the triangle’s planewill not change nj. Also, in the
limit, moving along nj only changes nj in the hjk direction
where hjk ∈ R3 is the “height” vector: the shortest vector to
the corner vk from the line of the opposite edge. This implies
that the Jacobian must be some scalar multiple of hjkn

⊤
j . This

change is inversely proportional to ∥hjk∥, the distance of vk to
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the opposite edge, which means:

∂nj

∂vk
=

hjkn
⊤
j

∥hjk∥2 .

2.6 Implementation

In our experiments, we normalize shapes to fit in a unit-radius cube centered at the origin
and upsample shapes to have 105-106 vertices in order to capture geometric detail. By de-
fault, we use a square, orthographic camera with a 0.5-wide field of view placed at an offset
of σ = 0.1, where the units are those of the OpenGL canonical view volume. The offset sur-
face meshes have 103-104 vertices. By default we use three directional lights in red, green,
and blue colors respectively along each local camera axis, which is equivalent to rendering
the surface normals in the camera frame.

We implement our derivative computation in Python using vectorized Numpy opera-
tions and calls to OpenGL for rendering and rasterization. We use libigl [Jacobson et al.,
2018] and the Meshmixer [Schmidt and Singh, 2010] for mesh upsampling and offset sur-
face computation. We test our implementation on a Linux workstation with an Intel Xeon
3.5GHz CPU, 64GB of RAM, and an NVIDIA GeForce GTX 1080 GPU.

2.6.1 Off-the-Shelf Image Processing Filters

We have designed Paparazzi to plug-and-play with existing image processing filters. We
are able to use open, readily available, implementations of image-space filters with min-
imal effort. To evaluate our method we used a handful of off-the-shelf image filters. We
use a Python implementation of the fast guided filter [He and Sun, 2015], found at http:
//github.com/swehrwein/python-guided-filter. For SLIC superpixels [Achanta et al.,
2012] we use the implementation in the popular Python image processing library, Skimage.
We translated a Matlab implementation of image smoothing with L0-smoothing [Xu et al.,
2011] from http://github.com/soundsilence/ImageSmoothing into Python. For neural
style transfer [Gatys et al., 2016], we followed the corresponding PyTorch [Paszke et al.,
2019] tutorial with minor modification to extract the ∂E/∂Ri gradient. We implemented sim-
ple image quantization with a fixed palette ourselves (see review in [Ozturk et al., 2014]).

Applying these filters to 3D geometry requires no modification of the Paparazzi algo-
rithms. The caller either provides the ∂E/∂Ri gradient to use Alg. 9 for energy-based meth-
ods or provides the filter f as a function handle to use Alg. 9 for iterative methods. From a
user’s prospective, trying various filters is quite effortless. In Fig. 2.11 we demonstrate how
Paparazzi produces different results for the various smoothing-type filters we tested. Each
result respects the intent of the particular image processing filter, but now applied to a 3D
surface.

http://github.com/swehrwein/python-guided-filter
http://github.com/swehrwein/python-guided-filter
http://github.com/soundsilence/ImageSmoothing
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Figure 2.11: Paparazzi allows direct generalization of image processing to 3D, thus different
image editing effects can be directly transferred to 3D shapes.

Table 2.1: For each Example image-processing filter on a mesh with |V| vertices, rendering
|R|2 pixels for Iters. iterations, we list average seconds per iteration to call the image pro-
cessing filter or gather its gradient ∆R, invoking El Topo (slowest), and computing ∂R/∂V

(bold; fastest). Finally, we report Total time to make a result in minutes.

Example |V| |R| Iters. ∆R El Topo ∂R/∂V Tot.
Guided 26K 128 3K 1.03s 0.13s 0.08s 64m
L0 40K 256 3K 0.45s 0.17s 0.12s 40m
SLIC 43K 256 3K 0.10s 0.28s 0.14s 28m
Quant. 48K 256 1K 0.12s 0.27s 0.16s 11m
Neural 143K 128 10K 0.03s 1.73s 0.48s 390m

2.7 Results

In Table 2.1, we decompose our runtime in terms of subroutines: derivative computation,
image processing, and mesh cleaning using El Topo. Our differentiation is orders of mag-
nitude faster than previous methods (see Table 2.1). Mesh cleaning is the bottleneck for
high-resolution meshes (see Fig. 2.10). Because our multi-view optimization processes the
rendering of local patches multiple times, the runtime performance of the particular input
image processing method is amplified by our approach (e.g., simple quantization is much
faster than neural style transfer).

For energy-based filters, evaluating the integrated multi-
view energy would require rendering and evaluating from
all possible camera views. Even approximating this with a
finite number of views every iteration would be too expen-
sive. Instead, to evaluate convergence behavior we can set up
a camera at a fixed view and evaluate its visible energy as the multi-view optimization
stochastically decreases the (unmeasured) integrated energy. The energy of the particular
rendering does not represent the value of multi-view energy, but the convergence behavior
implies the convergence of multi-view energy. In the inset, we show the convergence of the
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Figure 2.12: We transfer geometric details from the input point cloud P to the input shape
V through rendering R(P) the point cloud.

neural style transfer energy.

2.7.1 Evaluation on Image Filters

We evaluate Paparazzi according to its ability to reproduce the effect of 2D filters on 3D
shapes, instead of its domain-specific success for any specific application (e.g., denoising).
In Fig. 2.11 we see that changing the image processing filter indeed changes the resulting
edited shape. Guided filter correctly achieves an edge-preserving smoothing effect; quan-
tization makes surface patches align with predefined normals3; superpixel creates super-
faces; and L0-smoothing results in piecewise planar geometry. We can see that these filters
are correctly transferred to 3D geometry in a plug-and-play fashion. All the while, our
remeshing ensures the output mesh is watertight.

We start by considering a simple yet powerful differentiable energy – the L2 pixel differ-
ence. Because its derivatives ∂E/∂R are known, we apply Alg. 9 to generalize this energy to
3D shapes. By caching the rendering of one geometry we can use this energy minimization
to transfer its appearance to another geometry. Compared to dedicated mesh transfer tools
(e.g., [Takayama et al., 2011]) we do not require the source geometry to be another triangle
mesh: simply anything we can render. In Fig. 2.12 we can transfer details from point cloud
P to a triangle mesh V by minimizing the L2 image difference ∥R(P)− R(V)∥2. We use a
simple splat rendering but this example would immediately fit from more advanced point
cloud rendering (see, e.g., [Kobbelt and Botsch, 2004]).

The source geometry could be a mesh with defects such as self-intersections and holes.
In Fig. 2.13, we transfer a triangle soup’s appearance on top of a smooth surface recon-
struction created using robust signed distance offsetting [Barill et al., 2018]. The result is
a new watertight mesh with the appearance of the messy input, which previous mesh re-
pairing methods have difficulty preserving [Attene, 2010, 2016]. This mesh is now fit for
3D printing.

In the following Figures 2.14–2.18, the images on the left are given as a reference to
show the corresponding image processing and are not used to make the surface editing re-

3A palette containing the edge and face normals of a cube.
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Figure 2.13: We can repair a mesh with disconnected parts and self-intersections by creat-
ing a coarse proxy and then applying detail transfer. These defects are visualized by Mesh-
mMixer [Schmidt and Singh, 2010] and proved challenging for dedicated mesh cleaning
methods.

sults. By construction our 3D inputs and outputsmirror the “analogies” ofHertzmann et al.
[2001], but unlike that method we have direct access to the underlying image processing
algorithm.

We now explore a more complicated energy — the Neural Style energy. Recently, in-
spired by the power of Convolutional Neural Network (CNN) [Krizhevsky et al., 2012],
Neural Style Transfer has been a popular tool for transferring artistic styles from painting
to other images [Gatys et al., 2016]. The goal is to generate a stylized image given a con-
tent image and a reference style image. Gatys et al. [2016] define the total energy to be the
summation of content and style energies, where the content energy encourages the stylized
output image to have similar image structure with the content image and the style energy
encourages the output to have similar features with the reference style image. Note that the
features are defined using the filter responses of a CNN across different layers.

Transferring artistic styles to 3D geometries is challenging because the redefinition of
2D painting styles on 3D is unclear. With Paparazzi, we can generalize it by applying the
image neural style transfer on the renderings. Because the image gradient can be computed
by differentiating the CNN, we can use Alg. 9 to generate stylized shapes. In Fig. 2.14, Pa-
parazzi transfers the style of 2D paintings to 3D via growing geometric textures (we provide
implementation detail about image neural style in App. 2.9.1).

A large portion of image processing algorithms are not based on energy minimization
but applying iterative procedures. These algorithms may not have a well-defined energy
or, even if they do, may not have an easily computable gradient. Fortunately, Paparazzi
provides an effortless way to generalize a variety of iterative image filters using Alg. 9. The
high-level idea is to perform image update on the rendering once, and update the shape
once based on how the image change due to the image update.

Guided filters [He et al., 2010] compute the filtered image output by considering the
content of a guidance image, the guidance image can be another image or the input itself.
He et al. [2010] shows that the guided filter is effective in a variety of image processing
applications including edge-aware smoothing, detail enhancement, image feathering, and
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Figure 2.14: We generalize the neural style transfer to 3D by minimizing the style energy of
local renderings through manipulating vertex positions.

Figure 2.15: We generalize the fast guided filter to 3D and achieve edge-preserving smooth-
ing effect.

so on. In Fig. 2.15 we apply the edge-aware smoothing guided filter with the acceleration
proposed in [He and Sun, 2015]. We set the guidance image to be the input and the filter
parameters to be r = 4, ϵ = 0.02. By plugging this filter to the filter function f in Alg. 9, we
can see that the guided filter smooths 3D shapes and preserves sharp features.

In addition to edge-preserving smoothing, we are interested in utilizing image filters to
create different visual effects on geometry. A simple but stylistic choice is image quantiza-
tion, an image compression technique compressing a range of color values to a single value
and representing an image with only a small set of colors [Ozturk et al., 2014]. Again,
by changing the filter f in Alg. 9, we can quantize 3D shapes with pre-define color set4
(see Fig. 2.16). Note that these colors are encoded in the world coordinate, thus the shape
quantization is orientation dependent and requires rendering normals in world coordi-
nates, which is different from other filters that render normals in local coordinates.

4The pre-defined color set are the color of 20 face normals of a icosahedron
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Figure 2.16: Image quantization is applied to geometries and make surface patches facing
toward pre-defined color palettes.

Figure 2.17: The SLIC superpixel method is applied to 3D objects, results in small surface
patches appearing on the shape

Another pixel segmentation approach, but based on both color and spatial information,
is the superpixel. In Fig. 2.17, we use Simple Linear Iterative Clustering (SLIC) [Achanta
et al., 2012] which adapts k-means to segment pixels to create ”super-faces” on shapes.

Last but not least, we consider a filter that minimizes the L0 norm of image gradient [Xu
et al., 2011]. L0 norm has been a popular tool for image and signal processing for decades
because it is a direct measure of signal sparsity. However, the L0 norm can be difficult to
optimize due to its discrete, combinatorial nature. Xu et al. [2011] present an iterative im-
age optimizationmethod tominimize L0 gradient and generate edge-preserving, piecewise
constant filtering effects. With Alg. 9 we can simply apply such iterative procedures to gen-
eralize the effect of L0 norm to a 3D shape and make it piecewise planar which is the 3D
analogue of piecewise constant in images (see Fig. 2.18).
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Figure 2.18: Weminimize the L0 norm of image gradients and encourage the output shapes
(blue) to be piece-wise planar.

2.8 Conclusion

Paparazzi samples a precomputed offset surface for camera locations. This means heavily
occluded or tight inner cavities of a surface will not receive edits (e.g., inside an alligator’s
mouth). It also means the shape is implicitly trapped inside its original offset surface cage.
Removing this cage constraint and predicting the change of
visibility would aid creating large shape deformations. For
a stricter and more deterministic image energy, it would be
important to align the cameras’ orientation to encourage con-
sistency across views in the overlapped regions. Meanwhile,
we only present analytic derivatives for flat-shaded triangle
meshes; similar derivatives could be derived for other representations such as subdivision
surfaces or NURBS models. Paparazzi’s differentiation is orders of magnitude faster than
previous work. In future work, we would like to further improve the performance of Pa-
parazzi by exploiting the parallelism of the stochastic multi-view optimization and improv-
ing the collision-detection needed for dynamic meshing (currently, El Topo — used as a
black-box — dominates our runtime, see Fig. 2.10).

At its core, Paparazzi is a differentiable renderer with a stochastic multiview gradient-
descent procedure that can back propagate image changes to a 3D surface. Paparazzi imposes
a 3D interpretation of a 2D filter, but could be an useful tool for studying other filters that
have no straightforward 3D interpretation. Extending Paparazzi to operate with global il-
lumination and textures as well as more sophisticated lighting models could be beneficial
for applications that require realistic renderings, such as image classification. In our neu-
ral style transfer examples, we show only a small indication of the larger possibility for
Paparazzi’s usefulness to transfer the success of image-based deep learning to 3D surface
geometry. Paparazzi demonstrates the utility of rendering not just for visualization, but
also as a method for editing of 3D shapes. It is exciting to consider other ways Paparazzi can
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influence and interact with the geometry processing pipeline.

2.9 Appendix

2.9.1 Neural Style Implementation Details

In this section, for the purpose of describing the parameters we used for the image neural
style transfer [Gatys et al., 2016], we briefly summarize its key ingredients. Because we use
this application to introduce surface details rather than change the large-scale geometric
appearance of an input we have to change some of the lighting and camera parameters
used in Paparazzi.

The goal of image style transfer is to, given a content image Ic and a reference style image
Is, generate an It that both looks similar to Ic in the style of Is. This is performed by finding
the image that minimizes an energy ENSE, which is defined as a weighted sum of a content
energy and style energy, which are in turn defined on the feature maps (i.e activations) in
each layer of a convolutional neural network (CNN):

ENSE = w ∑
ℓ

αℓEℓ
content + (1− w)∑

ℓ

βℓEℓ
style,

where w controls the weighting between content and style energies, αℓ, βℓ correspond to
content and style weights for layer ℓ. The feature maps of It, Ic, Is at layer ℓ of the CNN
are denoted by Tℓ, Cℓ, Sℓ ∈ RNℓ×Mℓ respectively, where Nℓ is the number of features in the
layer ℓ and Mℓ is the size of a feature image on the ℓth layer.

Eℓ
content is the squared difference between the feature maps of the target and content

images at layer ℓ:

Eℓ
content =

1
2

Nℓ

∑
i=1

Mℓ

∑
j=1

(Tℓ
ij − Cℓ

ij)
2.

Eℓ
style is squared error between the features correlations expressed by the Gram matrices

over features G of content and style images at layer ℓ:

Eℓ
style =

1
4N2

ℓ M2
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∑
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(
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,

Gℓ ∈ RNℓ×Nℓ for a feature map Fℓ is explicitly written as

Gℓ
ij =

Mℓ

∑
k=1

Fℓ
ikFℓ

jk.

Both the style of strokes and colors contribute to the image style energy ENSE but we
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omit the color style transfer because our focus is on the 3D geometry, instead of texture. In
particular, we capture the style of strokes from a painting by perturbing vertex positions in
order to create the shading changes required to decrease the style energy.

To eliminate the influence of the color component, we make both the style image and
the rendered image gray-scale, we use one white directional light along the y-axis of the
camera space to render the geometry. We also use offset σ = 0.02 and field of view of 0.1,
OpenGL canonical view volume, to zoom in on the mesh in order to generate surface details
rather than affect the large-scale geometric features. We set αℓ, β1 to be 1 for layer conv1 1,
conv2 1, conv3 1, conv4 1, conv5 1 and 0 for the other layers in the VGG network [Simonyan
and Zisserman, 2014]. We omit the content energy by setting w = 0. In our experiments,
we can still transfer the style without losing the original appearance.



Chapter 3

Parametric Adversaries using an
Analytically Differentiable Renderer

Figure 3.1: Traditional pixel-based adversarial attacks yield unrealistic images under a
larger perturbation (L∞-norm ≈ 0.82), however our parametric lighting and geometry per-
turbations output more realistic images under the same norm (more results in App. 3.7.1).

Many machine learning image classifiers are vulnerable to adversarial attacks, inputs with
perturbations designed to intentionally triggermisclassification. Current adversarialmeth-
ods directly alter pixel colors and evaluate against pixel norm-balls: pixel perturbations
smaller than a specified magnitude, according to a measurement norm. This evaluation,
however, has limited practical utility since perturbations in the pixel space do not corre-
spond to underlying real-world phenomena of image formation that lead to them and has
no security motivation attached. Pixels in natural images are measurements of light that
has interacted with the geometry of a physical scene. As such, we propose a novel evalua-
tionmeasure, parametric norm-balls, by directly perturbing physical parameters that underly
image formation. One enabling contributionwe present is a physically-based differentiable
renderer that allows us to propagate pixel gradients to the parametric space of lighting and
geometry. Our approach enables physically-based adversarial attacks, and our differen-
tiable renderer leverages models from the interactive rendering literature to balance the
performance and accuracy trade-offs necessary for a memory-efficient and scalable adver-
sarial data augmentation workflow.

37
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Figure 3.2: Parametrically-perturbed images remain natural, whereas pixel-perturbed ones
do not.

3.1 Introduction

Research in adversarial examples continues to contribute to the development of robust
(semi/̄)supervised learning [Miyato et al., 2018], data augmentation [Goodfellow et al.,
2015; Sun et al., 2018], and machine learning understanding [Kanbak et al., 2018]. One
important caveat of the approach pursued by much of the literature in adversarial machine
learning, as discussed recently [Goodfellow, 2018; Gilmer et al., 2018], is the reliance on
overly simplified attack metrics: namely, the use of pixel value differences between an ad-
versary and an input image, also referred to as the pixel norm-balls.

The pixel norm-balls game considers pixel perturbations of norm-constrained magni-
tude [Goodfellow et al., 2015], and is used to develop adversarial attackers, defenders and
training strategies. The pixel norm-ball game is attractive from a research perspective due
to its simplicity and well-posedness: no knowledge of image formation is required and
any arbitrary pixel perturbation remains eligible (so long as it is “small”, in the percep-
tual sense). Although the pixel norm-ball is useful for research purposes, it only captures
limited real-world security scenarios.

Despite the ability to devise effective adversarial methods through the direct employ-
ment of optimizations using the pixel norm-balls measure, the pixel manipulations they
promote are divorced from the types of variations present in the real world, limiting their
usefulness “in the wild”. Moreover, this methodology leads to defenders that are only ef-
fective when defending against unrealistic images/attacks, not generalizing outside of the
space constrained by pixel norm-balls. In order to consider conditions that enable adver-
sarial attacks in the real world, we advocate for a new measurement norm that is rooted
in the physical processes that underly realistic image synthesis, moving away from overly
simplified metrics, e.g., pixel norm-balls.

Our proposed solution – parametric norm-balls – rely on perturbations of physical param-
eters of a synthetic image formation model, instead of pixel color perturbations (Fig. 3.2).
To achieve this, we use a physically-based differentiable renderer which allows us to per-
turb the underlying parameters of the image formation process. Since these parameters in-
directly control pixel colors, perturbations in this parametric space implicitly span the space
of natural images. We will demonstrate two advantages that fall from considering pertur-
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bations in this parametric space: (1) they enable adversarial approaches that more readily
apply to real-world applications, and (2) they permit the use of muchmore significant per-
turbations (compared to pixel norms), without invalidating the realism of the resulting
image (Fig. 3.1). We validate that parametric norm-balls game playing is critical for a vari-
ety of important adversarial tasks, such as building defenders robust to perturbations that
can occur naturally in the real world.

We perform perturbations in the underlying image formation parameter space using
a novel physically-based differentiable renderer. Our renderer analytically computes the
derivatives of pixel color with respect to these physical parameters, allowing us to extend
traditional pixel norm-balls to physically-valid parametric norm-balls. Notably, we demon-
strate perturbations on an environment’s lighting and on the shape of the 3D geometry it
shades. Our differentiable renderer achieves state-of-the-art performance in speed and
scalability (Sec. 3.3) and is fast enough for rendered adversarial data augmentation (Sec. 3.5):
training augmented with adversarial images generated with a renderer.

Existing differentiable renders are slow and do not scale to the volume of high-quality,
high-resolutions images needed tomake adversarial data augmentation tractable (Sec. 3.2).
Given our analytically-differentiable renderer (Sec. 3.3), we are able to demonstrate the ef-
ficacy of parametric space perturbations for generating adversarial examples. These adver-
saries are based on a substantially different phenomenology than their pixel norm-balls
counterparts (Sec. 3.4). Ours is among the first steps towards the deployment of ren-
dered adversarial data augmentation in real-world applications: we train a classifier with
computer-generated adversarial images, evaluating the performance of the training against
real photographs (i.e., captured using cameras; Sec. 3.5). We test on real photos to show
the parametric adversarial data augmentation increases the classifier’s robustness to “de-
formations” in the real world. Our evaluation differs from the majority of existing litera-
ture which evaluates against computer-generated adversarial images, since our parametric
space perturbation is no-longer a wholly idealized representation of the image formation
model but, instead, modeled against physically-based image generation.

3.2 Related Work

Ourwork is built upon the fact that simulated or rendered images can participate in computer
vision andmachine learning on real-world tasks. Many previous works use rendered (sim-
ulated) data to train deep networks, and those networks can be deployed to real-world or
even outperform the state-of-the-art networks trained on real photos [Movshovitz-Attias
et al., 2016; Chen et al., 2016; Varol et al., 2017; Su et al., 2015; Johnson-Roberson et al.,
2017; Veeravasarapu et al., 2017b; Sadeghi and Levine, 2016; James and Johns, 2016]. For
instance, Veeravasarapu et al. [2017a] show that trainingwith 10% real-world data and 90%
simulation data can reach the level of training with full real data. Tremblay et al. [2018]
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even demonstrate that the network trained on synthetic data yields a better performance
than using real data alone. As rendering can cheaply provide a theoretically infinite sup-
ply of annotated input data, it can generate data which is orders of magnitude larger than
existing datasets. This emerging trend of training on synthetic data provides an exciting
direction for future machine learning development. Our work complements these works.
We demonstrate the utility of rendering can be used to study the potential danger lurking
in misclassification due to subtle changes in geometry and lighting. This provides a fu-
ture direction of leveraging synthetic data generation pipelines to perform physically based
adversarial training on synthetic data.

Adversarial Examples Szegedy et al. [2014] expose the vulnerability of modern deep
neural nets using purposefully-manipulated images with human-imperceptible noise that
can trigger misclassification. Goodfellow et al. [2015] introduce a fast method to harness
adversarial examples, leading to the idea of pixel norm-balls for evaluating adversarial at-
tackers/defenders. Since then, many significant developments in adversarial techniques
have been proposed [Akhtar andMian, 2018; Szegedy et al., 2014; Rozsa et al., 2016; Kurakin
et al., 2017; Moosavi Dezfooli et al., 2016; Dong et al., 2018; Papernot et al., 2017; Moosavi-
Dezfooli et al., 2017; Chen et al., 2017b; Su et al., 2017]. Our work extends this progression
in constructing adversarial examples, a problem that lies at the foundation of adversarial
machine learning. Kurakin et al. [2016] study the transferability of attacks to the physical
world by printing then photographing adversarial images. Athalye et al. [2017] and Eykholt
et al. [2018] propose extensions to non-planar (yet, still fixed) geometry andmultiple view-
ing angles. These works still rely fundamentally on the direct pixel or texture manipula-
tion on physical objects. Since these methods assume independence between pixels in the
image or texture space they remain variants of pixel norm-balls. This leads to unrealistic
attack images that cannot model real-world scenarios [Goodfellow, 2018; Hendrycks and
Dietterich, 2018; Gilmer et al., 2018]. Zeng et al. [2017] generate adversarial examples by
altering physical parameters using a rendering network [Liu et al., 2017a] trained to ap-
proximate the physics of realistic image formation. This data-driven approach leads to an
image formation model biased towards the rendering style present in the training data.
This method also relies on differentiation through the rendering network in order to com-
pute adversaries, which requires high-quality training on a large amount of data. Even
with perfect training, in their reported performance, it still requires 12 minutes on average
to find new adversaries, we only take a few seconds Sec. 3.4.1. Our approach is based on a
differentiable physically-based renderer that directly (and, so, more convincingly) models
the image formation process, allowing us to alter physical parameters – like geometry and
lighting – and compute derivatives (and adversarial examples) much more rapidly com-
pared to the [Zeng et al., 2017]. We summarize the difference between our approach and
the previous non-image adversarial attacks in Table 3.1.
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Table 3.1: Previous non-pixel attacks fall short in either the parameter range they can take
derivatives or the performance.

Methods Perf. Color Normal Material Light Geo.

Athalye 17 ✓ ✓
Zeng 17 ✓ ✓ ✓
Ours ✓ ✓ ✓ ✓ ✓

Table 3.2: Previous differentiable renderers fall short in one way or another among Perfor-
mance, Bias, or Accuracy.

Methods Performance. Unbias Accuracy
NN proxy (Liu 17) ✓
Approx. (Kato 18) ✓ ✓
Autodiff (Loper 14) ✓ ✓
Analytical (Ours) ✓ ✓ ✓

Differentiable Renderer Applying parametric norm-balls requires that we differentiate
the image formation model with respect to the physical parameters of the image formation
model. Modern realistic computer graphics models do not expose facilities to directly ac-
commodate the computation of derivatives or automatic differentiation of pixel colors with
respect to geometry and lighting variables. A physically-based differentiable renderer is
fundamental to computing derivative of pixel colors with respect to scene parameters and
can benefit machine learning in several ways, including promoting the development of
novel network architectures [Liu et al., 2017a], in computing adversarial examples [Atha-
lye et al., 2017; Zeng et al., 2017], and in generalizing neural style transfer to a 3D context
[Kato et al., 2018; Liu et al., 2018]. Recently, various techniques have been proposed to ob-
tain these derivatives: Wu et al. [2017]; Liu et al. [2017a]; Eslami et al. [2016] use neural
networks to learn the image formation process provided a large amount of input/output
pairs. This introduces unnecessary bias in favor of the training data distribution, leading
to inaccurate derivatives due to imperfect learning. Kato et al. [2018] propose a differ-
entiable renderer based on a simplified image formation model and an underlying linear
approximation. Their approach requires no training and is unbiased to the training data,
but their approximation of the image formation and the derivatives introduce more errors.
Loper and Black [2014]; Genova et al. [2018] use automatic differentiation to build fully
differentiable renderers. These renderers, however, are expensive to evaluate, requiring
orders of magnitude more computation and much larger memory footprints compared to
our method.

Our novel differentiable renderer overcomes these limitations by efficiently computing
analytical derivatives of a physically-based image formation model. The key idea is that the
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non-differentiable visibility change can be ignored when considering infinitesimal pertur-
bations. Wemodel image variations by changing geometry and realistic lighting conditions
in an analytically differentiable manner, relying on an accurate model of diffuse image for-
mation that extends spherical harmonics-based shading methods (App. 3.7.3). Our ana-
lytic derivatives are efficient to evaluate, have scalable memory utilization, are unbiased,
and are accurate by construction (Table 3.2). Our renderer explicitly models the physics of
the image formation processes, and so the images it generates are realistic enough to illicit
correct classifications from networks trained on real-world photographs.

3.3 Adversarial Attacks in Parametric Spaces

Adversarial attacks based on pixel norm-balls typically generate adversarial examples by
defining a cost function over the space of images C : I → R that enforces some intuition of
what failure should look like, typically using variants of gradient descent where the gradi-
ent ∂C/∂I is accessible by differentiating through networks [Szegedy et al., 2014; Goodfellow
et al., 2015; Rozsa et al., 2016; Kurakin et al., 2017; Moosavi Dezfooli et al., 2016; Dong et al.,
2018].

The choices for C include increasing the cross-entropy loss of the correct class [Good-
fellow et al., 2015], decreasing the cross-entropy loss of the least-likely class [Kurakin et al.,
2017], using a combination of cross-entropies [Moosavi Dezfooli et al., 2016], and more
[Szegedy et al., 2014; Rozsa et al., 2016; Dong et al., 2018; Tramèr et al., 2017]. We use a
combination of cross-entropies to provide flexibility for choosing untargeted and targeted
attacks by specifying a different set of labels:

C
(

I(U, V)
)
= −CrossEntropy( f (I(U, V)), Ld

)
+CrossEntropy( f (I(U, V)), Li

)
, (3.1)

where I is the image, f (I) is the output of the classifier, Ld, Li are labels for which a user
wants to decrease and increase the predicted confidences respectively. In our experiments,
Ld is the correct class and Li is either ignored or chosen according to user preference. Our
adversarial attacks in the parametric space consider an image I(U, V) which is a function
of physical parameters of the image formation model, including the lighting U and the
geometryV. Adversarial examples constructed by perturbing physical parameters can then
be computed via the chain rule

∂C
∂U

=
∂C
∂I

∂I
∂U

∂C
∂V

=
∂C
∂I

∂U
∂V

, (3.2)

where ∂I/∂U, ∂I/∂V are derivatives with respect to the physical parameters and we evaluate
using our physically based differentiable renderer. In our experiments, we use gradient
descent for finding parametric adversarial examples where the gradient is the direction of
∂I/∂U, ∂I/∂V.
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Figure 3.3: Our differentiable renderer based on analytical derivatives is faster and more
scalable than the previous method.

3.3.1 Physically Based Differentiable Renderer

Rendering is the process of generating a 2D image from a 3D scene by simulating the
physics of light. Light sources in the scene emit photons that then interact with objects
in the scene. At each interaction, photons are either reflected, transmitted or absorbed,
changing trajectory and repeating until arriving at a sensor such as a camera. A physically
based renderer models the interactions mathematically [Pharr et al., 2016], and our task is
to analytically differentiate the physical process.

We develop our differentiable renderer with common assumptions in real-time render-
ing [Akenine-Möller et al., 2008] – diffuse material, local illumination, and distant light
sources. Our diffuse material assumption considers materials which reflect lights uni-
formly for all directions, equivalent to considering non-specular objects. We assume that
variations in the material (texture) are piece-wise constant with respect to our triangle
mesh discretization. The local illumination assumption only considers lights that bounce
directly from the light source to the camera. Lastly, we assume light sources are far away
from the scene, allowing us to represent lighting with one spherical function. For a more
detailed rationale of our assumptions, we refer readers to App. 3.7.2).

These assumptions simplify the complicated integral required for rendering [Kajiya,
1986] and allow us to represent lighting in terms of spherical harmonics, an orthonormal ba-
sis for spherical functions analogous to Fourier transformation. Thus, we can analytically
differentiate the rendering equation to acquire derivatives with respect to lighting, geome-
try, and texture (derivations found in App. 3.7.3).

Using analytical derivatives avoids pitfalls of previous differentiable renderers (see Sec. 3.2)
and make our differentiable renderer orders of magnitude faster than the previous fully
differentiable renderer OpenDR [Loper and Black, 2014] (see Fig. 3.3). Our approach is
scalable to handle problems with more than 100,000 variables, while OpenDR runs out of
memory for problems with more than 3,500 variables.
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Figure 3.4: By changing the lighting, we fool the classifier into seeing miniskirt and water
tower, demonstrating the existence of adversarial lighting.

Figure 3.5: We construct a single lighting condition that can simultaneously fool the classi-
fier viewing from different angles.

3.3.2 Adversarial Lighting and Geometry

Adversarial lighting denotes adversarial examples generated by changing the spherical har-
monics lighting coefficients U [Green, 2003]. As our differentiable renderer allows us to
compute ∂I/∂U analytically (derivation is provided in App. 3.7.3), we can simply apply the
chain rule:

U ← U − γ
∂C
∂I

∂I
∂U

, (3.3)

where ∂C/∂I is the derivative of the cost function with respect to pixel colors and can be ob-
tained by differentiating through the network. Spherical harmonics act as an implicit con-
straint to prevent unrealistic lighting because natural lighting environments everyday life
are dominated by low-frequency signals. For instance, rendering of diffusematerials can be
approximatedwith only 1% pixel intensity error by the first 2 orders of spherical harmonics
[Ramamoorthi and Hanrahan, 2001a]. As computers can only represent a finite number of
coefficients, using spherical harmonics for lighting implicitly filters out high-frequency, un-
realistic lightings. Thus, perturbing the parametric space of spherical harmonics lighting
generates more realistic images compared to image-pixel perturbations Fig. 3.1.

Adversarial geometry is an adversarial example computed by changes to the position of
the shape’s surface. The shape is encoded as a triangle mesh with |V| vertices and |F|
faces, surface points are vertex positions V ∈ R|V|×3 which determine per-face normals
N ∈ R|F|×3 which in turndetermine the shading of the surface. We can compute adversarial
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shapes by applying the chain rule:

V ← V − γ
∂C
∂I

∂I
∂N

∂N
∂V

, (3.4)

where ∂I/∂N is computed via a derivation in App. 3.7.5. Each
triangle only has one normal on its face, making ∂N/∂V com-
putable analytically. In particular, the 3× 3 Jacobian of a unit
face normal vector ni ∈ R3 of the jth face of the triangle mesh
V with respect to one of its corner vertices vj ∈ R3 is

∂ni

∂vj
=

hijn
⊤
i

∥hij∥2 ,

where hij ∈ R3 is the height vector: the shortest vector to the corner vj from the opposite
edge.

3.4 Results

We have described how to compute adversarial examples by parametric perturbations, in-
cluding lighting and geometry. In this section, we show that adversarial examples exist in
the parametric spaces, then we analyze the characteristics of those adversaries and para-
metric norm-balls.

We use spherical harmonics from degrees 0 to 6 to represent environment lighting. This
leads to 49× 3 spherical harmonics coefficients initialized with real-world lighting condi-
tions presented in [Ramamoorthi andHanrahan, 2001a]. Camera parameters and the back-
ground images are empirically chosen to have correct initial classifications. In Fig. 3.4 we
show that single-view adversarial lighting attack can fool the classifier (pre-trainedResNet-
101 on ImageNet [He et al., 2016]). Fig. 3.5 shows multi-view adversarial lighting, which
optimizes the summation of the cost functions for each view, thus the gradient is computed
as the summation over all camera views:

U ← U − ∑
i∈cameras

γ
∂C
∂Ii

∂Ii

∂U
. (3.5)

If one is interested in a more specific subspace, such as outdoor lighting conditions gov-
erned by sunlight and weather, our adversarial lighting can adapt to it. In Fig. 3.7, we com-
pute adversarial lights over the space of skylights by applying one more chain rule to the
Preetham skylight parameters [Preetham et al., 1999; Habel et al., 2008]. Details about taking
these derivatives are provided in App. 3.7.4. Although adversarial skylights exist, the low
degrees of freedom (only three parameters) makes it more difficult to find adversaries.

In Fig. 3.8 and Fig. 3.9 we show the existence of adversarial geometry in both single-
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Figure 3.6: By specifying different target labels, we can create an optical illusion: a jaguar
is classified as cat and dog from two different views after geometry perturbations.

Figure 3.7: Even if we further constrain to a lighting subspace, skylight, we can still find
adversaries.

Figure 3.8: Perturbing points on 3D shapes fools the classifier into seeing rifle/slug.

Figure 3.9: We construct a single adversarial geometry that fools the classifier seeing a
mailbox from different angles.
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Table 3.3: We evaluate ResNet adversaries on
unseen models and show that parametric ad-
versarial examples also share across models.
The table shows the success rate of attacks (%).

Alex VGG Squeeze Dense
Lighting 81.2% 65.0% 78.6% 43.5%
Geometry 70.3% 58.9% 71.1% 40.1%

Table 3.4: We compute paramet-
ric adversaries using a subset of
views (#Views) and evaluate the
success rates (%) of attacks on un-
seen views.
#Views 0 1 5
Lighting 0.0% 29.4% 64.2%
Geometry 0.0% 0.6% 3.6%

view and multi-view cases. Note that we upsample meshes to have >10K vertices as a
preprocessing step to increase the degrees of freedom available for perturbations. Multi-
view adversarial geometry enables us to perturb the same 3D shape from different viewing
directions, which enables us to construct a deep optical illusion: The same 3D shape are clas-
sified differently from different angles. To create the optical illusion in Fig. 3.6, we only
need to specify the Li in Eq. (3.1) to be a dog and a cat for two different views.

3.4.1 Properties of Parametric Norm-Balls and Adversaries

To further understand parametric adversaries, we analyze how do parametric adversarial
examples generalize to black-box models. In Table 3.3, we test 5,000 ResNet parametric
adversaries on unseen networks including AlexNet [Krizhevsky et al., 2012], DenseNet
[Huang et al., 2017], SqueezeNet [Iandola et al., 2016], andVGG[Simonyan andZisserman,
2014]. Our result shows that parametric adversarial examples also triggermisclassifications
across different classification models.

In addition to different models, we evaluate parametric adversaries on black-box view-
ing directions. This evaluationmimics the real-world scenario that a self-driving car would
“see” a stop sign from different angles while driving. In Table 3.4, we randomly sample 500
correctly classified views for a given shape and perform adversarial lighting and geometry
algorithms only on a subset of views, then evaluate the resulting adversarial lights/shapes
on all the views. The results show that adversarial lights are more likely to fool unseen
views. In contrast, adversarial shapes are not.

Switching from pixel norm-balls to parametric norm-balls only requires to change the
norm-constraint from the pixel color space to the parametric space. For instance, we can
perform a quantitative comparison between parametric adversarial and random perturba-
tions in Fig. 3.10. We use L∞-norm = 0.1 to constraint the perturbed magnitude of each
lighting coefficient, and L∞-norm = 0.002 to constrain the maximum displacement of sur-
face points along each axis. The results show how many parametric adversaries can fool
the classifier out of 10,000 adversarial lights and shapes respectively. Not only do the para-
metric norm-balls show the effectiveness of adversarial perturbation, evaluating robustness
using parametric norm-balls has real-world implications.
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Figure 3.10: A quantitative comparison using parametric norm-balls shows the fact that
adversarial lighting/geometry perturbations have a higher success rate (%) in fooling clas-
sifiers comparing to random perturbations in the parametric spaces.

Figure 3.11: We reports the runtime of our method for adversarial lighting and geometry.

Runtime The inset presents our runtime per iteration for computing derivatives. An ad-
versary normally requires less than 10 iterations , thus taking a few seconds. We evaluate
our CPU Python implementation and the OpenGL rendering, on an Intel Xeon 3.5GHz
CPU with 64GB of RAM and an NVIDIA GeForce GTX 1080. Our runtime depends on the
number of pixels requiring derivatives.

3.5 Rendered Adversarial Data Augmentation Against Photos

We inject adversarial examples, generated using our differentiable renderer, into the train-
ing process of modern image classifiers. Our goal is to increase the robustness of these clas-
sifiers to real-world perturbations. Traditionally, adversarial training is evaluated against
computer-generated adversarial images [Kurakin et al., 2017; Madry et al., 2018; Tramèr
et al., 2017]. In contrast, our evaluation differs from the majority of the literature, as we
evaluate performance against real photos (i.e., images captured using a camera), and not
computer-generated images. This evaluation method is motivated by our goal of increas-
ing a classifier’s robustness to “perturbations” that occur in the real world and result from
the physical processes underlying real-world image formation. We present preliminary
steps towards this objective, resolving the lack of realism of pixel norm-balls and evaluat-
ing our augmented classifiers (i.e., those trained using our rendered adversaries) against
real photographs.

Training We train theWideResNet (16 layers, 4wide factor) [Zagoruyko andKomodakis,
2016] on CIFAR-100 [Krizhevsky and Hinton, 2009] augmented with adversarial lighting
examples. We apply a common adversarial training method that adds a fixed number of
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adversarial examples each epoch [Goodfellow et al., 2015; Kurakin et al., 2017]. We refer
readers to App. 3.7.6 for the training detail. In our experiments, we compare three training
scenarios: (1) CIFAR-100, (2) CIFAR-100 + 100 images under random lighting, and (3)
CIFAR-100 + 100 images under adversarial lighting. Comparing to the accuracy reported
in [Zagoruyko and Komodakis, 2016], WideResNets trained on these three cases all have
comparable performance (≈ 77%) on the CIFAR-100 test set.

Testing We create a test set of real photos, captured
in a laboratory setting with controlled lighting and
camera parameters: wephotographed oranges using
a calibrated Prosilica GT 1920 camera under differ-
ent lighting conditions, each generated by projecting different lighting patterns using an
LG PH550 projector. This hardware lighting setup projects lighting patterns from a fixed
solid angle of directions onto the scene objects. In the inset, we illustrate samples from the
500 real photographs of our dataset. We evaluate the robustness of our classifier models
according to test accuracy. Of note, average prediction accuracies over five trainedWideRes-
Nets on our test data under the three training cases are (1) 4.6%, (2) 40.4%, and (3) 65.8%.
This result supports the fact that training on rendered images can improve the networks’
performance on real photographs. Our preliminary experiments motivate the potential of
relying on rendered adversarial training to increase the robustness to visual phenomena
present in the real-world inputs.

3.6 Conclusion

Using parametric norm-balls to remove the lack of realism of pixel norm-balls is only the
first step to bring adversarial machine learning to real-world. More evaluations beyond
the lab experimental data could uncover the potential of the rendered adversarial data
augmentation. Coupling the differentiable renderer with methods for reconstructing 3D
scenes, such as [Veeravasarapu et al., 2017b; Tremblay et al., 2018], has the potential to de-
velop a complete pipeline for rendered adversarial training. We can take a small set of real
images, constructing 3D virtual scenes which have real image statistics, using our approach
to manipulate the predicted parameters to construct the parametric adversarial examples,
then perform rendered adversarial training. This direction has the potential to produce
limitless simulated adversarial data augmentation for real-world tasks.

Our differentiable renderer models the change of realistic environment lighting and ge-
ometry. Incorporating real-time rendering techniques from the graphics community could
further improve the quality of rendering. Removing the locally constant texture assump-
tion could improve our results. Extending the derivative computation to materials could
enable “adversarial materials”. Incorporating derivatives of the visibility change and prop-
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Figure 3.12: We compare our parametric perturbations (the first two columns) with
pixel/color perturbations under the same L∞ pixel norm (small: 0.12, medium: 0.53, large:
0.82). As changing physical parameters corresponds to real-world phenomena, our para-
metric perturbation are more realistic.

agating gradient information to shape skeleton could also create “adversarial poses”. These
extensions offer a set of tools formodeling real security scenarios. For instance, we can train
a self-driving car classifier that can robustly recognize pedestrians under different poses,
lightings, and cloth deformations.

3.7 Appendix

3.7.1 Comparison Between Perturbation Spaces

We extend our comparisons against pixel norm-balls methods (Fig. 3.1) by visualizing the
results and the generated perturbations (Fig. 3.12). We hope this figure elucidates that our
parametric perturbation are more realistic at several scales of perturbations.
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3.7.2 Physically Based Rendering

Physically based rendering (PBR) seeks tomodel the flow of light, typically the assumption
that there exists a collection of light sources that generate light; a camera that receives this
light; and a scene thatmodulates the flow light between the light sources and camera [Pharr
et al., 2016]. What follows is a brief discussion of the general task of rendering an image
from a scene description and the approximations we take in order to make our renderer
efficient yet differentiable.

Computer graphics has dedicated decades of effort into developing methods and tech-
nologies to enable PBR to synthesize of photorealistic images under a large gamut of per-
formance requirements. Much of this work is focused around taking approximations of
the cherished Rendering equation [Kajiya, 1986], which describes the propagation of light
through a point in space. If we let uo be the output radiance, p be the point in space, ωo be
the output direction, ue be the emitted radiance, ui be incoming radiance, ωi be the incom-
ing angle, fr be the way light be reflected off the material at that given point in space we
have:

uo(p, ωo) = ue(p, ωo) +
∫

S2
fr(p, ωi, ωo)ui(p, ωi)(ωi · n)dωi.

Figure 3.13: PBR models
the physics of light that
is emitted from the light
source, interacts with the
scene, and then arrive a
camera.

From now on we will ignore the emission term ue as it is not
pertinent to our discussion. Furthermore, because the speed
of light is substantially faster than the exposure time of our
eyes, what we perceive is not the propagation of light at an
instant, but the steady state solution to the rendering equa-
tion evaluated at every point in space. Explicitly computing
this steady state is intractable for our applications and will
mainly serve as a reference for a plethora of assumptions and
simplifications wewill make for the sake of tractability. Many
of these methods focus on ignoring light with nominal effects
on the final rendered image vis a vis assumptions on the way
light travels. For instance, light is usually assumed to have
nominal interaction with air, which is described as the assumption that the space between
objects is a vacuum, which constrains the interactions of light to the objects in a scene. An-
other common assumption is that light does not penetrate objects, which makes it difficult
to render objects like milk and human skin1. This constrains the complexity of light prop-
agation to the behavior of light bouncing off of object surfaces.

Local Illumination

It is common to see assumptions that limits at the number of times light is allowed to
bounce.In our case we chose to assume that the steady state is sufficiently approximated by

1this is why simple renderers make these sorts of objects look like plastic
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an extremely lownumber of iterations: one. Thismeans that it seems sufficient tomodel the
lighting of a point in space by the light arriving at it directly from the light sources. Work-
ing with such a strong simplification does, of course, lead to a few artifacts. For instance,
light occluded by other objects is ignored so shadows disappear and auxiliary techniques
are usually employed to evaluate shadows [Williams, 1978; Miller, 1994].

Figure 3.14: Rasterization
converts a 3D scene into
pixels.

When this assumption is coupled with a camera we ap-
proach what is used in standard rasterization systems such as
OpenGL [Shreiner and Group, 2009], which is what we use.
These systems compute the illumination of a single pixel by
determining the fragment of an object visible through that
pixel and only computing the light that traverses directly from
the light sources, through that fragment, to that pixel. The
lighting of a fragment is therefore determined by a point and
the surface normal at that point, so we write the fragment’s radiance as R(p, n, ωo) =

uo(p, ωo):
R(p, n, ωo) =

∫
S2

fr(p, ωi, ωo)ui(p, ωi)(ωi · n)dωi. (3.6)

Lambertian Material

Figure 3.15: We consider
the Lambertian material
(left) where lights get re-
flected uniformly in every
direction.

Each point on an object has a model approximating the trans-
fer of incoming light to a given output direction fr, which is
usually called the material. On a single object the material
parameters may vary quite a bit and the correspondence be-
tween points andmaterial parameters is usually called the tex-
ture map which forms the texture of an object. There exists a
wide gamut of material models, from mirror materials that
transport light from a single input direction to a single output
direction, tomaterials that reflect light evenly in all directions,
to materials liked brushed metal that reflect differently along different angles. For the sake
of this documentwe only consider diffusematerials, also called Lambertianmaterials, where
we assume that incoming light is reflected uniformly, i.e fr is a constant function with re-
spect to angle, which we denote fr(p, ωi, ωo) = ρ(p):

R(p, n) = ρ(p)
∫

Ω(n)
u(p, ω)(ω · n)dω. (3.7)

This function ρ is usually called the albedo, which can be perceived as color on the surface
for diffuse material, and we reduce our integration domain to the upper hemisphere Ω(n)
in order to model light not bouncing through objects. Furthermore, since only the only ω

and u are the incoming ones we can now suppress the “incoming” in our notation and just
use ω and u respectively.
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Environment Mapping

The illumination of static, distant objects such as the ground, the sky, or mountains do not
change in any noticeable fashion when objects in a scene are moved around, so u can be
written entirely in terms of ω, u(p, ω) = u(ω). If their illumination forms a constant it
seems prudent to pre-compute or cache their contributions to the illumination of a scene.
This is what is usually called environment mapping and they fit in the rendering equation as a
representation for the total lighting of a scene, i.e the total incoming radiance ui. Because the
environment is distant, it is common to also assume that the position of the object receiving
light from an environment map does not matter so this simplifies ui to be independent of
position:

R(p, n) = ρ(p)
∫

Ω(n)
u(ω) (ω · n) dω. (3.8)

Spherical Harmonics

Despite all of our simplifications, the inner integral is still a fairly generic function over S2.
Many techniques for numerically integrating the rendering equation have emerged in the
graphics community andwe choose one which enables us to perform pre-computation and
select a desired spectral accuracy: spherical harmonics. Spherical harmonics are a basis on
S2 so, given a spherical harmonics expansion of the integrand, the evaluation of the above
integral can be reduced to aweighted product of coefficients. This particular basis is chosen
because it acts as a sort of Fourier basis for functions on the sphere and so the bases are each
associatedwith a frequency, which leads to a convenient multi-resolution structure. In fact,
the rendering of diffuse objects under distant lighting can be 99% approximated by just the
first few spherical harmonics bases [Ramamoorthi and Hanrahan, 2001a].

We will only need to note that the spherical harmonics bases Ym
l are denoted with the

subscript with l as the frequency and that there are 2l + 1 functions per frequency, denoted
by superscripts m between −l to l inclusively. For further details, please see App. 3.7.3.

Ifwe approximate a function f in terms of spherical harmonics coefficients f ≈ ∑lm fl,mYm
l

the integral can be precomputed as∫
S2

f ≈
∫

S2
∑
lm

fl,mYm
l = ∑

lm
fl,m

∫
S2

Ym
l , (3.9)

Thus we have defined a reduced rendering equation that can be efficiently evaluated
using OpenGL while maintaining differentiability with respect to lighting and vertices. In
the following appendix we will derive the derivatives necessary to implement our system.

3.7.3 Differentiable Renderer

Rendering computes an image of a 3D shape given lighting conditions and the prescribed
material properties on the surface of the shape. Our differentiable renderer assumes Lam-
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bertian reflectance, distant light sources, local illumination, and piece-wise constant tex-
tures. We will discuss how to compute the derivatives used in the main text and give a
detailed discussion about spherical harmonics and their advantages.

Spherical Harmonics

Spherical harmonics are usually defined in terms of the Legendre polynomials, which are
a class of orthogonal polynomials defined by the recurrence relation

P0 = 1 (3.10)
P1 = x (3.11)

(l + 1)Pl+1(x) = (2l + 1)xPl(x)− lPl−1(x). (3.12)

The associated Legendre polynomials are a generalization of the Legendre polynomials and
can be fully defined by the relations

P0
l = Pl (3.13)

(l −m + 1)Pm
l+1(x) = (2l + 1)xPm

l (x)− (l + m)Pm
l−1(x) (3.14)

2mxPm
l (x) = −

√
1− x2

[
Pm+1

l (x) + (l + m)(l −m + 1)Pm−1
l (x)

]
. (3.15)

Using the associated Legendre polynomials Pm
l we can define the spherical harmonics basis

as

Ym
l (θ, ϕ) = Km

l


(−1)m

√
2P−m

l (cos θ) sin(−mϕ) m < 0

(−1)m
√

2Pm
l (cos θ) cos(mϕ) m > 0

P0
l (cos θ) m = 0

. (3.16)

where Km
l =

√
(2l + 1)(l − |m|)!

4π(l + |m|)! . (3.17)

We will use the fact that the associated Legendre polynomials correspond to the spherical
harmonics bases that are rotationally symmetric along the z axis (m = 0).

In order to incorporate spherical harmonics into Equation 3.8, we change the integral
domain from the upper hemisphere Ω(n) back to S2 via a max operation

R(p, n) = ρ(p)
∫

Ω(n)
u(ω)(ω · n)dω (3.18)

= ρ(p)
∫
S2

u(ω)max(ω · n, 0)dω. (3.19)

We see that the integral is comprised of two components: a lighting component u(ω) and
a component that depends on the normal max(ω · n, 0). The strategy is to pre-compute the
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two components by projecting onto spherical harmonics, and evaluating the integral via a
dot product at runtime, as we will now derive.

Lighting in Spherical Harmonics

Approximating the lighting component u(ω) in Equation 3.19 using spherical harmonics
Ym

l up to band n can be written as

u(ω) ≈
n

∑
l=0

l

∑
m=−l

Ul,mYm
l (ω),

where Ul,m ∈ R are coefficients. By using the orthogonality of spherical harmonics we can
evaluate these coefficients as an integral between u(ω) and Ym

l (ω)

Ul,m = ⟨u, Ym
l ⟩S2 =

∫
S2

u(ω)Ym
l (ω)dω,

which can be evaluated via quadrature.

Clamped Cosine in Spherical Harmonics

So far, we have projected the lighting term u(ω) onto the spherical harmonics basis. To
complete evaluating Equation 3.19 we also need to approximate the second component
max(ω · n, 0) in spherical harmonics. This is the so-called the clamped cosine function.

g(ω, n) = max(ω · n, 0) =
n

∑
l=0

l

∑
m=−l

Gl,m(n)Ym
l (ω),

where Gl,m(n) ∈ R can be computed by projecting g(ω, n) onto Ym
l (ω)

Gl,m(n) =
∫
S2

max(ω · n, 0)Ym
l (ω)dω.

Unfortunately, this formulation turns out to be tricky to compute. Instead, the common
practice is to analytically compute the coefficients for unit z direction G̃l,m = Gl,m(nz) =

Gl,m([0, 0, 1]⊤) and evaluate the coefficients for different normals Gl,m(n) by rotating G̃l,m.
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This rotation, G̃l,m, can be computed analytically:

G̃l,m =
∫
S2

max(ω · nz, 0)Ym
l (ω)dω

=
∫ 2π

0

∫ π

0
max([sin θ cos ϕ, sin θ sin ϕ, cos θ][0, 0, 1]⊤, 0)Ym

l (θ, ϕ) sin θdθdϕ

=
∫ 2π

0

∫ π

0
max(cos θ, 0)Ym

l (θ, ϕ) sin θdθdϕ

=
∫ 2π

0

∫ π/2

0
cos θ Ym

l (θ, ϕ) sin θdθdϕ. (3.20)

In fact, because max(ω · nz, 0) is rotationally symmetric around the z-axis, its projection
onto Ym

l (ω) will have many zeros except the rotationally symmetric spherical harmonics
Y0

l . In other words, G̃l,m is non-zero only when m = 0. So we can simplify Equation 3.20 to

G̃l = G̃l,0 = 2π
∫ π/2

0
cos θ Y0

l (θ) sin θdθ.

The evaluation of this integral can be found in Appendix A in [Basri and Jacobs, 2003]. We
provide it here as well:

G̃l =



√
π

2 l = 0√
π
3 l = 1

(−1)
l
2+1 (l−2)!

√
(2l+1)π

2l( l
2−1)!( l

2+1)!
l ≥ 2, even

0 l ≥ 2, odd

.

The spherical harmonics coefficients Gl,m(n) of the clamped cosine function g(ω, n) can be
computed by rotating G̃l [Sloan et al., 2005] using this formula

Gl,m(n) =

√
4π

2l + 1
G̃l Ym

l (n). (3.21)

So far we have projected the two terms in Equation 3.19 into the spherical harmonics
basis. Orthogonality of spherical harmonics makes the evaluation of this integral straight-
forward:

∫
S2

u(ω)max(ω · n, 0)dω =
∫
S2

[
∑
l,m

Ul,mYm
l (ω)

][
∑
j,k

Gj,k(n)Yk
j (ω)

]
dω

= ∑
j,k,l,m

Ul,mGj,k(n)δl
jδ

m
k (3.22)

= ∑
l,m

Ul,mGl,m(n). (3.23)

This, in conjunction with Equation 3.21 allows us to derive the rendering equation using
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spherical harmonics lighting for Lambertian objects:

R(p, n) = ρ(p)
n

∑
l=0

l

∑
m=−l

Ul,m

√
4π

2l + 1
G̃l Ym

l (n). (3.24)

So far we have only considered the shading of a specific point p with surface normal n.
If we consider the rendered image I given a shape V, lighting U, and camera parameters η,
the image I is the evaluation of the rendering equation R of each point in V visible through
each pixel in the image. This pixel to point mapping is determined by η. Therefore, we can
write I as

I(V, U, η) = ρ(V, η)
n

∑
l=0

l

∑
m=−l

Ul,m

√
4π

2l + 1
G̃l Ym

l (N(V))︸ ︷︷ ︸
F(V,U)

, (3.25)

where N(V) is the surface normal. We exploit the notation and use ρ(V, η) to represent the
texture of V mapped to the image space through η.

Lighting and Texture Derivatives

For our applications we must differentiate Equation 3.25 with respect to lighting andmate-
rial parameters. The derivative with respect to the lighting coefficients U can be obtained
by

∂I
∂U

=
∂ρ

∂U
F + ρ

∂F
∂U

(3.26)

= 0 + ρ
n

∑
l=0

l

∑
m=−l

∂F
∂Ul,m

. (3.27)

This is the Jacobian matrix that maps from spherical harmonics coefficients to pixels. The
term ∂F/∂Ul,m can then be computed as

∂F
∂Ul,m

=

√
4π

2l + 1
G̃l Ym

l (N(V)). (3.28)

The derivative with respect to texture is defined by

∂I
∂ρ

=
n

∑
l=0

l

∑
m=−l

Ul,m

√
4π

2l + 1
G̃l Ym

l (N(V)). (3.29)

Note that we assume texture variations are piece-wise constant with respect to our triangle
mesh discretization.
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3.7.4 Differentiating Skylight Parameters

To model possible outdoor daylight conditions, we use the analytical Preetham skylight
model [Preetham et al., 1999]. This model is calibrated by atmospheric data and param-
eterized by two intuitive parameters: turbidity τ, which describes the cloudiness of the
atmosphere, and two polar angles θs ∈ [0, π/2], ϕs ∈ [0, 2π], which encode the direction
of the sun. Note that θs, ϕs are not the polar angles θ, ϕ for representing incoming light
direction ω in u(ω). The spherical harmonics representation of the Preetham skylight is
presented in [Habel et al., 2008] as

u(ω) =
6

∑
l=0

l

∑
m=−l

Ul,m(θs, ϕs, τ)Ym
l (ω).

This is derived by first performing a non-linear least squares fit towriteUl,m as a polynomial
of θs and τ which lets them solve for Ũl,m(θs, τ) = Ul,m(θs, 0, τ)

Ũl,m(θs, τ) =
13

∑
i=0

7

∑
j=0

(pl,m)i,jθ
i
sτ

j,

where (pl,m)i,j are scalar coefficients, then Ul,m(θs, ϕs, τ) can be computed by applying a
spherical harmonics rotation with ϕs using

Ul,m(θs, ϕs, τ) = Ũl,m(θs, τ) cos(mϕs) + Ũl,−m(θs, τ) sin(mϕs).

We refer the reader to [Preetham et al., 1999] formore detail. For the purposes of this article
we just need the above form to compute the derivatives.

Derivatives

The derivatives of the lighting with respect to the skylight parameters (θs, ϕs, τ) are

∂Ul,m(θs, ϕs, τ)

∂ϕs
= −mŨl,m(θs, τ) sin(mϕs) + mŨl,−m(θs, τ) cos(mϕs) (3.30)

∂Ul,m(θs, ϕs, τ)

∂θs
=

∂Ũl,m(θs, τ) cos(mϕs) + Ũl,−m(θs, τ) sin(mϕs)

∂θs
(3.31)

= ∑
ij

iθi−1
s τ j(pl,m)i,j cos(mϕs) + ∑

ij
iθi−1

s (pl,−m)i,j sin(mϕs) (3.32)

∂Ul,m(θs, ϕs, τ)

∂τ
= ∑

ij
jθi

sτ
j−1(pl,m)i,j cos(mϕs) + ∑

ij
jθi

sτ
j−1(pl,−m)i,j sin(mϕs) (3.33)

3.7.5 Derivatives of Surface Normals

Taking the derivative of the rendered image I with respect to surface normals N is an es-
sential task for computing the derivative of I with respect to the geometry V. Specifically,
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the derivative of the rendering equation Equation 3.25 with respect to V is

∂I
∂V

=
∂ρ

∂V
F + ρ

∂F
∂V

(3.34)

=
∂ρ

∂V
F + ρ

∂F
∂N

∂N
∂V

(3.35)

We assume the texture variations are piece-wise constant with respect to our triangle mesh
discretization and omit the first term ∂ρ/∂V as the magnitude is zero. The expression for
∂N/∂V is provided in Sec. 3.3.2. The expression for ∂F/∂Ni on face i is

∂F
∂Ni

=
n

∑
l=0

l

∑
m=−l

Ul,m

√
4π

2l + 1
G̃l

∂Ym
l

∂Ni
, (3.36)

where the ∂Ym
l /∂Ni is the derivative of the spherical harmonicswith respect to the face normal

Ni.
To begin this derivation recall the relationship between aunit normal vectorn = (nx, ny, nz)

and its corresponding polar angles θ, ϕ

θ = cos−1
(

nz√
n2

x + n2
y + n2

z

)
ϕ = tan−1

(
ny

nx

)
,

we can compute the derivative of spherical harmonics with respect to the normal vector
through

∂Ym
l (θ, ϕ)

∂n

= Km
l



(−1)m
√

2
[

∂P−m
l (cos θ)

∂θ

∂θ

∂n
sin(−mϕ) + P−m

l (cos θ)
∂ sin(−mϕ)

∂ϕ

∂ϕ

∂n

]
m < 0

(−1)m
√

2
[

∂Pm
l (cos θ)

∂θ

∂θ

∂n
cos(mϕ) + Pm

l (cos θ)
∂ cos(mϕ)

∂ϕ

∂ϕ

∂n

]
m > 0

∂P0
l (cos θ)

∂θ

∂θ

∂n
m = 0

= Km
l



(−1)m
√

2
[

∂P−m
l (cos θ)

∂θ

∂θ

∂n
sin(−mϕ)−mP−m

l (cos θ) cos(−mϕ)
∂ϕ

∂n

]
m < 0

(−1)m
√

2
[

∂Pm
l (cos θ)

∂θ

∂θ

∂n
cos(mϕ)−mPm

l (cos θ) sin(mϕ)
∂ϕ

∂n

]
m > 0

∂P0
l (cos θ)

∂θ

∂θ

∂n
m = 0

(3.37)

Note that the derivative of the associated Legendre polynomials Pm
l (cos θ) can be computed
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by applying the recurrence formula [Dunster, 2010]

∂Pm
l (cos θ)

∂θ
=
− cos θ(l + 1)Pm

l (cos θ) + (l −m + 1)Pm
l+1(cos θ)

cos2 θ − 1
× (− sin θ)

=
− cos θ(l + 1)Pm

l (cos θ) + (l −m + 1)Pm
l+1(cos θ)

sin θ
. (3.38)

Thus the derivatives of polar angles (θ, ϕ) with respect to surface normals n = [nx, ny, nz]

are

∂θ

∂n
=
[ ∂θ

∂nx
,

∂θ

∂ny
,

∂θ

∂nz

]
=

[
nxnz, nynz, −(n2

x + n2
y)
]

(n2
x + n2

y + n2
z)
√

n2
x + n2

y

, (3.39)

∂ϕ

∂n
=
[ ∂ϕ

∂nx
,

∂ϕ

∂ny
,

∂ϕ

∂nz

]
=
[ −ny

n2
x + n2

y
,

nx

n2
x + n2

y
, 0
]
. (3.40)

In summary, the results of Equation 3.37, Equation 3.38, Equation 3.39, and Equation 3.40
tell us how to compute ∂Ym

l /∂Ni. Then the derivative of the pixel j with respect to vertex p
which belongs to face i can be computed as

∂Ij

∂Vp
≈ ρj

∂F
∂Ni

∂Ni

∂Vp

= ρj

n

∑
l=0

l

∑
m=−l

Ul,m

√
4π

2l + 1
G̃l

∂Ym
l (θ, ϕ)

∂Ni

∂Ni

∂Vp
. (3.41)

3.7.6 Adversarial Training Implementation Detail

Our adversarial training is based on the basic idea of injecting adversarial examples into
the training set at each step of training and continuously updating the adversaries accord-
ing to the current model parameters [Goodfellow et al., 2015; Kurakin et al., 2017]. Our
experiments inject 100 adversarial lighting examples to the CIFAR-100 data (≈ 0.17% of
the training set) and keep updating these adversaries at each epoch.

We compute the adversarial lighting examples using the orange models collected from
cgtrader.com and turbosquid.com. We uses five gray-scale background colors with inten-
sities 0.0, 0.25, 0.5, 0.75, 1.0 to mimic images in the CIFAR-100 which contains many pure
color backgrounds. Our orthographic cameras are placed at polar angle θ = π/3 with 10
uniformly sampled azimuthal angles ranging from ϕ = 0 to 2π. Our initial spherical har-
monics lighting is the same as other experiments, using the real-world lighting data pro-
vided in [Ramamoorthi and Hanrahan, 2001a]. Our stepsize for computing adversaries is
0.05 along the direction of lighting gradients. We run our adversarial lighting iterations un-
til fooling the network or reaching the maximum 30 iterations to avoid too extreme lighting
conditions, such as turning the lights off.

Our random lighting examples are constructed at each epoch by randomly perturbing
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Figure 3.16: This figure visualizes the images of oranges from CIFAR-100, random lighting,
and adversarial lighting. In early training stage, small changes in lighting are sufficient to
construct adversarial examples. In late training stage, we require more dramatic changes
as the model is becoming robust to differ lightings.

the lighting coefficients ranging from -0.5 to 0.5.
When training the 16-layersWideResNet [Zagoruyko andKomodakis, 2016]withwide-

factor 4, we use batch size 128, learning rate 0.125, dropout rate 0.3, and the standard cross
entropy loss. We implement the training using PyTorch [Paszke et al., 2019], with the SGD
optimizer and set the Nesterov momentum 0.9, weight decay 5e-4. We train the model
for 150 epochs and use the one with best accuracy on the validation set. Fig. 3.16 shows
examples of our adversarial lights at different training stages. In the early stages, the model
is not robust to different lighting conditions, thus small lighting perturbations are sufficient
to fool themodel. In the late stages, the network becomesmore robust to different lightings.
Thus it requires dramatic changes to fool a model or even fail to fool the model within 30
iterations.

3.7.7 Evaluate Rendering Quality

Figure 3.17: Prediction confidence
on rendered images, showing our
rendering quality is faithful enough
to be confidently recognized by Im-
ageNet models.

We evaluated our rendering quality by whether our
rendered images are recognizable bymodels trained
on real photographs. Although large 3D shape
datasets, such as ShapeNet [Chang et al., 2015], are
available, they do not have have geometries or tex-
tures at the resolutions necessary to create realistic
renderings. We collected 75 high-quality textured
3D shapes from cgtrader.com and turbosquid.com to
evaluate our rendering quality. We augmented the
shapes by changing the field of view, backgrounds,
and viewing directions, then kept the configura-
tions that were correctly classified by a pre-trained
ResNet-101 on ImageNet. Specifically, we place the
centroid, calculated as the weighted average of the mesh vertices where the weights are the
vertex areas, at the origin and normalize shapes to the range -1 to 1; the field of view is cho-
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sen to be 2 and 3 in the same unit with the normalized shape; background images include
plain colors and real photos, which have small influence on model predictions; viewing
directions are chosen to be 60 degree zenith and uniformly sampled 16 views from 0 to
2π azimuthal angle. In Fig.3.17, we show that the histogram of model confidence on the
correct labels over 10,000 correctly classified rendered images from our differentiable ren-
derer. The confidence is computed using the softmax function and the results show that our
rendering quality is faithful enough to be recognized by models trained on natural images.



Chapter 4

Neural Subdivision

Figure 4.1: Our neural subdivision framework performs geometry-aware subdivision, re-
constructing the reference rocker arm that we decimated to obtain the coarse input with
high accuracy, even though it was only trained on one single model - the Stanford bunny.
Neural subdivision does not suffer from the inherent limitations of classic subdivisions,
such as volume shrinkage and over-smoothing ([Loop, 1987]), or amplification of tessella-
tion artifacts (modified butterfly [Zorin et al., 1996]). Throughout this paper, we use green
to denote the training shape, and blue for the neural subdivision output.

This paper introduces Neural Subdivision, a novel framework for data-driven coarse-to-fine
geometry modeling. During inference, our method takes a coarse triangle mesh as input
and recursively subdivides it to a finer geometry by applying the fixed topological updates
of Loop Subdivision, but predicting vertex positions using a neural network conditioned
on the local geometry of a patch. This approach enables us to learn complex non-linear sub-
division schemes, beyond simple linear averaging used in classical techniques. One of our
key contributions is a novel self-supervised training setup that only requires a set of high-
resolution meshes for learning network weights. For any training shape, we stochastically
generate diverse low-resolution discretizations of coarse counterparts, while maintaining
a bijective mapping from the coarse geometry to the fine mesh that prescribes the exact
target position of every new vertex inserted during the subdivision process. This leads to a
very efficient and accurate loss function for conditional mesh generation, and enables us to
train a method that generalizes across discretizations and favors preserving the manifold
structure of the output. During training we optimize for the same set of network weights
across all localmesh patches, thus providing an architecture that is not constrained to a spe-
cific input mesh, fixed genus, or category. Our network encodes patch geometry in a local
frame in a rotation- and translation-invariant manner. Jointly, these design choices enable
our method to generalize well, and we demonstrate that even when trained on a single

63
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Figure 4.2: Neural subdivision refines different parts of a mesh differently, conditioned on
the local geometry. Here, the network was trained on the centaur model (green) and then
evaluated on a coarse gorilla mesh (gray).

high-resolution mesh our method generates reasonable subdivisions for novel shapes.

4.1 Introduction

Subdivision surfaces are defined by deterministic, recursive upsampling of a discrete sur-
face mesh. Classic methods work by performing two steps: each input mesh element is
divided into many elements (e.g., one triangle becomes four) by splitting edges and adding
vertices. The positions of the mesh vertices are then smoothed by taking a weighted aver-
age of their neighbors’ positions according to a weighting scheme based purely on the local
mesh connectivity. Subdivision surfaces are well studied and have rich theory connecting
their limit surfaces (applying an infinite number of subdivide-and-smooth iterations) to
traditional splines. They are a standard paradigm in surfacemodeling tools, allowingmod-
elers to sculpt shapes in a coarse-to-fine manner. A modeler may start with a very coarse
cage, adjust vertex positions, then subdivide once, adjust the finermesh vertices, and repeat
this process until satisfied.

While existing subdivision methods are well-suited for this sort of interactive model-
ing, they fall short when used to automatically upsample a low resolution asset. Without a
user’s guidance, classic methods will overly smooth the entire shape (see Fig. 4.1). Popular
methods based on simple linear averaging do not identify details to maintain or accentu-
ate during upsampling. They make no use of the geometric context of a local patch of a
surface. Furthermore, classic methods based on fixed one-size-fits-all weighting rules are
determined for their general convergence and smoothness properties. This ignores an op-
portunity to leverage the massive amount of information lurking in the wealth of existing
3D models.

We propose Neural Subdivision. We recursively subdivide an input triangle mesh by
applying the same fixed topological updates of classic Loop Subdivision, but move vertices
according to a neural network conditioned on the local patch geometry. We train the shared
weights of this network to learn a geometry-dependent non-linear subdivision that goes
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Figure 4.3: Neural subdivision can adapt to different input triangulations and output a
high-resolution surface mesh accordingly. This enables us to use it directly in the graphics
pipeline such as texture mapping.

beyond classic linear averaging (see Fig. 4.2). The choice of training data tailors the network
to a particular class, type or diversity of geometries.

An immediate challenge is how to collect training data pairs. There is an ever-growing
number of 3D models available. However, many if not most of them were not created
using a subdivision modeling tool. Even among those that were, the final model does
not retain information to replay the modeler’s vertex displacements. In the absence of
paired data for a supervised training approach, we propose a novel method to self-supervise
given only high-resolution surface meshes of arbitrary origin/connectivity at training time.
We stochastically generate candidate low-resolution versions of a training exemplar while
maintaining a bijective correspondence between their surfaces. This correspondence en-
ables a novel loss function that ismore efficient and accurate compared to existingmethods.
By construction, this training regime ensures generalization across discretization.

In contrast to existing generative models for surfaces, our output is a surface mesh with
deterministic connectivity based on the input, enabling direct use in the standard graphics
pipeline such as texture mapping (see Fig. 4.3). By sharing weights and training across
all local patches of all the training meshes, we learn a rule based on the local neighbor-
hood rather than the entire shape. Compared to existing methods, this frees our network
from being constrained to a fixed genus, relying on a template, or requiring an extremely
large collection of shapes during training. We demonstrate that evenwhen trained on a sin-
gle shape, our method can generalize to novel meshes. We design our network to encode
vertex position data in a local frame ensuring rotation and translation invariances without
resorting to handcrafted predefined feature descriptors.

We demonstrate the effectiveness of our method with a variety of qualitative and quan-
titative experiments. Our method generates subdivided meshes that are closer to the true
high-resolution shapes than traditional interpolatory and non-interpolatory subdivision
methods, even when trained with a small number of very dissimilar exemplars. We intro-
duce a quantitative benchmark and show significant gains over classic subdivisionmethods
when measuring upsampling fidelity. Finally, we show prototypical applications of Neural
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Subdivision to low-poly mesh upsampling and 3D modeling.

4.2 Related Work

Our work builds directly upon the foundations of classic subdivision surfaces and con-
nects to the rapidly advancing field of neural geometry learning. We focus this section on
establishing context with past subdivision schemes and contrasting our geometric learning
contributions with contemporary works.

4.2.1 Subdivision Surfaces

The basic idea of subdivision is to “define a smooth curve or surface as the limit of sequence
of successive refinements” [Zorin et al., 2000]. This broad definition admits a wide variety
or “zoo” of different subdivision schemes that would be outside the scope of this paper
to cover thoroughly. The history of subdivision surfaces reaches back to the early work
on irregular polygon meshes [Doo and Sabin, 1998; Doo, 1978] and the now ubiquitous
Catmull-Clark subdivision which produces quad meshes [Catmull and Clark, 1998]. The
linear method of Loop [1987] for triangle meshes has reached similar popularity, and is the
basis for our non-linear neural subdivision.

Classic linear subdivision methods are defined by a combinatorial update (splitting
faces, adding vertices, and/or flipping edges [Kobbelt, 2000]) and a vertex smoothing (repo-
sitioning step) based on local averaging of neighboring vertex positions. Subdivisionmeth-
ods are well studied from a theoretical perspective in terms of existence, direct evaluation,
and continuity of the limit surface [Stam, 1998; Zorin, 2007; Karciauskas and Peters, 2018].
Modelers typically manipulate a subdivision surface in a coarse to fine fashion. Most mod-
eling tools already visualize the limit surface or some approximation of it, while the user
manipulates the coarse level (cage) (see Fig. 4.23). Beyond moving vertices, users can con-
trol the surface by adding creases (sharp edges) [Hoppe et al., 1994; DeRose et al., 1998].
Non-interpolating methods such as Catmull-Clark or Loop appear to be the most popu-
lar, but interpolating methods do exist (e.g., [Dyn et al., 1990; Kobbelt, 1996; Zorin et al.,
1996]) and have similar smoothness guarantees, although fairness is harder to achieve (see
Fig. 4.1). Linear methods are easier to analyze and design to guarantee smoothness. As a
result, capturing details is left to the modeler or a deterministic procedural routine (e.g.,
[Tobler et al., 2002a,b; Velho et al., 2002]).

Our neural subdivision acts similar to non-linear subdivision methods, with the subdi-
vision rule in this case being a non-linear function learned by a neural network. Non-linear
subdivision has been studied from the mathematical perspective [Floater and Micchelli,
1997; Schaefer et al., 2008] and also as a mechanism to maintain certain geometric invari-
ants during each level of subdivision (e.g., circle-preserving [Sabin and Dodgson, 2004],
quad planarity [Liu et al., 2006; Bobenko et al., 2020], developability [Tang et al., 2014; Ra-
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Figure 4.4: Our subdivision is data-driven. Training on a set of mechanitical objects (left,
green) or a set of smooth organic objects (right, green) leads to drastically different styles
(blue). ©Gyroid Puzzl by eemmett (top left) and Hilbert Cube by tbuser (bottom) under
CC BY-SA.

binovich et al., 2018], Möbius-regularity [Vaxman et al., 2018], cloth wrinkliness [Kavan
et al., 2011]). One general approach is to combine a linear subdivision with an online ge-
ometric optimization, and recursively apply the non-linear rule an arbitrary, if not infinite
number of times, akin to classic linear rules. Our approach can be viewed as an extreme
form of precomputation, where the optimization is the training procedure and the fixed
network is applied generally as a non-linear function evaluation. The choice of data in the
trainingwill influence the “style” of our non-linear subdivision (see Fig. 4.4). Although our
method is non-linear, it is trained to work well for a pre-specified finite number of times.

Recently, Preiner et al. [2019] introduced a new non-linear subdivision method that
treats the coarse shape probabilistically. Their contributions are orthogonal to ours, and
while we base our method on Loop subdivision, we could in theory extend our network to
learn on top of this more powerful subdivision method.

4.2.2 Neural Geometry Learning

Recent advances in generative neural networks enabled the use of learnable components in
3Dmodeling applications such as shape completion [Li et al., 2019], single-view [Tatarchenko
et al., 2019] and multi-view [Sitzmann et al., 2019] reconstruction, and modeling-by-parts
[Chaudhuri et al., 2020].

The closest to our neural mesh subdivision application are the deep point cloud upsam-
pling techniques [Yu et al., 2018b; Li et al., 2019; Wang et al., 2019b]. The disadvantage of
using a point cloud as input is that it lacks connectivity information, and requires the neural
network to implicitly estimate the structure of the underlyingmanifold. Meshes can also be
more efficient at representing feature-less regions with larger planar elements, providing a
wider receptive field to ourmesh-based neural network. Mesh output is preferred formany



CHAPTER 4. NEURAL SUBDIVISION 68

Figure 4.5: One can use existing point upsampling methods to refine coarse meshes by
(1) sampling, (2) upsampling [Wang et al., 2019b], and (3) reconstruction [Kazhdan and
Hoppe, 2013]. However, this may lead to artifacts since it lacks information about the sur-
face, and requires the use of expensive surface reconstruction as a post-process.

standard graphics pipelines, thus, a post process is often required [Kazhdan and Hoppe,
2013] to convert the output of point-based methods to meshes, which prevents building an
end-to-end trainable system. Fig. 4.5 illustrates the output of a point upsampling method
that was pre-trained on a collection of statues [Wang et al., 2019b] (see App. 4.8.1 for im-
plementation details).

Our work is related to other neural mesh generation techniques. Free-form generation
of meshes as a set of vertices and faces is infeasible with current deep learning methods,
due to the lack of regular structure, uneven discretization, and combinatorial variability in
the possible outputs, limiting such approaches to very coarse outputs [Dai and Nießner,
2019]. A common alternative is to deform a global template either by predicting vertex
coordinates [Tan et al., 2018; Ranjan et al., 2018] or by training a deformation network that
warps the entire 3D domain conditioned on a latent vector that encodes the deformation
target [Groueix et al., 2018a; Yifan et al., 2020]. While these approaches usually produce
meshes with higher resolution, their output is limited to deformations of a single shape.
Some techniques propose using generic templates such as spheres [Wang et al., 2018a;Wen
et al., 2019] or 2D atlases [Groueix et al., 2018b], which place limitations on the topology of
the output. In contrast to these techniques, our method refines the mesh locally, and thus,
respects the topology of the input (which could be arbitrary). Another advantage of our
local refinement approach is that we do not require co-aligned training data with a well-
defined object space, the output of our subdivision networks is translation and rotation
invariant since it can be described in a local coordinate system of the input patch.

There are several options for analyzing a mesh patch with a neural network, such as
using a local [Masci et al., 2015; Poulenard and Ovsjanikov, 2018] or global [Maron et al.,
2017] parameterization to unfold a mesh into 2D grid, or apply graph-based techniques
adapted for meshes [Kostrikov et al., 2018; Wang et al., 2019a] (see [Bronstein et al., 2017]
for amore comprehensive survey). Our approach is inspired byMeshCNN[Hanocka et al.,
2019]. Their method directly learns filters over the local mesh structure via undirected
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Figure 4.6: We compare the same model trained using (a) chamfer distance (which only
measures error between point sets) and (b) our ℓ2 loss based on shape correspondences.
The model trained using the chamfer distance fails to capture the surface topology (red).
In contrast, our loss function leads to manifold output meshes (blue). ©Gyroid Puzzle by
emmett (top) under CC BY-SA.

edges, and shows applications in deterministic tasks. In contrast, we focus on generative
tasks and develop a novel set of features over the half-flaps – an edge along with its two
adjacent triangles. Each half-flap has a canonical orientation which gives us well-defined
local frames which are crucial for our network’s rigid motion invariance.

Geometry generation techniques are typically trained with reconstruction losses that
measure howwell the generated surface approximates the known target. Surface-to-surface
distances are commonly employed, with correspondences defined via closest-point queries
(aka chamfer distance) [Barrow et al., 1977; Fan et al., 2017]. However, the closest-point
approach matches many points to the same point, while leaving other points unmatched,
resulting in self-overlaps and unrepresented areas (see Fig. 4.6).

Indeed, priorworkdemonstrates that using higher quality correspondence (e.g., ground
truthmapping) significantly improves results [Groueix et al., 2018a]. While the latter is not
available in our setting, we propose a data generation technique for creating various coarse
variants of the same high-res meshwith a low-distortion bijective map. Bijectivity is crucial
for the quality of our training data, ensuring that no self-overlaps exist and that every part
of the target surface has a pre-image on the coarse mesh.

4.3 Neural Subdivision

In the followingwe overview themain components of our neural subdivision: the test-time
inference pipeline, training and loss (Sec. 4.4), data-generation (Sec. 4.4), and finally the
network architecture (Sec. 4.5). Later sections will discuss these components in detail.
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Figure 4.7: Neural subdivision takes a coarse triangle mesh (gray) as input and outputs
a sequence of subdivided meshes (blue) with different levels of details. During training,
we minimize the ℓ2 loss from the ground truth (green) to the output meshes (blue) across
levels. Our training data consists of pairs of coarse andfinemeshes (top left)with a bijective
map f between each pair.

Inference. As illustrated in Fig. 4.7, our method takes a coarse triangle mesh (gray) as
input and recursively refines it by subdividing each triangle to create additional vertices
and faces. The output is a sequence of subdivided meshes (blue) with different levels of
details. Our subdivision process follows a simple topological update rule (same as Loop),
namely inserting new vertices at the midpoints of all edges. It then uses a neural network
to predict new positions for all vertices, at each new level of subdivision.

Training and loss. The data we generate provides us with correspondences between pre-
dicted vertices and points inside the triangle on the ground truth shape. We train our
network with the simple ℓ2 loss, by measuring the distance between each predicted vertex
position at every level of subdivision and its corresponding point on the original shape
(green). As there is no existing dataset consisting of pairs of high-quality meshes and sub-
division surfaces in correspondence, we instead develop a novel technique for generating
training data, comprising coarse and fine meshes with bijective mappings between them.

Data generation. We first note that each vertex v created from a subdivision step has
a well-defined mapping back to the coarse mesh, defined by mapping that vertex to its
corresponding midpoint. Thus, each subdivided mesh at any level of subdivision can be
mapped back to the initial coarse mesh via a sequence of mid-point-to-vertex or vertex-to-
vertexmaps. In practiceweuse barycentric coordinates to encode this subdivided-to-coarse
bijective mapping, g. Hence, if we had a bijective mapping f between the coarse mesh and
the original mesh, we could define a unique point on the original mesh corresponding to
v, by compositing the two maps: f (g (v)).

Thus, the only missing part is to create coarse and fine meshes with bijective map-
pings between them. We achieve this by taking a high-resolution training mesh and se-
quentially coarsening it by applying random sequences of edge collapses, thereby gener-
ating a sequence of coarsened meshes. We maintain low-distortion correspondences be-
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Figure 4.8: Given an edge collapse algorithm of choice, we plug in our successive self-
parameterization described in Sec. 4.4.1 to compute a bijective map between the original
mesh (green) and its decimated version (gray). We visualize the map by coloring the fine
mesh using the triangulation of the coarse mesh (right). ©Tarbosaurus Skull by gpvillamil
under CC BY-SA.

tween the coarsened and original mesh by computing a conformal map between the 1-ring
edge neighborhood (before the collapse) and the 1-ring vertex neighborhood (after the col-
lapse). Composition of these maps creates a dense bijective map f between the coarse and
original meshes, which is then directly applied to the training (Fig. 4.8).

Advantages of our training approach. In comparison to closest point losses that are com-
monly used to train generative neural networks, our correspondence-based loss is aware of
the manifold structure (Fig. 4.6) and is orders of magnitude faster to compute (Fig. 4.17).
Bijectivity and continuity of themap ensure that the entire ground truth surface is captured
by some region of the coarse mesh (Fig. 4.10). The low distortion encourages uniformity,
which in turn enables the reproduction of the target surface with just a few uniform sub-
divisions, and, more importantly reduces the variance in the signal the network needs to
learn. We can further leverage the low-distortion map to map an additional signal, such as
texture (Fig. 4.3). As our training data contains many pairs with different random decima-
tions of the same ground truth (App. 4.8.5), our network is able to learn how to generalize
across discretization.

Network architecture. Similarly to the subdivision process, the learnablemodules of our
network are applied recursively. They operate over local mesh neighborhoods and predict
differential features (meaning they represent geometry in the local coordinates of themesh,
and not in world coordinates). These features are then used to compute vertex coordinates
at the new level of subdivision. We define three types of modules applied at three sequen-
tial steps. During the Initialization step, we first compute differential per-vertex quantities
that are based on the local coordinate frame (defined in Sec. 4.5). A learnable module I
is applied to the 1-ring neighborhood of every vertex to map these differential quantities
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to a high-dimensional feature vector stored at the vertex. Note that this high-dimensional
feature vector is a concatenation of a learnable latent space which encodes local geometry of
the patch, and differential quantities which directly represent local geometry and enable us
to reconstruct the vertex coordinates.

For each subsequent subdivision iteration, we as-
sumes that the topology is updated following the
Loop subdivision scheme, splitting each edge at the
midpoint, and consequently, subdividing each trian-
gle into four (see inset). AVertex step uses themod-
ule V to predict vertex features for the next level of subdivision based on its 1-ring neighbor-
hood, where vertices affected by this step only involve corners of triangles at the previous
mesh level. Then, an Edge step uses the module E to compute features of vertices added
at midpoints based on the pair of vertices that were connected by an edge at the previous
mesh level.

Our modules share a very similar architecture
and heavily rely on a learnable operator defined over
a half-flap: a directed edge and its two adjacent trian-
gles (see the inset). We use the directed edge to de-
fine the local coordinate frame which is used to estimate the differential features of either
input or output of learnable modules. Note also that the directed edge allows us to or-
der the four adjacent vertices of the flap in a canonical way. We concatenate their features
and feed them into shallow multi-layer perceptrons (MLP). The weights of the MLPs are
shared within each module type and across all levels of subdivision. Both modules I and
V process all half-flaps defined by an outgoing edge and use average pooling to combine
the half-flap features into per-vertex features. The module E also combines features from
two half-flaps (both directions of the edge) via average pooling. Since our architecture is
local, and uses input and output features that are invariant to rigid motions, it exhibits an
impressive ability to generalize from example, even when trained on a single fine mesh.

4.4 Data Generation and Training

While our network architecture and invariant layers are crucial for its ability to learn sub-
divisions, it by its own is only half of the two main components that together facilitate
high-quality neural subdivisions. The other half consists of the training process, data and
the loss function.

Consider a naive approach to the subdivision training: generate pairs of coarse/fine
meshes by a decimation algorithm; measure the distance between the network’s predicted
subdivision and the ground truth, for instance by the average distance between predicted
points and their projections on the ground truth mesh; iterate over coarse/fine pairs while
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Figure 4.9: Given a ground truth shape (green), we use random edge collapses to create
several coarse meshes (gray). For each coarse mesh, we subdivide the mesh and use the
bijective map to determine the position on the ground truth for all the vertices across dif-
ferent levels. The blue meshes are the ground truth subdivisions that exhibit one-to-one
point correspondences to the network predictions.

Figure 4.10: Given a ground truth/coarsemesh pair, naively using “closest-point-on-mesh”
to estimate correspondences between the level-6 subdivided mesh and the ground truth
results in a non-bijective map, causing the loss function to fail to capture the entire ground
truthmesh (third column). Our successive self-parameterization ensures bijectivity, which
implies the entire ground truth surface will be captured (right).

optimizing the loss. This naive approach has a major caveat. Computing correspondences
using the chamfer-like loss (Fig. 4.6) or point-to-mesh distance (Fig. 4.10) is known to lead
to incorrect and self-overlapping matches between shapes. This leads to a poor training set
up because the loss itself exhibits artifacts.

In lieu of this naive approach, we consider the fact that a pair of coarse and fine meshes
both approximate the same underlying smooth surface. This motivates us to compute the
correspondences based on the intrinsic geometry, instead of an ad-hoc correspondence.
The outcome is a high-quality bijective map between each pair of coarse and fine meshes,
enabling us to obtain one-to-one point correspondences. Therefore a simple ℓ2 loss is suf-
ficient to correctly measure the error between every level of neural subdivision and the
ground truth shape.
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Figure 4.11: Different edge-collapse algorithms can be used in a plug-and-play manner
to create, for instance, a uniform-area parameterization (middle) and an appearance-
preserving parameterization (right). This flexibility is used to create training data with
diverse types of discretizations.

4.4.1 Successive Self-Parameterization

One possible way to obtain point correspondences is to apply general shapematching tech-
niques. But ensuring bijectivity in general shape matching is difficult. For instance, it re-
quires the two shapes to have the same number of vertices [Vestner et al., 2017b], or a
user-guided common domain [Schreiner et al., 2004; Praun et al., 2001], or user-provided
landmark correspondences [Kraevoy and Sheffer, 2004; Aigerman et al., 2014, 2015] (see
[Van Kaick et al., 2011] for a survey). However, our problem is considerably simpler, since
we aim to construct amap between different discretizations of the same shape, andwe have
full control over the decimation procedure.

The closest solution to our problem is a seminal work –MAPS [Lee et al., 1998] – on self-
parameterization. Given an input mesh, MAPS computes the bijective map by successively
removing vertices of the maximum independent set. Since then, several improvements
have been proposed [Guskov et al., 2000, 2002; Khodakovsky et al., 2003]. Unfortunately,
they cannot be directly applied to edge collapses for creating training data for our learning
task (see App. 4.8.4). We need an algorithm that has the flexibility to be used with any
edge decimation method, so that we can generate a diverse collection of coarse meshes
(see Fig. 4.11). Fortunately, the idea from [Cohen et al., 1997, 1998, 2003] for minimizing
mesh/texture deviation leads us to generalize the idea of MAPS to any edge collapses.

Our method for computing the bijective map, designed specifically for creating data to
train neural subdivision, combines the idea of self-parameterization fromMAPS [Lee et al.,
1998] and the idea of successive mapping from [Cohen et al., 1997, 1998, 2003]. Thus, we
call it successive self-parameterization. This combination enables us to compute the parame-
terization intrinsically to avoid the requirement of having a given UV map, such as in the
method of Liu et al. [2017c]. The result of the combination is extremely simple. It is a two-
step module that can be applied to any choice of edge-collapse algorithm (see Fig. 4.11)
and it outputs a bijective map after the decimation. Hence, the inputs to successive self-
parameterization are a triangle mesh and an edge collapse algorithm of choice, and the
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Figure 4.12: We compute a bijective map for each edge collapse. The bijective map from
the coarsest meshM0 to the input meshML is then computed by composing all the maps
f l−1
l .

output is a decimated mesh with a corresponding bijective map between the input and the
decimated model. For the sake of reproducibility, we reiterate the core ideas from [Lee
et al., 1998; Cohen et al., 1997, 1998], and describe how to combine both ideas.

We denote the input triangle mesh asML = (VL,FL), where VL,FL are vertex positions
and face information respectively at the original level L. The inputmeshML is successively
simplified into a series of meshesMl = (Vl ,Fl) with 0 ≤ l ≤ L, whereM0 = (V0,F0) is
the coarsest mesh. For each edge collapseMl → Ml−1, we compute the bijective map
f l−1
l : Ml−1 → Ml (see Fig. 4.12) on the fly. The final map f 0

L : M0 → ML is computed
via composition,

f 0
L = f L−1

L ◦ · · · ◦ f 0
1 . (4.1)

We now focus our discussion on the computation of a bijective map for a single edge col-
lapse.

4.4.2 Single Edge Collapse

In each edge collapse, the triangulation remains the same, except for the neighborhood of
the collapsed edge. Let N (i) be the neighboring vertices of a vertex i and let N (j, k) =

N (j) ∪ N (k) denote the neighboring vertices of an edge (j, k). After each collapse, the
algorithm computes the bijective map for the edge’s 1-ring N (j, k), in two stages. It first
parameterizes the neighborhood N (j, k) (prior to the collapse) into 2D. It then performs
the edge collapse both on the 3D mesh, and in UV space, as depicted in Fig. 4.13. The
key observation from [Cohen et al., 1997, 1998] is that the boundary vertices of N (j, k)
before the collapse become the boundary vertices of N (i) after the collapse. Hence the
UV parameterization of the 1-ring remains injective after the collapse. Then, for any given
point pl−1 ∈ Ml−1 (represented in barycentric coordinates), we can utilize the shared UV
parameterization to map pl−1 to its corresponding barycentric point pl ∈ Ml and vice-
versa, as shown in Fig. 4.14.
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Figure 4.13: For each edge collapse, we simultaneously collapse the edge on the 3D mesh
(top) and the UV domain (bottom). As the boundary vertices of the edge’s 1-ring are
preserved through the edge collapse, we constrain the flattened boundary in UV space to
be at the same position when computing an as-conformal-as-possible parameterization of
the post-collapse 1-ring.

Figure 4.14: Since both the pre-collapse and post-collapse parameterizations of the 1-ring
map it into the same 2D domain, we can easily use the shared UV space to map a point
back and forth betweenMl andMl−1.

Figure 4.15: Using a different parameterization technique that does not result in a confor-
mal flattening leads to a distorted parameterization (left), in contrast to the conformal pa-
rameterization we use, that reduces the amount of angle distortion accumulated through-
out the edge collapse sequence (right). ©Hilbert Cube by tbuser under CC BY-SA.
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Figure 4.16: Checking the criteria of collapsible edges is crucial for the robustness of the
successive self-parameterization. From left to right, ©Psycho by Aeva (2nd, CC BY-SA),
Parametric Sculpture by MCompeau (4th, CC BY-NC), Deer Head by TakeshiMurata (5th,
CC BY-SA), Brain Slug by Zarquon (6th, CC BY-NC-SA), Spiral Light Bulb by benglish (7th,
CC BY-SA), and Metratron by addy (9th, GNU).

Following the idea ofMAPS [Lee et al., 1998], weuse conformal flattening [Mullen et al.,
2008] to compute theUVparameterization of the 1-rings, Fig. 4.13. After collapsing an edge
and inserting the new vertex v ∈ R3, we determine the UV location of the inserted vertex
by performing another conformal flattening of its 1-ring patch with the boundary vertices
fixed to the UV locations before the collapse. The conformality of the map is crucial, as it
minimizes angle distortion which would otherwise accumulate throughout the successive
parameterizations, leading to distorted, skewed correspondences and hindering learning
of the network (see Fig. 4.15).

4.4.3 Implementation

Successive self-parameterization can be used with any edge collapse algorithm simply by
adding two additional steps (see App. 4.8.2). The actual edge collapse algorithm, such as
qslim [Garland andHeckbert, 1997], takesO(N log N) time, and the flattening is a constant
cost on top of each collapse (assuming valence is bounded). Thus the complexity of the
entire algorithm containing both edge collapses and successive self-parameterization is still
O(N log N).

The robustness of the parameterization algorithm relies heavily on the robustness of the
underlying edge collapse algorithm. Edge collapses that may lead to self-intersections can
result in unusable maps. In App. ??, we summarize our criteria for checking the validity of
an edge collapse. This is crucial to ensure that we can generate training data using a wide
range of shapes (see Fig. 4.16).

4.4.4 Training Data & Loss Computation

Our training data is constructed by applying the successive self-parameterization on top
of random edge collapses. In Fig. 4.9, given a high-resolution shape (green), we use qs-
lim [Garland and Heckbert, 1997] with a random sequence of edge collapses to construct
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Figure 4.17: Our loss computation is orders of magnitude faster than the chamfer loss on
the GPU (Kaolin [J. et al., 2019]) or the CPU (our KD-tree-based implementation).

Figure 4.18: Our neural subdivision consists of three sequential steps: Initialization , Ver-
tex , and Edge , with three network modules: I , V , and E for each step respectively. In
both Initialization and Vertex steps, we apply V and E for the half-flaps of all the outgo-
ing edges of a vertex, and use average pooling to combine the output features back to the
center vertex (blue). In the Edge step, we apply E to both half-flaps of an undirected edge
and use average pooling tomap the output features to the center vertex (green) of the edge.

several different decimated models (gray). During the collapse, we plug in our parameter-
ization to obtain a high-quality bijective map for each coarse and fine pair.

After the network subdivides the coarse mesh, we use the map to retrieve one-to-one
correspondences to the input shape. Specifically, when retrieving the correspondences, we
use the Loop topology update to add points in the middle of each edge, e.g., the point with
barycentric coordinates (0.5, 0.5, 0) in a triangle of the coarse mesh. We use the barycentric
coordinates b on the coarse mesh to obtain the barycentric coordinates f (b) on the fine
mesh, as illustrated in Fig. 4.14 using the bijective map f . During training, suppose E(b)
is the vertex position output by the network E . We measure the per-vertex loss with the ℓ2

distance ∥ f (b)− E(b)∥2. Compared to the chamfer distance [Barrow et al., 1977], a widely
used distance in training 3D generative models [Fan et al., 2017], our loss computation is
orders of magnitude faster (see Fig. 4.17).
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4.5 Network Architecture

Given a mesh at a previous level of subdivision along with a known topological update
rule (mid-point subdivision as used by Loop), our neural network computes all vertex
coordinates for the subdivided mesh. Our process involves three main steps illustrated in
Fig. 4.18. The Initialization step uses a learnable neural module I to map input per-vertex
features to high-dimensional feature vector at each vertex. In each subdivision iteration,
the Vertex step uses a learnable module V to update features at corners of triangles of the
input mesh, and the Edge step uses a learnable module E to compute features of vertices
that were generated at mid-points of edges of the input mesh. Our network is inspired by
classical subdivision algorithms which have two sets of rules: to update (1) even vertices
from previous iterations, and (2) the newly inserted odd vertices. One difference of our
approach is that we apply V and E in sequence, instead of in parallel. This allows us to
harness neighborhood information from previous steps.

We make several design choices that are critical to the ability of our network to general-
ize well even from very small amounts of training data. First, even though all mesh update
steps are global (i.e., they affect every vertex of the mesh), our learnable modules that are
used in these steps operate over local mesh patches and share weights. Thus, even a sin-
gle training pair provides many local mesh patches to train our neural modules. Second,
our modules operate over original discrete elements of the mesh, and do not require re-
parameterizing or re-sampling the surface. Representing input and output using the mesh
discretization enables us to preserve the topology of the input, and generalize to novel
meshes with different topology. Third, we represent our vertices using differential quan-
tities with respect to a local coordinate frame instead of using global coordinates. Thus
our neural modules operate over a representation that is invariant to rigid motion which
simplifies training and improves their ability to generalize.

The key component of our neural module is a learnable operator that takes half-flap, a
2-face flap adjacent to a half-edge, inspired by the edge convolution approach of Hanocka
et al. [2019]. We choose to use half-flap (instead of a flap around an undirected edge) since
it provides a unique canonical orientation for the four vertices at the corners of adjacent
faces. It also provides a well-defined local coordinate frame which we will use to define
differential vertex quantities for the input and output (see the inset in the next page). Each
flap operator is a shallow multi-layer perceptron (MLP) defined over features of four or-
dered points. We train one operator per module (I , V , E) across all levels of subdivision
and training examples.

Equippedwith the half-flap operator, we use average pooling to aggregate features from
different half-flaps to per-vertex features in all our neural subdivision steps. Initialization
and Vertex steps apply the half-flap operator to every outgoing edge in a 1-ring neigh-
borhood of a vertex, and average pooling aggregates per-half-flap outputs into a per-vertex
feature. Edge step only considers per-vertex features at two endpoints of a subdivided edge
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Figure 4.19: The input feature to module I consists of three edge vectors from the source
vertex (blue) and vectors of the differential coordinates for the four vertices. The input fea-
tures to module V and E are three edge vectors with per-vertex high-dimensional features
from the previous steps.

to compute the feature of the inserted vertex. Thus, it simply applies the half-flap operator
for each direction of the edge and again uses average pooling to get the vertex feature.

The final critical element of our architecture de-
sign is the representation for the input and output.
As mentioned before, we use local differential quan-
tities to ensure invariance to rigid transformation.
The input features for the half-flaps used in Initial-
ization step by module I consist of three edge vectors (originating at the source vertex
of the half-flap) and differential coordinates of each vertex, as illustrated in Fig. 4.19, top.
The vector of differential coordinates stores the discrete curvature information and is de-
fined as the difference between the absolute coordinates of a vertex and the average of its
immediate neighbors in the mesh [Sorkine, 2005]. To achieve rotation invariance we rep-
resent our differential quantities in the local frame of each half-flap (see the inset), where
we treat the half-edge direction as the x-axis, the edge normal computed via averaging the
two adjacent face normals as the z-axis, and the cross product of the previous two axes be-
comes our y-axis. The input to half-flap operators used in Vertex and Edge steps is similar
(Fig. 4.19, bottom), where we use edge vectors and per-vertex high-dimensional learned
features (either produced by Initialization step or by previous subdivision iteration). The
output of half-flaps used in Vertex and Edge steps includes high-dimensional learned fea-
tures and differential quantities that can be used to reconstruct the vertex position. For
the latter we use the vertex displacement vector from the mid-point subdivided mesh (see
Fig. 4.20) in the local coordinate system of the half-flap. For the Initialization and the
Vertex networks, the predicted displacements live on the vertices; for the Edge network,
the predicted displacements live on the edge midpoints. In our experiments, we notice
there is no difference between predicting from the mid-point subdivided surface or other
subdivision surfaces (see App. 8.9.4), so we choose mid-point subdivision for simplicity.
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Figure 4.20: The outputs of modules I and V are the displacement vector from the starting
vertex and a learned feature vector fv stored at the source vertex (blue). The outputs of the
module E are the displacement from the edge mid-point (green) and the feature fv stored
at the mid-point.

We estimate global coordinates of vertices after each step to visualize intermediate levels
of subdivision and compute the loss function, and convert global coordinates to local dif-
ferential per-vertex quantities before each step to ensure that each network only observes
translation- and rotation- invariant representations.

Fig. 4.21 illustrates that an invariant representation is critical to the quality of results.
We demonstrate that even when trained on an identical true shape, a slight rigid motion
of that shape renders learned weights completely inapplicable at inference time. We also
observe that incorporating the differential coordinates as part of the input features makes
the training converge faster (see App. 8.9.4). Thanks to our local half-flap operators and
invariant representationswe can train our architecture evenwith shallow 2-layerMLPs (see

Figure 4.21: We use differential quantities stored in the local frames as our inputs and out-
puts. This design makes our network invariant to rigid motions and significantly boosts
the quality compared to an approach without invariance.
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Table 4.1: Hyperparameters of our sub-networks. All networks are fully-connected multi-
layer perceptrons with two hidden layers.

network I network V network E
fin 3 · 3 + 4 · 3 3 · 3 + 4 · 32 3 · 3 + 4 · 32
fc1 32 32 32
fc2 32 32 32
fout 3 + 29 3 + 29 3 + 29

Figure 4.22: We train our network on a single pose (green) and the network is able to
generalize to unseen poses (blue).

Table 4.1 for network hyper-parameters). We further evaluate other design decisions and
conclude that details such as whether to predict displacements from the mid-point or the
Loop subdivision, whether to recursively apply the module V , whether to measure loss
across all levels, and whether to use input features proposed in [Hanocka et al., 2019] offer
small improvements to the convergence (see App. 8.9.4 for details).

We implemented our network in PyTorch [Paszke et al., 2019]. We use ReLu activation
[Nair and Hinton, 2010], and the ADAM optimizer [Kingma and Ba, 2015] with learning
rate 0.002.

4.6 Evaluations

We evaluate our neural subdivision with a range of results of increasing complexity. We
start by showing that we can generalize to isometric deformations, non-isometric deforma-
tions, shapes from different classes, and shapes from different types of discretizations. We
summarize the details of our experiments in App. 4.8.6.

In practice, modelers often manipulate the coarse subdivision cage of a character into
different poses, and then apply the subdivision operator. This scenario implies that being
able to train on one single pose and generalize to unseen poses is important for character
animation. In Fig. 4.22, we train on a single pose (in green) and show that our network can
generalize to unseen poses under (approximately) isometric deformations.

In addition to poses, in Fig. 4.23 we mimic the real scenario by manually changing the
coarse cage and show that the learned subdivision can also generalize to non-isometric
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Figure 4.23: We mimic the modeling scenario by applying non-isometric deformations
to the coarse cage (gray). Our subdivision network is able to generalize to unseen non-
isometric deformations.

Figure 4.24: Even when trained on only a single shape (green bunny), our network can
generalize to subdividing different geometries (blue). ©Hilbert Cube by tbuser (right)
under CC BY-NC.

deformations.
Subdivision operators are often used to create novel 3D content, which implies the im-

portance of generalizing to totally different shapes. In Fig. 4.24 we show that even when
trained on only a single shape (green), our network is able to generalize to many other
shapes (blue). We also show that our network trained on classic Loop subdivision se-
quences is able to reproduce Loop subdivision on unseen shapes (App. 4.8.7).

We further evaluate neural subdivision on shape discretizations created in a totally in-
dependent way. In Fig. 4.25 we obtain coarse shapes created by artists, instead of from edge
collapses, and show that neural subdivision can still generalize well.

Figure 4.25: In addition to subdividing meshes constructed via decimation, our network
can also generalize to subdivide meshes created by artists.
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Figure 4.26: Using different shapes in training leads to stylized subdivision results (blue)
biased towards the training shapes (green). ©Egg Chair by TeamTeamUSA (left) under
CC BY.

Figure 4.27: Training on a smooth shape leads to a smoother subdivision result (middle).
Training on a man-made object can preserve the sharp creases (right).

The ability to generalize even when trained on a single shape gives us the opportunity
to do stylized subdivisions. In Fig. 4.26 our neural subdivision operators are aware of the
“style” of the training shape and are able to create different results from the same coarse
geometry. In Fig. 4.27, we show different results when trained on a smooth organic shape
vs a man-made object with sharp contours.

To quantitatively analyze how our network generalizes to unseen shapes, we take the
TOSCA dataset [Bronstein et al., 2009] which contains 80 shapes with 9 categories to per-
form quantitative analysis. For the top table of Table 4.2, we train on a single category
(Centaur) and test on the remaining categories. Our test shapes are generated by coars-
ening source meshes with qslim down to 350-450 vertices. We measure the error between
the two-level subdivided mesh and the original shape using Hausdorff distance, as well as
mean surface distance computed by metro [Cignoni et al., 1998b]. Ourmethod consistently
produces smaller errors compared to the classic Loop [Loop, 1987] and modified butterfly
[Zorin et al., 1996] subdivisions.

We further evaluate our method when trained on multiple shapes and categories. In
Fig. 4.28, we train the network on an increasing number of objects and observe that the
results are visually similar. But our quantitative analysis in the bottom table of Table 4.2
shows that training onmore categories (Centaur, David, Horse) can slightly reduce the error.
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Figure 4.28: We train our subdivision network on a mixture of organic and non-organic
shapes. We observe that training onmore objects does not significantly change visual qual-
ity.

Table 4.2: We train on a single category, Centaur (top table), and three categories, Centaur,
David, Horse (bottom table), separately, and evaluate by subdividing the rest of the TOSCA
shapes. The results indicate that neural subdivision outperforms classic Loop subdivision
[Loop, 1987] andmodified butterfly subdivision [Zorin et al., 1996] on twopopularmetrics:
Hausdorff distance H, and mean surface distance M computed via metro [Cignoni et al.,
1998b].

Category Hloop Hm.b. Hours Mloop Mm.b. Mours
Cat 2.75 2.17 2.08 0.73 0.21 0.17
David 2.95 2.13 1.83 0.88 0.27 0.20
Dog 3.26 2.32 2.11 0.84 0.31 0.26
Gorilla 4.53 3.17 2.56 1.27 0.48 0.36
Horse 5.87 4.53 4.04 1.51 0.50 0.45
Michael 3.88 2.71 2.24 1.12 0.38 0.28
Victoria 4.25 3.01 2.36 1.12 0.39 0.30
Wolf 2.83 1.74 1.63 0.69 0.23 0.21

Category Hloop Hm.b. Hours Mloop Mm.b. Mours
Cat 2.75 2.17 2.09 0.73 0.21 0.16
Dog 3.26 2.32 2.12 0.84 0.31 0.25
Gorilla 4.53 3.17 2.89 1.27 0.48 0.34
Michael 3.88 2.71 2.15 1.12 0.38 0.27
Victoria 4.25 3.01 2.49 1.12 0.39 0.28
Wolf 2.83 1.74 1.65 0.69 0.23 0.20
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Figure 4.29: Since ourmethod induces a non-linear subdivision, there is no guarantee of the
existence of a limit surface (bottom). An alternative is to apply neural subdivision at the
trained levels, and continue with classic subdivision (top) to ensure a smooth limit surface.

Figure 4.30: Our approach is based on local geometry, and thus fails to hallucinate semantic
features. ©Bratty Dragon by Splotchy Ink under CC BY.

4.7 Limitations & Future Work

Extending the neural subdivision framework to quadrilateral meshes and surface with
boundaries would be closer to real-world modeling scenarios. Making neural subdivision
scale-invariant and converge to a limit surface (see Fig. 4.29) are also desirable in prac-
tice. Incorporating global information in the training could help the network hallucinate
semantic features (see Fig. 4.30). Applying architectures (e.g., Recurrent Neural Net) that
are more suitable for sequence predictions could help the network to harness information
from a wider neighborhood and to dive to a deeper subdivision level. Training on data
that contain a wide range of triangle aspect ratios and curvature information could further
improve the robustness of the network. Since our data-generation algorithm is extremely
efficient, it could be naturally used in an online-learning setting, where our algorithm con-
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stantly draws new randomly-coarsened meshes on-the-fly. This can be extremely useful
in, e.g., a GAN setting. As a first step towards neural subdivision, we showed reconstruc-
tion of fine meshes from coarse ones. Fully-fledged super-resolution, detail hallucination,
and surface stylization are interesting next steps. All of these questions provide interesting
topics for the future research on neural subdivision.

4.8 Appendix

4.8.1 Implementation of Point Cloud Upsampling

An alternative way to upsample a mesh is to first convert the mesh into a point cloud via
sampling over the surface, run point cloud upsampling algorithms, and then perform a
surface reconstruction to convert the upsampled point cloud back to a mesh. However,
this procedure is expensive to incorporate into the interactive graphics pipeline, fails to
produce surfaces with different levels of detail (see Fig. 4.2), and fails to preserve textures
(see Fig. 4.3). In addition, many non-trivial design decisions such as the number of samples
to use andhow to sample the surfacewould influence the quality of the results. For example
in Fig. 4.5, we first sample 5000 points with uniform and farthest point sampling, followed
by the method of Wang et al. [2019b] pre-trained on statues to upsample the point cloud
by 16×, and then use the screened poisson reconstruction [Kazhdan and Hoppe, 2013]
to reconstruct the surface. In the figure we show that different sampling methods lead to
different results. The lack of connectivity information also results in some surface artifacts.

4.8.2 Implementation of Successive Self-Parameterization

Incorporating successive self-parameterization only requires adding two additional local
conformal parameterizations to the edge collapse algorithm of choice. Suppose we want to
collapse an edge (j, k). We first flatten the edge’s 1-ringN (j, k) by minimizing a conformal
energy [Lévy et al., 2002], then we collapse the edge, then we perform another confor-
mal flattening on the 1-ring N (i) of the newly inserted vertex i after the collapse, with the
boundary held in place from the previous flattening. This yields a bijective mapwith small
computational cost because each flattening only involves a 1-ring (assuming the vertex va-
lence is bounded).

4.8.3 Criteria for Collapsible Edges

During edge collapses, many issues such as flipped faces and non-manifold edges may ap-
pear. Resolving these issues is crucial to the robustness of successive self-parameterization
(see Fig. 4.16). We summarize our criteria for checking the validity of an edge collapse. If
invalid, we simply avoid collapsing the edge at that iteration.
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Figure 4.31: We perform qslimwith a random sequence of edge collapses to create different
coarse discretizations (gray) from a single ground truth mesh (green).

Euclidean face flips Certain faces in the Euclidean
space may suffer from normal flips after an edge col-
lapse. To prevent flipped faces, we simply compare
the unit face normal n of each neighboring face fi be-
fore and after the collapse

nbeforefi
· nafterfi

> δ. (4.2)

We set δ = 0.2 as default to avoid face flips in all our experiments.

UV face flips Flipped faces may also appear in the UV space due to both the conformal
flattening and the edge collapse. We simply check whether the signed area of each UV face
is positive before and after collapses to prevent having UV face flips.

Overlapped UV faces Even if all the UV faces are
oriented correctly, some of the faces may still over-
lap with each other depending on the flattening al-
gorithm in use. We check whether the total angle
sum of each interior vertex is 2π to determine the
validity of a collapse.

Non-manifold edges To prevent the appearance of
non-manifold edges, wemust check the link condition
[Dey et al., 1999; Hoppe et al., 1993]. Briefly, the link
condition says that if an edge eij connecting vertices
i, j is valid, the intersection between the vertex 1-ring
of i and the vertex 1-ring of j must contain only two vertices, and the two vertices cannot
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be an edge.

Skinny triangles To prevent badly shaped triangles from causing numerical issues, we
need to keep track of the triangle quality for each edge collapse. The quality of a triangle is
measured by

Qijk =
4
√

3 Aijk

l2
ij + l2

jk + l2
ki

(4.3)

where A is the area of the triangle and l are the lengths of triangle edges. When Q →
1, the triangle approaches an equilateral triangle; when Q → 0, it approaches a skinny
degenerated one. For each edge, we check Q for all the neighboring faces in both UV and
Euclidean domains after the collapse. By default, a valid edge requires Q > 0.2 for all
neighboring triangles.

4.8.4 Comparison to [Lee et al., 1998]

One possible solution is to construct a bijective map between the input and the decimated
model via MAPS [Lee et al., 1998]. However, MAPS constructs the parameterization via
successively removing the maximum vertex independent sets. The main reason for remov-
ing the maximum independent set is to bound the number of levels of the mesh hierarchy,
but it leads to limitations such as sensitivity to the input triangulation.

One experiment to verify this is to apply subdivision remeshing presented in Sec. 4.1
in [Lee et al., 1998]. In Fig. 4.32 we create a stress test using a very uneven triangulation,
and MAPS suffers from creating non-uniform parameterization. In contrast our successive
self-parameterization enjoys the benefits of area-weighted qslim to obtain a more uniform
parameterization.

4.8.5 Data Generation from Random Collapses

The training data for neural subdivision is a sequence of subdivided meshes where the
vertex positions are computed using successive self-parameterization (Fig. 4.9). For each
dense input mesh, we perform semi-random edge collapses in order to generate many dif-
ferent coarse meshes. The goal is to help the network being robust to different discretiza-
tions. In Fig. 4.31 we show input meshes (left) can be decimated differently to get many
coarse meshes that have different numbers of vertices and triangulations.

Our semi-random edge collapse starts by randomly selecting 100 edges and finding the
one with the minimum quadric error [Garland and Heckbert, 1997] to collapse. For each
edge collapse, we insert the new vertex the same way as qslim does. We terminate the
edge collapses when a randomly selected target number of vertices between 150 and 300 is
reached.
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Figure 4.32: We decimate the mesh down to the same number of vertices and compare our
methodwith MAPS on the task of subdivision remeshing. Our method creates a more uni-
form parameterization (left), but MAPS ismore sensitive to the input triangulation (right).

Figure 4.33: Although most experiments are trained on performing 2-level subdivisions,
our neural subdivision network can still be trained on more level of the subdivisions.
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Figure 4.34: When trained on meshes created by classic Loop subdivision (green), our
network can reproduce the Loop scheme on new meshes, and creates visually indistin-
guishable results (blue) compared to the ground truth created by the classic Loop method
(right).

4.8.6 Experimental Setup

Our experimental setup is consistent throughout the document. The training shape is
presented in green in every figure. For each shape, we use the parameters described in
App. 4.8.5 to generate 200 training discretizations and train for 700 epochs. Our method
can learn to produce several subdivision levels Fig. 4.33, but we set the number of train-
ing subdivisions to two levels for consistency across the experiments. If the experiment
consists of multiple training shapes, such as the experiments in Fig. 4.28 and Table 4.2, we
evenly distribute the number of training discretizations so that they still sum up to 200
discretizations in total.

4.8.7 Learning Classic Loop Subdivision

Although we have shown in Sec. 4.6 that neural subdivision is able to subdivide a mesh
adaptively, one might be interested in seeing whether neural subdivision can also learn to
reproduce classic Loop subdivision with appropriate training data. In Fig. 4.34, we trained
our network on a sequence of meshes created with Loop subdivision. Given an original
mesh, we create 200 meshes using random edge collapses, then refined each coarsened
mesh for two levels using Loop subdivision to obtain the corresponding ground truth sub-
divided sequences formeasuring the reconstruction loss. We see thatwhen testing on novel
meshes, the network is able to reproduce the Loop scheme to create visually indistinguish-
able results. The average per-vertex numerical error is just 0.3% of the bounding box diag-
onal.
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4.9 Ablation Studies (continued)

This section summarizes the ablation studies of other design
decisions we made in the network design. These components
are not as crucial as the components mentioned in the main
text, but they still offer improvementswhile training. The first
analysis is the influence of adding differential coordinates in
the input (see Fig. 4.19). Our result in the inset indicates that
adding differential coordinates can improve convergence.

We also measure the effect of adding cross-level loss com-
pared to only measuring the loss at the final level. In the in-
set, we visualize the error in the intermediate level. The result
suggests that adding cross-level loss can improve subdivision
results in the intermediate levels, which is important for cre-
ating meshes with different levels of detail (see Fig. 4.2).

The third study analyzes the effects of the starting position
of the predicted displacement vector as shown in Fig. 4.20.
Specifically, we compare predicting the displacement from
the mid-point of an edge with predicting displacement from
the Loop-subdivided mesh. Our result in the inset suggests
that using different starting positions has no influence to the
quality of the output. Thus we choose the mid-point for sim-
plicity.

The fourth study analyzes the effects of the number of ver-
tex steps to perform. In Fig. 4.18, we can actually recursively
perform the vertex step to gather information from larger
rings. However our experiments in the inset indicates that re-
cursively performing the vertex step does not offer improve-
ments. Thus we only perform the vertex step once. We sus-
pect that the 2-ring information on the coarse mesh (one from initialization, one from the
vertex step) may already be sufficient for the network to perform subdivisions.

In MeshCNN, Hanocka et al. [2019] propose a set of fea-
tures to characterize an undirected edge (via features of a
flap), including the dihedral angle, two inner angles, and two
edge length ratios (see Sec. 3 in [Hanocka et al., 2019]). We
tried their proposed features in our neural subdivision net-
work. In the inset, we observe that using our features, edge
vectors and the vectors of differential coordinates, converges
to a better solution.



Chapter 5

Cubic Stylization

Figure 5.1: Cubic stylizationdeforms a given 3D shape into the style of a cubewhilemaintain-
ing textures and geometric features. This can be used as a non-realistic modeling tool for
creating stylized 3D virtual world. We obtain 3D assets from sketchfab.com by smeerws
and Jesús Orgaz under CC BY 4.0.

We present a 3D stylization algorithm that can turn an input shape into the style of a cube
whilemaintaining the content of the original shape. The key insight is that cubic style sculp-
tures can be captured by the as-rigid-as-possible energy with an ℓ1-regularization on rotated
surface normals. Minimizing this energy naturally leads to a detail-preserving, cubic ge-
ometry. Our optimization can be solved efficiently without any mesh surgery. Our method
serves as a non-realistic modeling tool where one can incorporate many artistic controls to
create stylized geometries.

5.1 Introduction

The availability of image stylization filters and non-photorealistic rendering techniques has
dramatically lowered the barrier of creating artistic imagery to the point that even a non-
professional user can easily create stylized images. In stark contrast, direct stylization of
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Figure 5.2: The cubic style have been attracting artists’ attention over centuries, such as the
Serpend à’ Plumes found in Chichén Itzá (left), The Kiss by Constantin Brâncus, i (middle),
and the Taichi by Ju Ming (right). We obtain images from wikimedia.com photographed
by Jebulon under CC0 1.0, from flickr.com by Art Poskanzer under CC BY 2.0, and from
wikimedia.com by Jeangagnon under CC BY-SA 3.0.

Figure 5.3: A digital art form – Anicube – by Aditya Aryanto produces cubic style images
(right). Our method takes an input tiger (left) and outputs a “3D anicube” tiger while
maintaining geometric details (middle). ©Aditya Aryanto (right). Used under permis-
sion.

3D shapes or non-realistic modeling has received far less attention. In professional industries
such as visual effects and video games, trained modelers are still required to meticulously
create non-realistic geometric assets. This is because investigating geometric styles is more
challenging due to arbitrary topologies, curved metrics, and non-uniform discretization.
The scarcity of tools to generate artistic geometry remains a major roadblock to the devel-
opment of geometric stylization.

In this paper, we focus on the specific style of cubic sculptures. The cubic style is preva-
lent across art history, for instance the ancient sculptures from the post-classic era (900-1250
CE), Maya sculptures, block statues in Egypt, and modern abstract sculptures such as the
ones from Constantin Brâncus, i and Ju Ming (Fig. 5.2). In addition, the cubic style is a
popular digital art form, such as the award-winning Anicube by Aditya Aryanto (Fig. 5.3).
Complementing their presence in art, cubic shapes also present themselves in fabrication
and furnitures (Fig. 5.4). We contribute to the rich history of cubic sculpting by providing
a stylization tool that takes a 3D shape as input and outputs a deformed shape that has the
same style as cubic sculptures.

We present cubic stylization which formulates the task as an energy optimization that
naturally preserves geometric details while cubifying a shape. Our proposed energy com-
bines an as-rigid-as-possible (arap) energy with an ℓ1 regularization. This energy can be
minimized efficiently using the local-global approach with alternating direction method of
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Figure 5.4: One can control the cubic stylization by incorporating constraints. For instance,
we can fix some parts of a shape to mimic the style of a Jaguar metate from ancient Costa
Rica (top) or addpoint constraints tomimic theAssyrian Lamassuwall sculpture (bottom).
©Antiques & Artifacts LLC (top). Used under permission.

Figure 5.5: Our cubic stylization requires no remeshing, thus vertex attributes such as tex-
tures are preserved during the optimization. Our arap term encourges locally isometric
deformations to help maintain nice textures.

multipliers (ADMM). This variational approach affords the flexibility of incorporatingmany
artistic controls, such as applying constraints, non-uniform cubeness, anddifferent global/local
cube orientations (Sec. 5.4). Moreover, our method requires no remeshing (Fig. 5.5) and
generalizes to polyhedral stylization (Fig. 5.24). Our proposed tool for non-realistic mod-
eling goes beyond the 2D stylization and opens up the possibility of, for instance, creating
non-realistic 3D worlds in virtual reality (Fig. 5.1).

5.2 Related Work

Ourwork shares similar motivations to a large body of work on image stylization [Kyprian-
idis et al., 2013], non-photorealistic rendering [Gooch and Gooch, 2001], and motion styl-
ization [Hertzmann et al., 2009]. While their outputs are images or stylized animations,
we take a 3D shape as input and output a stylized shape. Thus we focus our discussion on
methods for processing geometry, including the study of geometric styles and deformation
methods that share technical similarities.

DiscriminativeGeometric Styles The growing interest in understanding geometric styles
has been inspiring recent works on building discriminativemodels for style analysis. One of
the main challenges is to define a similarity metric aligned with human perception. Many
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Figure 5.6: Our energy-based deformation shares similarities with many energy-based ge-
ometric flows and mesh filters, such as the methods of [Zhang et al., 2018] and [?].

works propose to compare projected feature curves [Li et al., 2013; Yu et al., 2018a], sub-
components of a shape [Xu et al., 2010; Lun et al., 2015; Hu et al., 2017], or using learned
features [Lim et al., 2016]. These models enable users to synthesize style compatible scenes
[Liu et al., 2015] or transfer style components across shapes [Ma et al., 2014; Lun et al., 2016;
Berkiten et al., 2017]. However, these methods are designed for discerning and transfering
styles, instead of generating 3D stylized shapes directly.

Generative Geometric Styles Direct 3D stylization has been an important topic in com-
puter graphics. Many generative models have been proposed for producing specific styles,
without relying on identifying and transferring style components from other shapes. This
includes creating the collage art [Gal et al., 2007; Theobalt et al., 2007], voxel/lego art [Tes-
tuz et al., 2013; Luo et al., 2015], neuronal homunculus [Reinert et al., 2012], the manga style
shapes [Shen et al., 2012], shape abstraction [Mehra et al., 2009; Kratt et al., 2014; Yumer
and Kara, 2012], and bas-relief sculptures [Weyrich et al., 2007; Song et al., 2007; Kerber
et al., 2009; Bian and Hu, 2011; Schüller et al., 2014]. While not pitched as stylization tech-
niques, many geometric flows and filters can also be used for creating stylized geometry,
such as creating edge-preserving smoothing geometry [Zhang et al., 2018], piece-wise pla-
nar [He and Schaefer, 2013; Stein et al., 2018b] or developable shapes [Stein et al., 2018a],
and stylized shapes prescribed by image filters [Liu et al., 2018] (see Fig. 5.6). Our method
contributes to the field of direct 3D stylization, focusing on the style of cubic sculptures
(Fig. 5.7).

Shape Deformation Many works deal with the question of how to deform shapes given
modeling constraints. One of the most popular choices is the arap energy [Igarashi et al.,
2005a; Sorkine and Alexa, 2007; ?; Chao et al., 2010], which measures local rigidity of the
surface and leads to detail-preserving deformations. Not just deformations, similar formu-
lations to arap can also be extended to other tasks such as constrained shape optimization
[Bouaziz et al., 2012], parameterization [Liu et al., 2008], and simulating mass-spring sys-
tems [Liu et al., 2013a]. Ever since, optimizing the arap energy has been substantially ac-
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Figure 5.7: Cubic style sculptures are common throughout history, such as theDraped Seated
Woman byHenryMoore (right). Ourmethod offers an instrument to create cubic geometry
(middle). The photo is taken by puffin11k under CC BY-SA 2.0.

Figure 5.8: Paparazzi [Liu et al., 2018] with image quantization and polycubemethod (e.g.,
[Huang et al., 2014]) can create cubic style shapes (red, green), but unlike our method
(blue) they do not preserve geometric details.

celerated by a large amount of work, such as [Kovalsky et al., 2016; Rabinovich et al., 2017;
Shtengel et al., 2017; Peng et al., 2018; Zhu et al., 2018]. However, having nearly interac-
tive performance on highly detailed meshes still remains a major challenge. An alternative
strategy to speed it up is to use the hierarchical deformation which optimizes arap on a
low resolution model and then recover the original details back afterwards [Manson and
Schaefer, 2011]. This class of accelerations shares similar characteristics to multiresolution
modeling (see [Garland, 1999; Zorin, 2006]). We take advantage of the arap energy for
detail preservation and adapt the method of Manson and Schaefer [2011] to accelerate our
cubic stylization to meshes with millions of faces.

Axis-Alignment in Polycube Maps Axis-alignment is an important property for many
geometry processing tasks, such as [Muntoni et al., 2018; Stein et al., 2019]. Especially, this
concept is one of the main instruments in the construction of polycube maps [Tarini et al.,
2004], including defining polycube segmentations [Livesu et al., 2013; Fu et al., 2016; Zhao
et al., 2017] and the cost function for polycube deformations [Gregson et al., 2011; Huang
et al., 2014]. Although polycube methods can obtain cubic geometry, they fail to preserve
details (Fig. 5.8) because detail preservation is not required in their intended applications
such as parameterization and hexahedral meshing [Wang et al., 2007; Lin et al., 2008; Wang
et al., 2008; He et al., 2009; Garcı́a Fernández et al., 2013; Yu et al., 2014; Cherchi et al., 2016;
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Figure 5.9: One can control the cubeness by changing the λ parameter in Eq. (5.1).

Fang et al., 2016].
One tempting direction for creating cubic geometry is

to use voxelization. However, voxelization fails to capture
the details depicted by the artists and cannot capture the
wide spectrum of cubeness across cubic sculptures. An-
other tempting direction is to recover geometric features from
the polycube results. This would lead to a multi-step algo-
rithm and suffer from limitations of particular detail encod-
ing schemes (e.g., bumpmaps). Even if we stop the polycube
algorithm earlier such as the method of [Gregson et al., 2011]
to maintain details, it does not provide a satisfactory solution
(see the inset for a comparison with Fig. 5 in [Gregson et al., 2011]). More importantly,
many artistic controls in Sec. 5.4 would be nontrivial to add on. Building stylization on
top of polycube methods would also suffer from slow performance. For instance, Huang
et al. [2014] propose a polycube method that minimizes the ℓ1-norm of the normals on
the deformed tetrahedral mesh with arap for regularization. Their formulation involves
minimizing a complicated non-linear function and requires minutes to hours to optimize.
Thus a stylization built on top of this methodwould be even slower. In contrast, our formu-
lation is a single energy optimization which can easily incorporate many artistic controls
(Sec. 5.4). Our energy is similar to the polycube energy of [Huang et al., 2014] in that we
also minimize the arap energy with an ℓ1 regularization, but the key difference is that we
define the ℓ1-norm on the rotated normals of the originalmesh instead. This allows us to op-
timize our energy much faster using the local-global approach with ADMM in only a few
seconds (Table 7.1).

5.3 Method

The input to ourmethod is amanifold trianglemeshwith/without boundaries. Ourmethod
outputs a cubified shape where each subcomponent has the style of an axis-aligned cube.
Meanwhile, our stylization maintains the geometric details of the original mesh.

Let V be a |V| × 3 matrix of vertex positions at the rest state and Ṽ be a |V| × 3 matrix
containing the deformed vertex positions. We denote by dij = [vj − vi]

⊤ and d̃ij = [ṽj −
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ṽi]
⊤ the edge vectors between vertices i, j at the rest and deformed states respectively. The

energy for our cubic stylization is as follows

minimize
Ṽ,{Ri}

∑
i∈V

∑
j∈N (i)

wij

2
∥Ridij − d̃ij∥2

F︸ ︷︷ ︸
arap

+ λai∥Rini∥1︸ ︷︷ ︸
cubeness

. (5.1)

The first term is the arap energy [?], where Ri is a 3-by-3 rotation
matrix, wij is the cotangent weight [Pinkall and Polthier, 1993],
and N (i) denotes the “spokes and rims” edges of the ith vertex
[Chao et al., 2010] (see the inset). In the second term, ni denotes
the unit area-weighted normal vector of a vertex i in R3. The
ai ∈ R+ is the barycentric area of vertex i, which is crucial for λ to
exhibit the similar cubeness across different mesh resolutions. In-
tuitively, minimizing the ℓ1-norm of the rotated normal encouragesRini to alignwith one of
coordinate axes because the ℓ1-norm encourages sparsity. Combining the two, the optimal
rotation {R⋆

i }would simultaneously preserve the local structure (arap) and encourage the
output normal to align with one of the axes (cubeness).

We adapt the standard local-global update strategy to optimize our energy [?] (see
Alg. 3). Our global step, updating Ṽ, is achieved by solving a linear system, the same as
Equation 9 in [?]. Our local step, finding the optimal rotation, is however different from
the previous literature due to the ℓ1 term.

5.3.1 Local-Step

Our local step for each vertex i can be written as

R⋆
i = arg min

Ri∈SO(3)

1
2
∥RiDi − D̃i∥2

Wi
+ λai∥Rini∥1, (5.2)

whereWi is a |N (i)| × |N (i)| diagonalmatrix of cotangentweights,Di and D̃i are 3× |N (i)|
matrices of rim/spoke edge vectors at the rest and deformed states respectively. We denote
∥X∥2

Y = Tr(XYX⊤) for notational convenience. By setting z = Rini, we can rewrite Eq. (5.2)
as

minimize
z,Ri∈SO(3)

1
2
∥RiDi − D̃i∥2

Wi
+ λai∥z∥1 (5.3)

subject to z− Rini = 0.



CHAPTER 5. CUBIC STYLIZATION 100

Figure 5.10: We turn 3D shapes into the cubic style (blue) with Alg. 3. ©Angelo Tartanian
(top left), Splotchy Ink (top), Dan Slack (top right) under CC BY.

Figure 5.11: We can also turn meshes with boundaries (red) into the cubic style. ©Takeshi
Murata (left) under CC BY.

Eq. (5.3) is a standard ADMM formulation. We solve this local step using the scaled-form
ADMM updates [Boyd et al., 2011]:

Rk+1
i ← arg min

Ri∈SO(3)

1
2
∥RiDi − D̃i∥2

Wi
+

ρk

2
∥Rini − zk + uk∥2

2 (5.4)

zk+1 ← arg min
z

λai∥z∥1 +
ρk

2
∥Rk+1

i ni − z+ uk∥2
2 (5.5)

ũk+1 ← uk + Rk+1
i ni − zk+1 (5.6)

ρk+1 , uk+1 ← update (ρk) (5.7)

where ρ ∈ R+ is the penalty and u is the scaled dual variable.
Eq. (5.4) is an instance of the orthogonal Procrustesmethod [Gower et al., 2004]

Rk+1
i ← arg max

Ri∈SO(3)
Tr(RiMi)

Mi =
[
Di ni

] [Wi

ρk

] [
D̃⊤i

(zk − uk)⊤

]
.
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Figure 5.13: We show the convergence behavior of different meshes in Fig. 5.10 (left, blue),
Fig. 5.16 (left, green), and different cubenesses in Fig. 5.9 (right). Note that the dotted line
imply the optimization has stopped.

One can derive the optimal Ri from the singular value decomposition ofMi = UiΣiV⊤i :

Rk+1
i ← ViU⊤i , (5.8)

up to changing the sign of the column of Ui so that det(Ri) > 0.
Eq. (5.5) is an instance of the lasso problem [Tibshirani, 1996; Boyd et al., 2011], which

can be solved with a shrinkage step:

zk+1 ← Sλai/ρk(Rk+1
i ni + uk) (5.9)

Sκ(x)j = (1− κ/|xj|)+ xj

We update the penalty ρ (Eq. (5.7)) according to Sec. 3.4.1 in [Boyd et al., 2011] where u

needs to be rescaled accordingly after updating ρ.

Figure 5.12: Our method can cubify
non-orientable surfaces such as the
Klein bottle.

In short, local fitting is performed by running
Eq. (5.8), (5.9), (5.6), and (5.7) iteratively until the
norms of primal/dual residuals are small. Warm
starting the local-step parameters from the previous
iteration can significantly speed up the optimization.
Specifically, we initialize z, u with zeros, and set the
initial ρ = 10−4, ϵabs = 10−5, ϵrel = 10−3, µ = 10,
and τincr = τdecr = 2 (the same notation as used in
Sec. 3 of [Boyd et al., 2011]). Then z, u, ρ are reused
in consecutive iterations. Note that for extremely
large λ one may need to increase the initial value
of ϵabs accordingly in order to avoid bad local minima. We stop the optimization when the
relative displacement, the infinity norm of relative per vertex displacements, is lower than
3× 10−3 (see Fig. 5.13 for the convergence plots). More elaborate stopping criteria, such as
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Figure 5.14: The global orientation of the shape influences the ℓ1 term in Eq. (5.1). Applying
different rotations to the mesh lead to different results. ©My Dog Justice under CC BY.

Algorithm 3: Cube Stylization (λ)

Input : A triangle mesh V,F
Output: Deformed vertex positions Ṽ
1. Ṽ← V
2. while not converge do
3. R← local-step (V, Ṽ, λ)

4. Ṽ← global-step (R)

the method of [?], could also be used.
At this point we have completed the cubic stylization algorithm summarized in Alg. 3,

enabling us to efficiently create cubified shapes (see Fig. 5.10). In Fig. 5.11 and 5.12we show
that this formulation is applicable to meshes with boundaries and non-orientable surface
respectively. As the cubeness is dependent on the orientation of the mesh, one can apply
different rotations to control how the stylization runs (Fig. 5.14). We expose the weighting
λ as a design parameter controlling the cubeness of a shape (Fig. 5.9).

However, the “vanilla” cube stylization shares the same caveat as other distortion min-
imization algorithms: having slow runtime on high resolution meshes.

5.3.2 Affine Progressive Meshes

A hierarchical approach to accelerate arap deformations was
proposed by Manson and Schaefer [2011]. The main idea is
to deform a low-resolutionmodel and recover the details back
after convergence.

Specifically, Manson and Schaefer [2011] propose a pro-
gressive mesh [Hoppe, 1996] representation which first sim-
plifies a given mesh via a sequence of edge collapses, and
then represents the mesh as its coarsest form together with
a sequence of vertex splits. After applying some deformations to the coarsest mesh, each
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Algorithm 4: Fast Cube Stylization (λ, m)

Input : A triangle mesh V,F
Output: Deformed vertex positions Ṽ
// pre-processing
1. m← target number of faces
2. Vc,Fc ← edge collapses (V,F, m)
// cubic stylization
3. Ṽc ← Vc
4. while not converge do
5. R ← local-step (Vc, Ṽc, λ)

6. Ṽc ← global-step (R)

7. Ṽ,F← affine vertex splits (Ṽc,Fc)

“deformed” vertex split is computed by fitting the best local rigid transformation. This
approach is suitable for deformations that are locally rigid (e.g., arap), but our cubic styl-
ization is less rigid for larger λ.

So we fit the best affine transformation at each vertex split, rather than using rigid trans-
formations. Specifically, at each edge collapse we store the displacement vectors from the
newly inserted vertex pi to the endpoints pj, pk (see the inset) together with a matrix A:

A = (QiQ
⊤
i )
−1Qi.

Qi is a 3× |N (i)| matrix where each column is the vector from pi to one of its one-rings
neighborsN (i). If (QiQ

⊤
i ) is singular (e.g., in planar regions), we remedy the issuewith the

Tikhonov regularization [Tikhonov et al., 2013]. Then A is used to computed the deformed
displacements for each vertex split as

p̃j − p̃i = Q̃iA
⊤(pj − pi),

where p̃i denotes the position of vertex i in the cubified coarsened shape, and Q̃i is a 3×
|N (i)|matrix containing vectors from p̃i to its one-rings neighbors.

Affine progressive meshes allows us to losslessly recover the original meshes undergo-
ing affine transformations. For smooth non-affine transformations such as our cube styl-
ization, it could still be approximately recovered (see Fig. 5.15). We summarize our cubic
stylization with the affine progressive mesh in Alg. 4. Note that edge collapse is just a pre-
processing step. In the online stage, one only needs to run cubic stylization on the coarsest
mesh and then apply a sequence of vertex splits to visualize the result on the original reso-
lution. This offers a huge speed-upwhen interactivelymodifying the parameter λ on highly
detailed models (see Fig. 5.16).

An interesting observation is that the number of faces m in the coarsest mesh not only
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Figure 5.15: Affine progressivemeshes allow us to run cubic stylization on a low-resolution
model and then recover original details when converged. ©Colin Freeman under CC BY.

Figure 5.16: With affine progressive meshes, we can scale the cubic stylization to meshes
with millions of faces. The Nefertiti mesh (left) was scanned by Nora Al-Badri and Jan
Nikolai Nelles from the Nefertiti bust.

controls the runtime, but implicitly controls the frequency level of geometric details that
gets preserved. In Fig. 5.17 we show that, for the same λ, a smaller m keeps details across
a wider frequency range; in contrast, a larger m only keeps details at higher frequencies.
Therefore one can manipulate the level of preserved features by manipulating m.

5.3.3 Implementation

We implement the cubic stylization in C++using libigl [Jacobson et al., 2018] and evaluate
our runtime on aMacBook Pro with an Intel i5 2.3GHz processor. Table 5.1 lists the param-
eters and the runtime for the stylization shown in Fig. 5.10 (top) and Fig. 5.16. We test
our methods on meshes in the Thingi10K [Zhou and Jacobson, 2016] and show that we can
obtain stylized geometry within a few seconds. This is important for users to receive quick
feedback on their parameter choices and iterate on their designs, such as the cubeness λ in
Fig. 5.9 and the level of detail m in Fig. 5.17.
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Figure 5.17: The number of faces m used in the decimated mesh not only controls the run-
time but also the frequency level of details that get preserved. ©Joseph Larson under CC
BY.

Table 5.1: For each example in Fig. 5.10 and Fig. 5.16, we report the number of faces in the
original model (|F|), l1 weight (λ), number of faces of the coarsest mesh (m), number of
iterations (Iters.), pre-processing time (Pre.), and runtime at the online stage (Runtime).

Model |F| λ m Iters. Pre. Runtime
Fig. 5.10, left 39K 0.20 n/a 106 n/a 5.08s
Fig. 5.10, mid. 41K 0.20 n/a 93 n/a 4.50s
Fig. 5.10, right 21K 0.4 n/a 86 n/a 2.26s
Fig. 5.16, left 2018K 0.20 20K 83 64.19s 3.93s
Fig. 5.16, mid. 346K 0.40 20K 222 10.69s 4.59s
Fig. 5.16, right 811K 0.30 40K 173 30.44s 8.38s

User study Webuild a user interface (see the inset)
to conduct an informal user study with six partici-
pants (4 male, 2 female) between the ages of 24 and
29. Participant 3Dmodeling experience ranged from
none (complete novice) to three years of hobbyist
use. Each participant was instructed for three min-
utes on how to use our software to load a mesh and
control the cubeness parameter λ. Then we asked
them to cubify a shape of their choosing from a col-
lection of ten shapes. The results of their work are
show in Fig. 5.18. All users reported that they were satisfied with the cubeness of their
resulting shape. One user said that controlling the cubeness of their resulting shape is very
easy because it only requires tuning a single parameter.

5.4 Artistic Controls

In addition to the two parameters λ, m, we expose many variants of our stylization to in-
corporate artistic controls. As a non-realistic modeling tool, this is important for users to
realize their creativity.

We first focus our discussion on a variety of artistic controls that are related to the cube-
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Figure 5.18: Even non-professional users can effortlessly turn an input scene (top) into
a cubified scene (bottom). Different colors are results created by different users. From
left to right, ©Peter Leppik, Cleven, TerenceKing, MakerBot, TerenceKing, PerryEngel, and
Christina Chun under CC BY.

Figure 5.19: We vary λ across the surface to have different cubeness for different parts. We
apply higher λ on the red region and smaller λ for the blue region to create an ottoman-like
shape (middle). ©pmoews under CC BY.

ness parameter λ. Although Eq. (5.1) only has a single λ for an entire shape, we can actu-
ally specify different λi for each vertex independently to have non-uniform cubeness, which
leads to the expression λiai∥Rini∥1. In Fig. 5.19, we use this approach to make the back of
the sheep much more cubic than the rest of the shape to create an ottoman-like geometry.
We can also specify the non-uniform cubeness λi in a different way, instead of painting on
the surface directly. In Fig. 5.20 we paint a function on the Gauss map in which the sur-
face normal pointing towards the left has higher cubeness. When we map this function
back to the surface, we get a cubified owl that is more cubic when initial normals point
towards the left and less cubic when they point towards the right. Similarly, we can have
different λx, λy, λz for different axes. In Fig. 5.21, we replace the cubeness in Eq. (5.1) with
ai(λx|(Rini)x|+ λy|(Rini)y|+ λz|(Rini)z|) and specify a different values for each λx, λy, λz

to have the style of a rectangular prism.
If one wants to fix certain parts of the shape, we can easily add constraints in the global

step, as in the method of ?. In Fig. 5.4 we add the parts constraint by fixing the position of
some vertices when solving the linear system; we add the points constraint by specifying
some deformed vertices Ṽi at user-desired positions. We can also use the same methodol-
ogy to constrain some parts of the geometry lying on certain planes. For instance, setting
(Ṽi)x = 0 can force vertex i to lie on the yz-plane. In Fig. 5.22 we use this plane constraint
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Figure 5.20: We can paint the λ function on the Gauss map to have non-uniform λ over the
surface. In the figure, we have higher λ for the original normals pointing to the left. ©Tom
Cushwa under CC BY.

Figure 5.21: We can vary λ for different axes to turn inputs into the biased cubic style (blue)
towards x,y,z axes respectively. ©MakerBot (right) under CC BY.



CHAPTER 5. CUBIC STYLIZATION 108

Figure 5.22: We constrain certain parts of the geometry lying on certain planes to create a
3D printed table clinger (right). ©Morena Protti under CC BY.

Figure 5.23: We can define the ℓ1-norm on different coordinate systems for different parts of
the shape, instead of using the world coordinates. In the figure the hands and the body use
different coordinate systems (left). By changing them, we can vary the cube orientations
for different parts. ©David Hagemann under CC BY.

to create a table clinger.
In addition, one can utilize the property of the ℓ1-norm to have different artistic effects.

Because the cubeness term is orientation dependent, in Fig. 5.14we can apply different rota-
tions to themesh before the stylization to control the results. Rather than rotating themesh,
another way is to encode the normal vector in a different coordinate system λai∥Rin

local
i ∥1,

where we use nlocali to denote the user-desired coordinate system for vertex i. This perspec-
tive allows us to define the ℓ1-norm on different coordinate systems for different parts of
the shape to obtain different cube orientations (Fig. 5.23). Beyond the cubic stylization, in
Fig. 5.24, 5.25 we apply a coordinate transformation B inside the ℓ1-norm λai∥BRini∥1 to
achieve polyhedral stylization, for which we provide the details in App. 5.6.1. Once we
obtain the stylized shapes, they are ready to be used by standard deformation techniques
in animations (Fig. 5.26).

5.5 Limitations & Future Work

Accelerating the stylization to real-time would enable faster iterations between designs.
Developing a more robust stylization for bad quality triangles, non-manifold meshes, or
even point cloud could be useful for stylizing real-world geometric data. Guaranteeing re-
sults to be self-intersection free would be desirable for downstream tasks. Extending our
energy to be invariant to discretizations could achieve more consistent results across dif-
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Figure 5.24: We apply a coordinate transformation inside the ℓ1-norm to generalize cubic
stylization to polyhedrons. ©Proto Paradigm (middle), Ola Sundberg (right) under CC
BY.

Figure 5.25: We apply non-symmetric coordinate transformations inside the ℓ1-norm to
create irregular polyhedral stylization. ©Johannes under CC BY.

Figure 5.26: Once we have the cubic geometry (blue), standard deformation techniques
(e.g., [?]) can be used to manipulate the cubified shape (yellow).
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Figure 5.27: Although exhibiting similar cubenesses, our stylization is still not invariant to
different resolutions.

Figure 5.28: By specifying different coordinate transformations B inside the ℓ1-norm, we
can encourage polyhedral style.

ferent resolutions (see Fig. 5.27). Extending to quadrilateral meshes and NURBS surfaces
could benefit existing modeling or engineering design softwares. Generalizing to volumet-
ric meshes could have a better volume preservation. Exploring different deformation ener-
gies and ℓp-norm could lead to novel stylization tools for non-realistic modeling. Beyond
generating stylized shapes, the mathematical expression of the cubic geometry could offer
insights toward understanding more intricate styles. For instance, Cubism has been consid-
ered as a revolutionized artistic style for paintings and sculptures. Cubism has appeared
since the early 20th century. Since then, several attempts have tried to describe [Hender-
son, 1983] and generate Cubist art [Wang et al., 2011; Corker-Marin et al., 2018], but more
efforts are still required to offer scientific explanations to a wide variety of Cubist art. Our
cubic stylization only focuses on a specific style. We hope this could inspire future attempts
to capture different sculpting styles such as those presented in African art, or even a generic
approach to create different styles in an unified framework.

5.6 Appendix

5.6.1 Polyhedral Generalization

Simply applying a coordinate transformation B : Rn → Rm inside the ℓ1-norm can encour-
age polyhedral results (see Fig. 5.28 and 5.25). The ℓ1-norm of a vector is defined as the
summation of its magnitudes along each basis vector. Thus applying a coordinate trans-
formation inside the ℓ1-norm changes its bahavior because the basis vectors are different.
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Following the notation in Eq. (5.1), polyhedron energy can be written as

minimize
Ṽ,{Ri}

∑
i∈V

∑
j∈N (i)

wij

2
∥RiDij − D̃ij∥2

F + λai∥BRini∥1.

In our case, B is a m-by-3 coordinate transformation matrix for shapes embedded in R3.
Again by setting z = Rini we can reach almost the same optimization procedures, except
the Eq. (5.5) now becomes (we ignore the iteration superscript for clarity)

zk+1 ← arg min
z

λai∥Bz∥1 +
ρ

2
∥Rini − z+ u∥2

2. (5.10)

Similar to common techniques for solving the Basis Pursuit problem, we introduce a vari-
able t ⪰ ∥Bz∥1 to transform Eq. (5.10) into a small quadratic program subject to equality
constraints

minimize
z,t

[
z⊤ t⊤

] [ρ/2 · I3 0

0 0

] [
z

t

]

+
[
−ρ(Rini + u)⊤ λai1

⊤
m

] [z
t

]

subject to
[

B −Im
−B −Im

] [
z

t

]
⪯ 0,

where Ix and 1x denote the identity matrix with size x and a column vector of 1 with size x
respectively. We then solve this efficiently using cvxgen [Mattingley and Boyd, 2012]. Note
that the results in Fig. 5.24 and Fig. 5.25 use m = 4.



Chapter 6

Normal-Driven Spherical Shape
Analogies

Figure 6.1: Our normal-driven spherical shape analogy stylizes an input 3D shape (bottom left)
by studying how the surface normal of a style shape (green) relates to the surface normal
of a sphere (gray).

This paper introduces a new method to stylize 3D geometry. The key observation is that
the surface normal is an effective instrument to capture different geometric styles. Centered
around this observation, we cast stylization as a shape analogy problem, where the analogy
relationship is defined on the surface normal. This formulation can deform a 3D shape into
different styles within a single framework. One can plug-and-play different target styles
by providing an exemplar shape or an energy-based style description (e.g., developable
surfaces). Our surface stylization methodology enables Normal Captures as a geometric
counterpart to material captures (MatCaps) used in rendering, and the prototypical con-
cept of Spherical Shape Analogies as a geometric counterpart to image analogies in image
processing.

6.1 Introduction

Analogies of the form A : A′ :: B : B′ is a reasoning process that conveys A is to A′ as B is
to B′. This formulation has become a core technique for creating artistic 2D digital content,
such as image analogies [Hertzmann et al., 2001] in Photoshop [Adobe Inc., 2021] for im-

112
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age stylization and the Lit Sphere [Sloan et al., 2001] (a.k.a. MatCap) in ZBrush [Pixologic
Inc., 2020] for non-photorealistic renderings. However, leveraging analogies to stylize 3D
geometry is still at a preliminary stage because defining the analogy relationship on sur-
face meshes requires dealing with irregular discretizations, curved metrics, and different
topologies.

In this paper, we introduce a step towards more general 3D shape analogies, named
spherical shape analogies. We consider a specific case where A is a unit sphere. This re-
striction enables us to operate on an input mesh B with arbitrary topologies, boundaries,
and geometric complexity. While not fully general, because A is restricted to be a sphere,
we demonstrate that this formulation can immediately achieve different geometric styles
within a single framework. In Fig. 6.1, we show that by providing different target style
shapes A′ to the algorithm, we can turn the input shape B into different styles. In addition
to stylization, our method can encompass many existing applications, such as developable
surface approximation and PolyCube deformation.

One key observation in our spherical shape analogies is that the surface normal is an
effective instrument to capture geometric styles. Thus, we define the analogy relationship
based on normals: we optimize a stylized shape B′ such that the relationship between the
surface normals of B and B′ is the same as the relationship between the surface normals of
A and A′

We realize this by casting stylization as a simple and effective normal-driven shape op-
timization problem which aims at deforming the input shape towards a set of desired nor-
mals. However, such an optimization problem is often difficult due to the nonlinearity of
unit normals. We draw inspiration from previous works and apply a change of variables to
accelerate the computation: instead of directly optimizing the vertex positions, we optimize
a set of rotations that rotate the normals of the inputmesh to the set of desired normals. Our
simple formulation with the change of variables results in a generic stylization algorithm
that runs at interactive rates.

6.2 Related Work

Our work shares similar motivations to computer-assisted image stylization pioneered by
Haeberli [1990]. But since our outputs are stylized 3D geometries, we focus the discussion
on geometric stylization and geometric deformation methods.

Analogy-based Geometric Stylization

Many generative models have been proposed for creating stylized 3D objects, such as col-
lage art [Gal et al., 2007; Theobalt et al., 2007], manga style [Shen et al., 2012], cubic style
[Liu and Jacobson, 2019a], and neuronal homunculus [Reinert et al., 2012]. However, these
methods are tailor-made for a specific style.
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Analogy A : A′ :: B : B′ is a powerful formulation for achieving different stylization
results within a single framework. This formulation has inspired several design tools for
images [Hertzmann et al., 2001], non-photorealistic renderings [Sloan et al., 2001; Fiser
et al., 2016], and curves [Hertzmann et al., 2002]. Beyond 2D data, the idea of analogy has
also been used for transferring 3D geometric details from one shape to another. We omit the
discussion on methods that are not based on analogies, such as mesh cloning [Zhou et al.,
2006; Takayama et al., 2011] and geometric learning [Liu et al., 2020; Hertz et al., 2020;Wang
et al., 2020; Chen et al., 2021; Li and Zhang, 2021], and focus on analogy-based techniques.
Ma et al. [2014] propose a method for 3D style transfer based on patch-based assembly.
However, their method cannot handle free-form deformations and requires the source and
the exemplar shape to share a similar structure in order to compute high-quality correspon-
dences. Bhat et al. [2004] propose a voxel-based texture synthesis method for transferring
geometric details encoded in a volumetric grid. Berkiten et al. [2017] usemetric learning for
details represented as displacementmaps. Thesemethods are designed for high-frequency
details (e.g., wrinkles on the surface). In contrast, our spherical shape analogies focuses
on larger scale free-form deformations. Albeit limited — in our analogies A is restricted to
the unit sphere — our method enables a first step in this exciting direction.

Surface Normals in Shape Deformation

Akey insight of our spherical shape analogies is to leverage surface normals to capture geo-
metric styles. The surface normal is a fundamental geometric quantity and is ubiquitous in
geometry processing. A representative example is in thePolyCube deformation [Tarini et al.,
2004]where the goal is to optimize surface normals to be axis-aligned. Gregson et al. [2011]
and Zhao et al. [2017] use the closest rotation from the surface normal to an axis-aligned
direction to drive the PolyCube deformation. Huang et al. [2014] and Fu et al. [2016] pro-
pose to minimize energies defined on normals to create PolyCube shapes. In architectural
geometry design, surface normals are a main ingredient for characterizing polygonmeshes
with planar faces. The methods proposed by Deng et al. [2011] and Poranne et al. [2013]
utilize normals to formulate a distance-from-plane constraint to encourage planarity. Tang
et al. [2014] use the dot product between a face normal and its adjacent edge vectors to
determine whether the vertices of a polygon are coplanar.

Characterizing whether a mesh can be flattened to 2D without stretching or shearing,
a.k.a. developability, also relies on surface normals. Stein et al. [2018a] characterize discrete
developability based on the 1-ring face normals, and propose an algorithm to compute
piecewise developable surfaces. Sellán et al. [2020] reformulate the developable energy into
a convex semidefinite program for finding piecewise developable heightfields. In addition
to these examples, deforming shapes into the cubic style [Liu and Jacobson, 2019a; Fumero
et al., 2020], constructing shape abstractions [Alexa, 2021], surface parameterization [Zhao
et al., 2020], and interactive mesh editing [Yu et al., 2004; Sorkine et al., 2004] are all related
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Figure 6.2: Our method can be used to create PolyCube shapes (blue) and obtain compa-
rable results to [Fu et al., 2016] (yellow).

Figure 6.3: Althoughmore general for creating different geometric styles (e.g., Fig. 6.1), our
normal driven editing can also be applied to cubic stylization [Liu and Jacobson, 2019a],
achieving comparable performance (blue) to the previous method (red).

to surface normals. Many more examples can be found in the design of geometric filters,
such as the Guided filter [Zhang et al., 2015b], the Shock filter [Prada and Kazhdan, 2015],
the Bilateral normal filter [Zheng et al., 2011], and Total Variation mesh denoising [Zhang
et al., 2015a].

Our method can be adapted to these normal-based deformations. Compared to the
PolyCube method [Fu et al., 2016], we achieve comparable quality (see Fig. 6.2), but we
can further generalize to polytopes (see Fig. 6.18). Compared to [Liu and Jacobson, 2019a]
in cubic stylization (see Fig. 6.3), we can achieve similar performance, but we can further
generalize to many styles other than the cubic style (see Fig. 6.1). In developable surface
approximation, in contrast to the method by Sellán et al. [2020], our method can be applied
to surface triangle meshes (see Fig. 6.4) and is significantly faster than the method by Stein
et al. [2018a] (see Fig. 6.5).

Shape Deformation

Our geometric stylization method can also be perceived as a type of shape deformation
method. We share technical similarities with methods that deform a shape while address-
ing given modeling constraints. A common choice is to minimize the as-rigid-as-possible
(arap) energy [Sorkine and Alexa, 2007; Igarashi et al., 2005b; Chao et al., 2010] while sat-
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Figure 6.4: Sellán et al. [2020] propose a technique to make 2D heightfields developable
(purple). In contrast, our method can create developable approximations for surface
meshes in 3D (blue).

Figure 6.5: Compared to the method proposed by Stein et al. [2018a] for creating devel-
opable approximations (left), our method can create visually comparable results (right)
with significant speed-ups.

isfying the constraints. This arap energy measures the rigidity of local surface patches and
favors detail-preserving smooth deformations. In the casewhere locally rigid deformations
are too constrained, the conformal energy [Crane et al., 2011; Vaxman et al., 2015] which
preserves angles is commonly used. In contrast to arap, the conformal energy often triggers
larger deformations as it allows both local uniform scaling and rigid transformations. In
addition to mesh deformations, similar energies have also been used for parameterization
[Liu et al., 2008], shape optimization [Bouaziz et al., 2012], and simulatingmass-spring sys-
tems [Liu et al., 2013b]. The arap and conformal energies are also commonly used as reg-
ularization terms in mesh optimization problems, such as reconstruction [Zollhöfer et al.,
2014], surface registration [Huang et al., 2008; Yoshiyasu et al., 2014], PolyCube construc-
tion [Huang et al., 2014], and surface stylization [Liu and Jacobson, 2019a]. Their popu-
larity comes from the property that they favor smooth deformations and are amenable to
fast optimizations. For the same reasons, we also use these as our regularization energies
for interactive modeling tasks (see Fig. 6.11).

6.3 Spherical Shape Analogies

Our main idea is to use surface normals to capture the style of 3D objects: if two shapes
share a similar normal “profile”, we consider them to exhibit the same geometric style.
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Figure 6.6: We generate an output shape B′ that relates to the input B in the same way as
how the surface normal of a given primitive A′ relates to the surface normal of a sphere A.

Figure 6.7: Our algorithm defines the analogous relation based on the surface normals.
We first map the normals of the style shape NA′ to a unit sphere to obtain ÑA′ (top row),
transfer the relationship between NA and ÑA′ to the input shape to obtain the target normals
T (middle row), then optimize the input shape B so that the actual output normals are
aligned with the target normal T (bottom row).

Centered around this observation, as discussed in Sec. 6.1, we propose an analogy-based
stylization method to translate the relationship between the normals of A′, A to create a
stylized output shape B′ (see Fig. 6.6). Throughout the paper, we use green color to denote
the target style shape A′, gray color to denote the input shape B, and blue color to denote
the output stylized shape B′.

Our algorithm consists of three simple steps, described in Fig. 6.7: (1) we map the sur-
face normal of A′ to a unit sphere A in order to compute target normals on a sphere ÑA′ , (2)
we construct analogous target normals T that relate to NB the same way ÑA′ relate to NA,
(3) we take B, T as inputs and generate the stylized shape B′ whose normals approximate
T via optimization.
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Figure 6.8: Given a style shape A′, we run conformalized mean curvature flow [Kazhdan
et al., 2012] to map the normals of style shape NA′ to a sphere as ÑA′ .

6.3.1 Generating ÑA′

Depending on the provided style shape A′ or user preferences, we consider three ways to
get a set of target normals on a sphere ÑA′ .

1. Closest normals. The simplest case is when the style shape A′ is a simple convex shape
with only few distinct face normals (e.g., icosahedron). We compute ÑA′ simply via snap-
ping the normals of the sphere NA to the nearest normal in the style shape NA′ .

2. Spherical parameterization. For a generic genus-0 shape (e.g., smooth or concave), we
compute its parameterization to a sphere using, for example, conformalized mean curva-
ture flow [Kazhdan et al., 2012]. Then ÑA′ can be computed from the spherical parameter-
ization.

3. Normal Capture. If one desires more control, one can manually specify ÑA′ , in the
spirit of how MatCap (material capture [Sloan et al., 2001]) is used in rendering. We can
then skip the first step in Fig. 6.7 and move on to the second step using the user-provided
ÑA′ .

6.3.2 Generating T

Generating target normals T on the input shape B
using analogy requires correspondences between A
and B. We compute the map using the Gauss map,
leveraging the fact that our A is always a unit sphere
(see the inset, where we use colors to visualize the
correspondences). Specifically, the unit normal vector of each element (e.g., vertex or face)
on the input shape B can be equivalently interpreted as a point on the unit sphere A. Thus,
we can easily map signals from A back to B. Once the correspondences are obtained via
the normals of input shape NB, we can trivially compute T by “pasting” ÑA′ on top of B.

6.3.3 Generating B′

After obtaining a set of target normals T = {tk} for each vertex k, our goal is to obtain
a deformed output shape B′ whose surface normals approximate T. Let V be a matrix
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Figure 6.9: The λ parameter in Eq. (6.3) controls the balance between preserving the orig-
inal shape and satisfying the desired style. We show different stylization results with in-
creasing λ. ©Spiral Light Bulb (top) by benglish under CC BY-SA.

of vertex locations with size |V|-by-3 and F be the face list with size |F|-by-3 of the input
shape B. Our output shape B′ is a deformed version of the input shape and we use V′ to
denote the |V|-by-3 matrix of the deformed vertex locations. We formulate the normal-
driven deformation as an energy optimization in the following form:

min
V′

∑
k∈V

ER(vk, v′k) + λak∥n̂k(V
′)− tk∥2

2, (6.1)

where ER denotes a regularization energy to preserve the details of the input mesh, and
the second part measures the squared distance from the output unit surface normal n̂k(V

′)

to the target output normal tk at vertex k. We use ak to denote the Voronoi area of the
vertex k, λ is a weighting parameter to control the balance between the two terms, and
vk (v′k) is the input (output) location of vertex k. In Fig. 6.9, we can observe that using
a small λ, the method preserves the input shape B. Using a bigger λ, the method favors
deforming the shape more into the style of A′. The choice of ER depends on the user’s
intent. One can apply different regularizations to obtain different results. For the purposes
of this exposition, we introduce our optimization based on arap regularization in Sec. 6.3.4.
We discuss how to extend to other regularizations in Sec. 6.4.1.
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6.3.4 Normal-Driven Optimization with arap

We use eij := vj − vi ∈ R3 to denote the edge vector between vertices i, j on the original
mesh, and e′ij := v′ j − v′i for the edge vectors on the deformed mesh. We can rewrite the
energy as

min
V′,R

∑
k∈V

∑
{i,j}∈Nk

wij∥Rkeij − e′ij∥2
2︸ ︷︷ ︸

Earap

+λak∥n̂k(V
′)− tk∥2

2, (6.2)

We useNk to denote the edge vectors of the spokes and rims
at vertex k (see the inset) [Chao et al., 2010], Rk ∈ SO(3) to
denote a 3-by-3 rotationmatrix defined k, and wij is the cotan-
gent weight of edge i, j [Pinkall and Polthier, 1993]. However,
this energy is difficult to optimize because the term n̂k(V

′) is
non-linear in V′.

We adapt the observation made in [Liu and Jacobson, 2019a] that the space of unit vec-
tors can be captured by rotations. Thus, we can perform a change of variables by replacing
n̂k(V

′) with the rotated unit normal of the input mesh Rkn̂k as

min
V′,R

∑
k∈V

∑
i,j∈Nk

wij∥Rkeij − e′ij∥2
2 + λak∥Rkn̂k − tk∥2

2, (6.3)

where n̂k is the kth unit vertex normal of the input mesh computed via area-weighted av-
erage of face normals, which is constant throughout the optimization. This Rkn̂k can be
perceived as an approximation of the area-weighted vertex normals of the output mesh
n̂k(V

′). In Fig. 6.10, we visualize the difference between the output normals n̂k(V
′) and the

rotated input normals Rkn̂k. We can notice that Rkn̂k is a decent approximation of the out-
put vertex normals computed via area-weighted average. We can observe that error tends
to concentrate at high-curvature regions because discrete vertex normals are less accurate
along on those regions and the arap regularization encourages smooth deformation. This
change of variables allows us to solve for the Rks in parallel andmake this energy quadratic
in V′. In addition, the fact that Rk is shared across the arap term and the normal term en-
ables us to jointly consider both the regularization and the normal terms when obtaining
the deformed vertex locations V′.

Weminimize this energy via the local/global strategy [Sorkine and Alexa, 2007], where
the local step involves solving a set of small Orthogonal Procrustes problems and the global
step amounts to a linear solve. For the sake of reproducibility, we reiterate the local-global
steps for our energy inApp. 6.7.1 and 6.7.2. Non-linearmethods, such asNewton’smethod,
could be applied to our scenario. However, Newton’s method is far slower than the local-
global optimization since a single iteration of Newton’s method could be more expensive
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Figure 6.10: Empirically, we show that rotated input normals Rkn̂k is a good approximation
of the area-weighted output vertex normals n̂k(V

′). We can observe that the error mostly
occurs on the high-curvature regions (right). ©Proto Paradigm under CC BY.

than 100 iterations of the local-global iterations (see [Liu et al., 2017d]). Thus, it is less
suitable for our interactive applications. Further accelerating our solver using other opti-
mization methods (e.g., [Kovalsky et al., 2016; Peng et al., 2018; Zhu et al., 2018]) should
be possible, but is left as future work.

6.4 Extensions & Analysis

In this section, we introduce extensions to different regularizations and showhow to handle
cases where target normals T(B′) are a function of output geometry.

6.4.1 Different Regularizations

In addition to Earap, the normal-driven optimization supports different regularization en-
ergies for different modeling intents. One could use arap when the goal is to produce a
smooth deformation that preserves surface details. If one wants to produce a non-smooth
deformation (e.g., sharp creases) while preserving local rigidity, one could instead use a
face-only arap energy Efarap discussed in [Zhao and Gortler, 2016; Levi and Gotsman, 2015]
which consists of only the membrane term. If one is interested in preserving the textures
and allowing local scaling, one could use an as-conformal-as-possible energy Eacap [Bouaziz
et al., 2012].

Face-only arap. The core idea is to remove the bending term
from arap and only measure the membrane term [Terzopoulos
et al., 1987], so that two adjacent triangles can bend freely. We
achieve this by applying the idea from [Zhao and Gortler, 2016;
Levi and Gotsman, 2015] which only measures the arap energy over the three edge vectors
of a face fk (see the inset), instead of the spokes and rims Nk. Precisely, we can write this
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Figure 6.11: Different regularizations favor different behaviors. Given a sheet (gray), we
pull up the center part (central blue dots) and shrink the boundary (blue dots on the
boundary), then we minimize each regularization energy to determine the unconstrained
vertices. We can observe that Earap favors rigid and smooth interpolation, Efarap favors
sharp bending between triangles, and Eacap favors to preserve angles while allowing local
scaling.

“face-only” arap regularization Efarap as

Efarap(V′,R) = ∑
k∈F

∑
{i,j}∈ fk

wij∥Rkeij − e′ij∥2
2, (6.4)

As-conformal-as-possible. If the goal is to create novel geometric details, it is crucial to
allow non-rigid deformations. However, an arbitrary deformation may lead to undesir-
able behaviors, such as badly shaped triangles. Thus constraining the angle preservation,
a.k.a. conformality, a suitable regularization. Specifically, we use the acap energy Eacap in
[Bouaziz et al., 2012] as our regularization

Eacap(V′,R, s) = ∑
k∈F

∑
i,j∈Nk

wij∥skRkeij − e′ij∥2
2, (6.5)

where sk is a scalar representing the scaling of local patch. One can compute the optimal sk

analytically via the method by Schönemann and Carroll [1970] (see App. 6.7.3).
Deploying these regularizations Efarap, Eacap requires only a few changes in the opti-

mization steps. Deploying Efarap only involves changing the incidence matrix. Deploying
Eacap only requires adding one more line of code in the local step to solve an isotropic or-
thogonal Procrustes problem [Schönemann and Carroll, 1970]. We detail such changes in
App. 6.7.3. In Fig. 6.11, we apply the same deformation to a sheet but with different regu-
larizations. We can see that different regularizations favor drastically different solutions.

Our framework allows one to easily plug-and-play different regularizations. Specifi-
cally, we use Earap for applications that favor smooth deformation (e.g., Fig. 6.13), Efarap
for creating sharp creases (Fig. 6.18, 6.20), and Eacap when one wants to manipulate geo-
metric details such as in Fig. 6.22.
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Figure 6.12: Setting the target normal T as a constant or treating it as a function of the
output mesh T(B′) leads to different local minima. In many cases (left pair), both options
lead to similar looking results. But setting T as a constant may result in an undesirable local
minimum in some cases (right), such as the ears of the bunny.

Algorithm 5: Normal-driven optimization
Input : A triangle mesh V,F and a weight λ
Output: Deformed vertex positions V′

1. compute ÑA′ // step 1, Sec. 6.3.1
2. compute T from n̂(V) // step 2, Sec. 6.3.2
3. n̂← n̂(V) // compute input surface normals
4. Q,K← precompute(V,F) // see Sec. 6.7.1
5. V′ ← V
6. while not converge do
7. R← local-step (V′, n̂, T, λ) // Sec. 6.7.1
8. V′ ← global-step (R,Q,K) // Sec. 6.7.2
9. compute T from n̂(V′) // (optional) for dynamic T

6.4.2 Dynamic Target Normals

Our method converges to a local minimum. Empirically, we observe that fixing the target
normal T throughout the optimization may work well perceptually in many cases (see the
left pair in Fig. 6.12). However, a fixed T may lead to an undesirable local minimum due
to a sub-optimal assignment of T (see the right pair in Fig. 6.12). Inspired by Projective
Dynamics [Bouaziz et al., 2014], a simple solution to avoid such local minima is to treat T
as a function of B′ (NB′ specifically), and update T at every iteration. We summarize the
pseudo code in Alg. 5. If T is a constant throughout the optimization, one can simply skip
the optional step at line 9.

In terms of convergence, in the case where T is
constant, the convergence behaves the same as the
original arap [Sorkine and Alexa, 2007], where the
energy decreases monotonically. In the case where
T is dependent to B′, we do not guarantee a mono-
tonic decrease in energy, but the optimization still
converges in our experiments. In the inset, we vi-
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Figure 6.13: Given an input shape (gray), our approach can transfer the style of a primitive
shape (green) to obtain a stylized output shape (blue). ©Johannes (bottom left), Joseph
Larson (bottom middle), and Angelo Tartanian (bottom left) under CC BY. The Nefertiti
mesh (top right) was scanned by Nora Al-Badri and Jan Nikolai Nelles from the Nefertiti
bust.

sualize the convergence plot for the examples in Fig. 6.12.
We implement our algorithm in C++ using

Eigen [Guennebaud et al., 2010] and evaluate our
method on a MacBook Pro with an Intel i5 2.3GHz
processor. Our method runs at 24 iterations per sec-
ond for a mesh with around 20k vertices. We report
a complete picture of our runtime in the inset. The
local step is the computation bottleneck for meshes
with less than 20k vertices, but further acceleration can be achieved via the method by
Zhang et al. [2021]. Typically, within the first 10 iterations, our method can achieve a visu-
ally similar result compared to the converged solution. This property enables us to build
an interactive tool for users to experiment with different style shapes A′ or artistic controls.
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Figure 6.14: Even for input shapes with boundaries (gray), our method is still applicable
to transfer the style of primitive shapes (green) to obtain the stylized output shape (blue).

Figure 6.15: We visualize the difference between the mesh normals and the normals of the
style shape. Our normal-driven optimization effectively reduce the difference to the target
normals. ©Morena Protti under CC BY.

Figure 6.16: When the input shape is smooth or non-convex, we use the mean curvature
flow (see Fig. 6.8) to obtain target normals to proceed the optimization. We deform the
input shapes (gray) to exhibit the style of an oloid (left, green), a Jessen’s icosahedron
(middle, green), and a tractricoid (right, green), respectively. ©Splotchy Ink (left), fong182
(middle), and Colin Freeman (right) under CC BY.
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Figure 6.17: One can manually specify the target normals on a sphere (Normal Captures)
for full control, and deform the input shape (gray) to the style (blue) prescribed by the
colored sphere. ©MakerBot (right) under CC BY.

6.5 Applications

The major benefit of our analogy-based stylization method is that one can plug-and-play
different style shapes to obtain different results. When one provides convex primitives
with few distinct face normals, we can simply use the method discussed in Sec. 6.3.1 to
turn an input shape into the style of the primitive (see Fig. 6.13, 6.14). In Fig. 6.15, we
also quantitatively show that our method can effectively reduce the difference between the
mesh normals and the normals of a primitive. If the provided style shape is smooth or
non-convex, where the simple closest normal may fail to capture the style, one could use
a spherical parameterization described in Sec. 6.3.1 to achieve the stylization. If desiring
more user controls, one could “paint” the desired surface normals on a unit sphere (see
Sec. 6.3.1), and then transfer the style of the painted normals directly to the input (see
Fig. 6.17)

6.5.1 PolyCube Deformation

If one is interested in PolyCube maps [Tarini et al., 2004], we can adapt normal driven edit-
ing to create PolyCube maps, following the observation in [Zhao et al., 2017]. Specifically,
we need to use a cube as a style shape and move the pre-computation step in Alg. 5 to the
optimization loop. Moving the pre-computation in the loop would no longer preserve the
original details, which is desirable for creating PolyCube shapes. This modification may
also lead to badly shaped triangle. When these faces appear, a quick solution is to move
the vertex towards the 1-ring average by a small amount to improve triangle quality. For
the sake of comparison, we use the same PolyCube segmentation as in [Fu et al., 2016]
and show that we can achieve comparable results in Fig. 6.2. We can further generalize the
PolyCube map to other polygonal boxes by specifying non-cube normals (see Fig. 6.18).
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Figure 6.18: By using different sets of normals, we can generalize the PolyCube method
(left) to create polygonal boxed maps.

Figure 6.19: Stein et al. [Stein et al., 2018a] control the patches on the developable surfaces
via remeshing the input. We, instead, can control the amount of creases (middle, right) by
tuning a single parameter (see App. 6.7.5).

6.5.2 Developable Surface Approximation

So far we have only considered an explicit shape or a set of painted normals as our style
shape. Here we further extend our method to support an energy that describes a certain
style. In particular, we consider the case when the target normal T is computed via an
optimization

T = arg min
T

f (B′), (6.6)

and, similar to the case where T is dependent on B′, we update T at every iteration in the
local/global solve.

We evaluate this extension via setting f to be the dis-
crete developability energy proposed in [Stein et al., 2018a],
with details provided in App. 6.7.5. Compared to the original
method, our approach contains a regularization term in addi-
tion to the developable energy, thus our optimization requires
no remeshing and results in the faster optimization (see Fig. 6.5). In Fig. 6.19, we further
show that our framework enables one to control the number of creases in the results. With
our framework one can interactively create a variety of piece-wise developable shapes (see
Fig. 6.20). In Fig. 6.21, we evaluate our results by visualizing the discrete Gaussian cur-
vature before and after running our developable flow. We can observe that the Gaussian
curvaturewhich concentrates along the creases and results in a piece-wise developable sur-
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Figure 6.20: Our normal driven editing can be used to create piece-wise developable sur-
faces (blue). Our method requires no remeshing and is fast enough for interactive model-
ing. ©cerberus333 (third) under CC BY-NC.

Figure 6.21: We use our normal driven editing to deform the input shape (gray) into a
piece-wise developable approximation (blue). In the bottom row, we visualize the Gaus-
sian curvature concentrates on the creases after the deformation, leading to a piece-wise
developable shape. ©Oliver Laric under CC BY-NC-SA.

face. In the inset, we quantitatively demonstrate that our method effectively increases the
developability of the mesh in Fig. 6.21.

6.6 Limitations & Future Work

Ourmethoddraws inspiration fromProjectiveDynamics [Bouaziz
et al., 2014] to handle the case where target normals T are a func-
tion of output shape B′ (e.g., Fig. 6.12, 6.20). Although fast and
suitable for our intended interactive applications, our method of-
ten struggles to converge to a highly accurate solution. Extending
our optimization to, for example, Newton’s method would be de-
sirable for applications that desire highly accurate solutions.

Our approach is restricted to a sphere as our reference shape
A, and uses the Gauss map to determine the correspondences between A and the input
B. As the Gauss map purely relies on surface normals to determine the map, the result-
ing correspondences to the unit sphere is ignorant to area distortion. This characteristic is
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Figure 6.22: If one is interested in creating high-frequency geometric textures, we recom-
mend target normals via texture synthesis and then optimizing the geometry via normal-
driven optimization. We demonstrate an example of “unbaking” normal maps (left) and
an example of geometric texture synthesis (right).

beneficial for handling input shapes B that are very different (e.g., different genus) from
a sphere because in these cases it is challenging to obtain a map with low area distortion.
However, the price we have to pay is that we cannot support structured and high-frequency
patterns (e.g., geometric texture synthesis). Thus, if one is interested in stylizing shapes
with detailed textures, we suggest to first synthesize target normals on the surface directly
[Wei et al., 2009] then perform the normal-driven optimization (Sec. 6.3.4). In Fig. 6.22
we demonstrate this alternative by unbaking an existing normal map for manufacturing
purposes (see the inset) and synthesizing normal textures from an image.

Our method currently supports manifold triangle meshes. Extending to non-manifold
meshes, polygon meshes, volumetric meshes, and point clouds could be beneficial for han-
dling real-world geometric data. Not every shape or normal capture sphere is valid to serve
as a style shape of our algorithm (e.g., a normal capture sphere with inside-out normals).
Discovering the validity of a style shape is important to understand the behavior of these
novel modelingmethods. Removing the assumption about the source shape being a sphere
could lead to a more general analogy-based shape editing. Based on the observation that
surface normals are a promising geometric quantity to capture the style of a shape. De-
veloping a better categorization of styles based on normals or exploring learning-based
techniques on normals (instead of vertices) could lead to novel stylization methods.

6.7 Appendix

6.7.1 Local Step with Earap

Given a fixed V′, we obtain the optimal rotation for each vertex k by solving the following
minimization problem

Rk = arg min
Rk∈SO(3)

∑
i,j∈Nk

wij∥Rkeij − e′ij∥2
2 + λak∥Rkn̂k − tk∥2

2
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The above optimization is an instance of the orthogonal Procrustes which finds the best ro-
tation matrix Rk to map a set of vectors (eij, n̂k) to another set of vectors (e′ij, tk). We can
re-write it into a more compact expression as:

R⋆
k = arg max

Rk∈SO(3)
Tr(RkXk) (6.7)

Xk =
[
Ek n̂k

] Wk

λak

 [E′⊤k
t⊤k

]
. (6.8)

whereWk is a |Nk|-by-|Nk| diagonalmatrix of the cotangentweights wij, Ek and E′k are 3-by-
|Nk|matrices concatenating the edge vectors of the face one-ring at the rest and deformed
states, respectively. One can then derive the optimal Rk from the SVD of Xk = Uk ∑k V⊤k

Rk = VkU⊤k , (6.9)

up to changing the sign of the column of Uk so that det(Rk) > 0.

6.7.2 Global Step with Earap

The global step updates the deformed vertex positions V′ from a fixed set of rotations R

obtained via the local step. This boils down to solving the following problem

V′⋆ = arg min
V′

∑
k∈V

∑
i,j∈Nk

wij∥Rkeij − e′ij∥2
2

We can expand this energy as

∑
k∈V

∑
i,j∈Nk

wij∥Rkeij − e′ij∥2
2

= ∑
k∈V

∑
i,j∈ fk

wije
′⊤
ij e
′
ij − 2wije

′⊤
ij Rkeij + constant

It is often convenient to express the summation in terms of matrices. We introduce a di-
rected incidencematrixAk with size |V|-by-|Nk| to represent the edge vectors inNk asV⊤Ak,
and we useMk to represent a |Nk|-by-|Nk| diagonal matrix of the weights wij. Then we can
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re-write the energy in terms of matrices as

∑
k∈V

Tr(MkA
⊤
k V
′V′⊤Ak)− 2 Tr(MkA

⊤
k V
′RkV

⊤Ak)

= ∑
k∈V

Tr(V′⊤AkMkA
⊤
k V
′)− 2 Tr(RkV

⊤AkMkA
⊤
k V
′)

= Tr
(
V′⊤
(

∑k AkMkA
⊤
k

)
V′
)
− 2 Tr

((
∑k RkV

⊤AkMkA
⊤
k

)
V′
)

= Tr(V′⊤QV′)− 2 Tr(RKV′), (6.10)

where R = {Rk} is the concatenation of all the rotations, Q is a |V|-by-|V| symmetric
matrix, and K is a |9V|-by-|3V|matrix stacking the constant terms which can be computed
during the precomputation. We can then find the optimal V′ by solving a linear system

QV′ = K⊤R⊤

As we know from [Sorkine and Alexa, 2007], Q is the cotangent Laplacian [Pinkall and
Polthier, 1993]. We can pre-factorizeQ to speed up runtime performance. With these pieces
in hand, we can minimize our energy Eq. (6.3) by iteratively performing the local and the
global steps (see Alg. 5).

6.7.3 Generalization to Efarap and Eacap

Changing the regularization from Earap to themembrane-only regularization Efarap (Eq. (6.4))
requires re-defining R on each face and changing the set of edge vectors to the three edge
vectors of a triangle. These changes would lead us to replace the Ek,E′k in the local step
Eq. (6.7) to the three edge vectors of a face, and ak to the face area. In the global step, one
only needs to update the incidencematrix Ak in Eq. (6.10) to a |V|-by-| fk|matrix containing
the three edge vectors information.

Deploying the as-conformal-as-possible regularization Eacap (Eq. (6.5)) changes the lo-
cal step to solve an instance of the isotropic orthogonal Procrustes problem, where an an-
alytical solution has been derived in [Schönemann and Carroll, 1970]. In short, one can
obtain the optimal rotation as in Eq. (6.9), and compute the optimal scaling sk analytically
as

sk =
Tr(WkE

′⊤
k RkEk) + λakn̂

⊤
k tk

Tr(WkE
⊤
k Ek) + λakn̂

⊤
k tk

.

When assembling the matrices for the global step, using Eacap would require replacing Rk

with skRk.
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6.7.4 Projective Dynamics for Dynamic Target Normals

We draw inspiration from projective dynamics [Bouaziz et al., 2014] to handle cases where
the target normal T is a function of output geometry B′. Let us first define

T = arg min EN(V
′)

as a minimizer of an energy EN defined on the output shape. In our cases, EN could be
the distance to the closet normals or the developable energy [Stein et al., 2018a]. With this
definition, we re-write Eq. (6.3) as

min
V′,R

∑
k∈V

∑
i,j∈Nk

wij∥Rkeij − e′ij∥2
2 + λak∥Rkn̂k − tk∥2

2,

subject to T = arg min EN(V
′)

This reformulation allows us to directly deploy the projective dynamics solver by first pro-
jecting T = {tk} to the “constraint” EN , fixing tk, and solving the original problem as
Eq. (6.3) via the local/global solver to getV′ at the next iteration. We then iterate this proce-
dure (see Alg. 5) until convergence. This expression enables us to plug-and-play different
EN for different modeling objectives.

6.7.5 Normal Driven Developable Surfaces

Our normal-driven editing can be used to create developable surfaces by specifying a set
of target normals that are developable. Stein et al. [Stein et al., 2018a] propose a charac-
terization of discrete developability based on face normals of a vertex one-ring. In short, if
all the one-ring face normals correspond to a common plane or two planes, then this local
one-ring is piecewise developable.

With this characterization, we can easily get a set of “developable” face normals by
(1) visiting all the one-ring faces of a vertex, (2) performing a small principle component
analysis on the face normals for each one-ring, and (3) projecting the normals to one or two
common planes by zeroing out the components correspond to the smallest eigenvalues. By
using a different threshold to decide whether to zero out the smallest or the smallest two
components, we can control the amount of creases in the developable approximation (see
Fig. 6.19). As each facewill receive three (possibly) different developable normals from the
previous procedure, we simply average them to get the target face normals. We perform
this developable normal computation at each iteration in parallel, which corresponds to the
Line 9 of Alg. 5.



Chapter 7

Spectral Coarsening of Geometric
Operators

Figure 7.1: There aremanyways to coarsen a 52,301×52,301 sparse anisotropic Laplacema-
trix down to a sparse 500×500matrix: simplify themesh [Garland andHeckbert, 1997] and
rediscretize; apply algebraic multigrid coarsening [Manteuffel et al., 2017]; or approximate
using radial-basis functions [Nasikun et al., 2018]. We introduce a way to measure how
well the coarse operator maintains the original operator’s eigenvectors (bottom row). The
visualization shows deviation from a diagonal matrix indicating poor eigenvector preser-
vation. In response, we introduce an optimization to coarsen geometric operators while
preserving eigenvectors and maintaining sparsity and positive semi-definiteness.

We introduce a novel approach to measure the behavior of a geometric operator before and
after coarsening. By comparing eigenvectors of the input operator and its coarsened coun-
terpart, we can quantitatively and visually analyze how well the spectral properties of the
operator are maintained. Using this measure, we show that standard mesh simplification
and algebraic coarsening techniques fail tomaintain spectral properties. In response, we in-
troduce a novel approach for spectral coarsening. We show that it is possible to significantly
reduce the sampling density of an operator derived from a 3D shape without affecting
the low-frequency eigenvectors. By marrying techniques developed within the algebraic

133
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multigrid and the functional maps literatures, we successfully coarsen a variety of isotropic
and anisotropic operators while maintaining sparsity and positive semi-definiteness. We
demonstrate the utility of this approach for applications including operator-sensitive sam-
pling, shape matching, and graph pooling for convolutional neural networks.

7.1 Introduction

Geometry processing relies heavily on building matrices to represent linear operators de-
fined on geometric domains. While typically sparse, these matrices are often too large to
work with efficiently when defined over high resolution representations. A common solu-
tion is to simplify or coarsen the domain. However, matrices built from coarse represen-
tations often do not behave the same way as their fine counterparts leading to inaccurate
results and artifacts when resolution is restored. Quantifying and categorizing how this
behavior is different is not straightforward and most often coarsening is achieved through
operator-oblivious remeshing. The common appearance-based or geometric metrics em-
ployed by remeshers, such as the classical quadratic error metric [Garland and Heckbert,
1997] can have very little correlation with maintenance of operator behavior.

We propose a novel way to compare the spectral properties of
a discrete operator before and after coarsening, and to guide the
coarsening to preserve them. Our method is motivated by the re-
cent success of spectral methods in shape analysis and processing
tasks, such as shape comparison and non-rigid shape matching,
symmetry detection, and vector field design to name a few. These
methods exploit eigenfunctions of various operators, including
the Laplace-Beltrami operator, whose eigenfunctions can be seen as a generalization of the
Fourier basis to curved surfaces. Thus, spectral methods expand the powerful tools from
Fourier analysis to more general domains such as shapes, represented as triangle meshes
in 3D.We propose to measure howwell the eigenvectors (and by extension eigenvalues) of
a matrix L ∈ Rn×n on the high-resolution domain are maintained by its coarsened counter-
part L̃ ∈ Rm×m (m < n) by computing a dense matrix Ck×k, defined as the inner product
of the first k eigenvectors Φ ∈ Rn×k and Φ̃ ∈ Rm×k of L and L̃ respectively:

C = Φ̃⊤M̃PΦ, (7.1)

where M̃ ∈ Rm×m defines a mass-matrix on the coarse domain and P ∈ Rm×n is a restric-
tion operator from fine to coarse. The closer C resembles the identity matrix the more the
eigenvectors of the two operators before and after coarsening are similar.

We show through a variety of examples that existing geometric and algebraic coarsen-
ing methods fail to varying degrees to preserve the eigenvectors and the eigenvalues of
common operators used in geometry processing (see Fig. 7.1 and Fig. 7.2).
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Figure 7.2: Our coarsening directly preserves eigenvectors so eigenvalues are also implicitly
preserved: eigenvalue plot of Fig. 7.1.

In response, we propose a novel coarsening method that achieves much better preser-
vation under this newmetric. We present an optimization strategy to coarsen an input pos-
itive semi-definite matrix in a way that better maintains its eigenvectors (see Fig. 7.1, right)
while preserving matrix sparsity and semi-definiteness. Our optimization is designed for
operators occurring in geometry processing and computer graphics, but does not rely on
access to a geometric mesh: our input is the matrix L, and an area measure M on the fine
domain, allowing us to deal with non-uniform sampling. The output coarsened operator L̃
and an area measure M̃ on the coarse domain are defined for a subset of the input elements
chosen carefully to respect anisotropy and irregular mass distribution defined by the in-
put operator. The coarsened operator is optimized via a novel formulation of coarsening
as a sparse semi-definite programming optimization based on the operator commutativity
diagram.

We demonstrate the effectiveness of our method at categorizing the failure of existing
methods tomaintain eigenvectors on a number of different examples of geometric domains
including triangle meshes, volumetric tetrahedral meshes and point clouds. In direct com-
parisons, we show examples of successful spectral coarsening for isotropic and anisotropic
operators. Finally, we provide evidence that spectral coarsening can improve downstream
applications such as shape matching, graph pooling for graph convolutional neural net-
works, and data-driven mesh sampling.

7.2 Related Work

MeshSimplification andHierarchical Representation The use ofmulti-resolution shape
representations based on mesh simplification has been extensively studied in computer
graphics, with most prominent early examples including mesh decimation and optimiza-
tion approaches [Schroeder et al., 1992; Hoppe et al., 1993] and their multiresolution vari-
ants e.g., progressive meshes [Hoppe, 1996; Popović and Hoppe, 1997] (see [Cignoni et al.,
1998a] for an overview and comparison of a wide range of mesh simplification methods).
Among these classical techniques, perhaps the best-known andmostwidely used approach
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Figure 7.3: As methods of Li et al. [2015]; Kharevych et al. [2009]; Kyng and Sachdeva
[2016] are not designed for preserving spectral properties, they only preserve very low
frequency eigenvectors (top-left corner of matrix images), but fails for subsequent modes.

is based on the quadratic error metrics introduced in [Garland and Heckbert, 1997] and ex-
tended significantly in follow-up works to incorporate texture and appearance attributes
(e.g., [Garland and Heckbert, 1998; Hoppe, 1999] to name a few). Other, more recent ap-
proaches have also included variational shape approximation [Cohen-Steiner et al., 2004]
and wavelet-based methods especially prominent in shape compression [Schroder, 1996;
Peyré andMallat, 2005], as well as more flexible multi-resolution approaches such as those
based on hybrid meshes [Guskov et al., 2002] among myriad others. Although mesh sim-
plification is a very well-studied problem, the vast majority of approximation techniques is
geared towards preservation of shape appearance most often formulated via the preserva-
tion of local geometric features. Li et al. [2015] conduct a frequency-adaptivemesh simplifica-
tion to better preserve the acoustic transfer of a shape by appending a modal displacement
as an extra channel during progressive meshes. In Fig. 7.3, we show that this method fails
to preserve all low frequency eigenvectors (since it is designed for a single frequency). Our
measure helps to reveal the accuracy of preserving spectral quantities, and to demonstrate
that existing techniques often fail to achieve this objective.

Numerical Coarsening in Simulation Coarsening the geometry of an elasticity simula-
tion mesh without adjusting the material parameters (e.g., Young’s modulus) leads to nu-
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merical stiffening. Kharevych et al. [2009] recognize this and propose a method to indepen-
dently adjust the per-tetrahedron elasticity tensor of a coarse mesh to agree with the six
smallest deformation modes of a fine-mesh inhomogeneous material object (see Fig. 7.3
for comparison). Chen et al. [2015] extend this idea via a data-driven lookup table. Chen
et al. [2018] consider numerical coarsening for regular-grid domains, where matrix-valued
basis functions on the coarse domain are optimized to again agree with the six smallest
deformation modes of a fine mesh through a global quadratic optimization. To better cap-
ture vibrations, Chen et al. [2017a] coarsen regular-grids of homogeneous materials until
their low frequency vibration modes exceeding a Hausdorff distance threshold. The ratio
of the first eigenvalue before and after coarsening is then used to rescale the coarse ma-
terials Young’s modulus. In contrast to these methods, our proposed optimization is not
restricted to regular grids or limited by adjusting physical parameters directly.

Algebraic Multigrid Traditional multigrid methods coarsen the mesh of the geometric
domain recursively to create an efficient iterative solver for large linear systems [Briggs
et al., 2000]. For isotropic operators, each geometric level smooths away error at the corre-
sponding frequency level [Burt and Adelson, 1983]. Algebraic multigrid (AMG) does not
see or store geometric levels, but instead defines a hierarchy of system matrices that at-
tempt to smooth away error according to the input matrix’s spectrum [Xu and Zikatanov,
2017]. AMG has been successfully applied for anisotropic problems such as cloth simula-
tion [Tamstorf et al., 2015]. Without access to underlying geometry, AMGmethods treat the
input sparse matrix as a graph with edges corresponding to non-zeros and build a coarser
graph for each level by removing nodes and adding edges according to an algebraic distance
determined by the input matrix. AMG like all multigrid hierarchies are typically measured
according to their solver convergence rates [Xu and Zikatanov, 2017]. While eigenvector
preservation is beneficial to AMG, an efficient solver must also avoid adding too many
new edges during coarsening (i.e., [Livne and Brandt, 2012; Kahl and Rottmann, 2018]).
Meanwhile, to remain competitive with other blackbox solvers, AMG methods also strive
to achieve very fast hierarchy construction [Xu and Zikatanov, 2017]. Our analysis shows
how state-of-the-art AMG coarseningmethods such as [Manteuffel et al., 2017]which is de-
signed for fast convergence fails to preserve eigenvectors and eigenvalues (see Fig. 7.1 and
Fig. 7.2). Our optimization formulation in Sec. 7.3.1 and Sec. 7.3.2 is inspired by the “root
node” selection and Galerkin projection approaches found in the AMG literature [Stuben,
2000; Bell, 2008; Manteuffel et al., 2017].

SpectrumPreservation In contrast to geometry-basedmesh simplification very fewmeth-
ods have been proposed targeting preservation of spectral properties. Öztireli and col-
leagues [Öztireli et al., 2010] introduced a technique for spectral sampling on surfaces. In
a similar spirit to our approach, their method aims to compute samples on a surface that
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Figure 7.4: When eigenvectors are equivalent (up to sign) before and after coarsening the
operator, the matrix C (right) resembles the identity matrix.

can approximate the Laplacian spectrum of the original shape. This method targets only
isotropic sampling and is not well-suited to more diverse operators such as the anisotropic
Laplace-Beltrami operator handled by our approach. More fundamentally, our goal is to
construct a coarse representation that preserves an entire operator, and allows, for example,
to compute eigenfunctions and eigenvalues in the coarse domain, which is not addressed by
a purely sampling-based strategy. More recently, an efficient approach for approximating
the Laplace-Beltrami eigenfunctions has been introduced in [Nasikun et al., 2018], based
on a combination of fast Poisson sampling and an adapted coarsening strategy. While very
efficient, as we show below, this method unfortunately fails to preserve even medium fre-
quencies, especially in the presence of high-curvature shape features or more diverse, in-
cluding anisotropic Laplacian, operators.

We note briefly that spectrum preservation and optimization has also been considered
in the context of sound synthesis, including [Bharaj et al., 2015], and more algebraically
for efficient solutions of Laplacian linear systems [Kyng and Sachdeva, 2016]. In Fig. 7.3,
we show that the method of Kyng and Sachdeva [2016] only preserves very low frequency
eigenvectors. Our approach is geared towards operators defined on non-uniform triangle
meshes and does not have limitations of the approach of Kyng and Sachdeva [2016] which
only works on Laplacians where all weights are positive.

7.3 Method

The input to our method is a n-by-n sparse, positive semi-definite matrix L ∈ Rn×n. We
can perceive L as the Hessian of an energy derived from a geometric domain with n ver-
tices and the sparsity pattern is determined by the connectivity of a mesh or local neighbor
relationship. For example, L may be the discrete cotangent Laplacian, the Hessian of the
discrete Dirichlet energy. However, we do not require direct access to the geometric domain
or its spatial embedding. We also take as input a non-negative diagonal weighting or mass
matrix M ∈ Rn×n (i.e., defining an inner-product on vectors from the input domain). The
main parameter of our method is the positive number m < n which determines the size of
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our coarsened output.
Our method outputs a sparse, positive semi-definite matrix L̃ ∈ Rm×m that attempts

to maintain the low-frequency eigenvalues and eigenvectors of the input matrix L (see
Fig. 7.4).

Algorithm 6: Spectral Coarsening given L,M and m

1. P,K← combinatorial coarsening(L,M, m);
2. L̃, M̃← operator optimization(L,M,P,K);

We propose coarsening in two steps (see Alg. 2). First we treat the input matrix L as
encoding a graph and select a subset of m “root” nodes, assigning all others to clusters
based on a novel graph-distance. This clustering step defines a restriction operator (P in
Eq. (7.1)) and a cluster-assignment operator K that determines the sparsity pattern of our
output matrix L̃. In the second stage, we optimize the non-zero values of L̃.

7.3.1 Combinatorial coarsening

Figure 7.5: Blue dots and
colored regions indicate
“root nodes” and clusters
selected by P and K respec-
tively.

Given an input operator L ∈ Rn×n and corresponding mass-
matrix M ∈ Rn×n, the goal of this stage is to construct two
sparse binary matrices K,P ∈ {0, 1}m×n (see Fig. 7.3.1). Act-
ing as a cluster-assignment operator, K has exactly one 1 per
column, so that Kij = 1 indicates that element j on the in-
put domain is assigned to element i on the coarsened domain.
Complementarily, acting as a restriction or subset-selection
operator, P has exactly one 1 per row and no more than one 1
per column, so that Pij = 1 indicates that element j on the in-
put domain is selected as element i in the coarsened domain
to represent its corresponding cluster. Following the terminol-
ogy from the algebraic multigrid literature, we refer to this
selected element as the “root node” of the cluster [Manteuffel
et al., 2017]. In our figures, we visualize P by drawing large dots on the selected nodes and
K by different color segments.

Consider the graph with n nodes implied by interpreting non-zeros of L as undirected
edges. Our node-clustering and root-node selection should respect how quickly informa-
tion at one node diffuses to neighboring nodes according to L and howmuchmass or weight
is associatedwith each node according toM. Although a variety of algebraic distances have
been proposed [Ruge and Stüben, 1987; Chen and Safro, 2011; Olson et al., 2010; Livne and
Brandt, 2012], they are not directly applicable to our geometric tasks because they are not
aware of different sizesM of finite elements (see Fig. 7.6).

According to this diffusion perspective, the edge-distance of the edge between nodes i
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Figure 7.6: We visualize the graph shortest path distance from the source point (gray) to
all the other points, where the strength of connections between adjacent points is defined
using different operator-dependent strength measures. In an isotropic problem, our result-
ing “distance” is more robust to different element sizes and grows more uniformly in all
directions (right).

Figure 7.7: We visualize the graph shortest path distance from the source point (gray)
to all the other points. Our operator-dependent distance can handle both isotropic and
anisotropic problems, whereas standard geometry-based measure (e.g. edge length) is
limited to isotropic problems.

and j should be inversely correlated with −Lij and positively correlated with (Mii +Mjj).
Given the units of L and M in terms of powers of length p and q respectively (e.g., the
discrete cotangent Laplacian for a triangle mesh has units p=0, the barycentric mass matrix
has units q=2), then we adjust these correlations so that our edge-distance has units of
length. Putting these relations together and avoiding negative lengths due to positive off-
diagonal entries in L, we define the edge-distance between connected nodes as:

Dij = max

(
(Mii +Mjj)

(p+1)/q

−Lij
, 0

)
.

Compared to Euclidean or geodesic distance, shortest-path distances using this edge-
distance respects the anisotropy of L (see Fig. 7.8, Fig. 7.7). Compared to state-of-the-art
algebraic distances, our distance accounts for irregular mass distribution, e.g., due to irreg-
ular meshing (see Fig. 7.6).

Given this (symmetric) matrix of edge-distances, we compute the k-mediods clustering
[Struyf et al., 1997] of the graph nodes according to shortest path distances (computed
efficiently using the modified Bellman-Ford method and Lloyd aggregation method of Bell
[2008]). We initialize this iterative optimization with a random set of k root nodes. Unlike
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Figure 7.9: Coarsening with our operator-aware distance (left) results in better eigenfunc-
tion preservation compared to the farthest point sampling (middle) and the random sam-
pling (right) on an anisotropic operator.

Figure 7.8: Our coarsening
is aware of the anisotropy
of the underlying operator,
resulting in a different set
of selected root nodes.

k-means where themean of each cluster is not restricted to the
set of input points in space, k-mediods chooses the cluster root
as the mediod-node of the cluster (i.e., the node with mini-
mal total distance to all other nodes in the cluster). All other
nodes are then re-assigned to their closest root. This process
is iterated until convergence. Cluster assignments and cluster
roots are stored asK and P accordingly. Comparing to the far-
thest point sampling and the random sampling, our approach
results in a better eigenfunction preservation for anisotropic
operators (Fig. 7.9).

We construct a sparsity pattern for L̃ so that L̃ij may be
non-zero if the cluster j is in the three-ring neighborhood of cluster i as determined by
cluster-cluster adjacency. If we let SL ∈ {0, 1}n×n be a binary matrix containing a 1 if and
only if the corresponding element of L is non-zero, then we can compute the “cluster ad-
jacency” matrix Ã = KSLK

⊤ ∈ {0, 1}m×m so that Ãij = 1 if and only if the clusters i and j
contain some elements u and v such that Luv ̸= 0. Using this adjacency matrix, we create a
sparse restriction matrix with wider connectivity SG = K⊤Ã ∈ {0, 1}n×m. Finally, our pre-
determined sparsity pattern for L̃ is defined to be that of SL̃ = SG

⊤SLSG = Ã3 ∈ {0, 1}m×m.
We found that using the cluster three-ring sparsity is a reasonable trade-off between in-
fill density and performance of the optimized operator. Assuming the cluster graph is
2-manifold with average valence 6, the three-ring sparsity implies that L̃ will have 37 non-
zeros per row/column on average, independent to m and n. In practice, our cluster graph
is nearly 2-manifold. The L̃ in Fig. 7.3.1, for instance, has approximately 39 non-zeros per
row/column.

7.3.2 Operator optimization

Given a clustering, root node selection and the desired sparsity pattern, our second step is
to compute a coarsened matrix L̃ that maintains the eigenvectors of the input matrix L as
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much as possible. Since L and L̃ are of different sizes, their corresponding eigenvectors are
also of different lengths. To compare them in a meaningful way we will use the functional
map matrix C defined in Eq. (7.1) implied by the restriction operator P (note that: prolon-
gation from coarse to fine is generally ill-defined). This also requires a mass-matrix on the
coarsened domain, which we compute by lumping cluster masses: M̃ = KMK⊤. The first k
eigenvectors for the input operator and yet-unknown coarsened operatormay be computed
as solutions to the generalized eigenvalue problems LΦ = ΛMΦ and L̃Φ̃ = Λ̃M̃Φ̃, where
Λ, Λ̃ are eigenvalue matrices.

Figure 7.10: The opti-
mized C should be block
diagonal when the opera-
tor has algebraic multiplic-
ity.

Knowing that the proximity of the functional map matrix
C to an identity matrix encodes eigenvector preservation, it
might be tempting to try to enforce ∥C − I∥F directly. This
however is problematic because it does not handle sign flips
or multiplicity (see Fig. 7.10). More importantly, recall that
in our setting C is not a free variable, but rather a non-linear
function (via eigen decomposition) of the unknown sparse
matrix L̃.

Instead, we propose to minimize the failure to realize the
commutativity diagram of a functional map. Ideally, for any
function on the input domain f ∈ Rn applying the input operator M−1L and then the re-
striction matrix P is equivalent to applying P then M̃−1L̃, resulting in the same function
f̃ ∈ Rm on the coarsened domain:

M−1L

f −−−−−→ •

P
y y P

• −−−−−→ f̃
M̃−1L̃

(7.2)

This leads to a straightforward energy that minimizes the difference between the two paths
in the commutativity diagram for all possible functions f:

E(L̃) = ∥PM−1LI− M̃−1L̃PI∥2
M̃

, (7.3)

where I ∈ Rn×n is the identitymatrix (included didactically for the discussion that follows)
and

∥X∥2
M̃
= tr(X⊤M̃X)

computes the Frobenius inner-product defined by M̃.
By using I as the spanning matrix, we treat all functions equally in an L2 sense. In-

spired by the functional maps literature, we can instead compute this energy over only
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lower frequency functions spanned by the first k eigenvectors Φ ∈ Rn×k of the operator L.
Since high frequency functions naturally cannot live
on a coarsened domain, this parameter k allows the
optimization to focus on functions that matter. Con-
sequently, preservation of low frequency eigenvec-
tors dramatically improves (see inset).

Substituting Φ for I in Eq. (7.3), we now consider
minimizing this reduced energy Ek over all possible sparse positive semi-definite (PSD)
matrices L̃:

minimize
L̃

.
=SL̃

1
2
∥PM−1LΦ− M̃−1L̃PΦ∥2

M̃︸ ︷︷ ︸
Ek(L̃)

(7.4)

subject to L̃ is positive semi-definite (7.5)
and L̃PΦ0 = 0 (7.6)

where we use X .
= Y to denote that X has the same sparsity pattern as Y. The final linear-

equality constraint in Eq. (7.6) ensures that the eigen-vectors Φ0 corresponding to zero
eigenvalues are exactly preserved (PLΦ0 = PMΦ00 = 0). Note that while it might seem
that Eq. (7.4) is only meant to preserve the eigenvectors, a straightforward calculation (See
App. 7.6.3) shows that it promotes the preservation of eigenvalues as well.

This optimization problem is convex [Boyd and Vandenberghe, 2004], but the sparsity
constraint makes it challenging to solve efficiently. Most efficient semi-definite program-
ming (SDP) solvers (e.g., Mosek, cvxopt, Gurobi) only implement dense PSD constraints.
The academic community has studied SDPs over sparse matrices, yet solutions are not im-
mediately applicable (e.g., those based on chordal sparsity [Vandenberghe and Andersen,
2015; Zheng et al., 2017]) or practically efficient (e.g., [Andersen et al., 2010]). Even pro-
jecting a sparse matrix X on to the set of PSD matrices with the same sparsity pattern is a
difficult sub-problem (the so-called sparse matrix nearness problem, e.g., [Sun and Van-
denberghe, 2015]), so that proximal methods such as ADMM lose their attractiveness.

If we drop the PSD constraint, the result is a simple quadratic optimization with lin-
ear constraints and can be solved directly. While this produces solutions with very low
objective values Ek, the eigenvector preservation is sporadic and negative eigenvalues ap-
pear (see Fig. 7.11). Conversely, attempting to replace the PSD constraint with the stricter
but more amenable diagonal dominance linear inequality constraint (i.e., L̃ii ≥ ∑j ̸=i L̃ji)
produces a worse objective value and poor eigenvector preservation.

Instead, we propose introducing an auxiliary sparse matrix variable G ∈ Rn×m and
restricting the coarsened operator to be created by using G as an interpolation operator:
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Figure 7.11: Dropping the PSD constraint leads to a simple quadratic optimization problem
which can be solved directly, but it produces a non-PSD L̃ that contains negative eigenval-
ues.

L̃ := G⊤LG. Substituting this into Eq. (7.4), we optimize

minimize
G

.
=SG

1
2
∥PM−1LΦ− M̃−1G⊤LGPΦ∥2

M̃︸ ︷︷ ︸
Ek(G)

, (7.7)

subject to GPΦ0 = Φ0

where the sparsity of L̃ is maintained by requiring sparsity of G. The null-space constraint
remains linear because GPΦ0 = Φ0 ⇒ G⊤LGPΦ0 = 0 implies that L̃ contains the null-
space of L. The converse will not necessarily be true, but is unlikely to happen because
this would represent inefficient minimization of the objective. In practice, we never found
that spurious null-spaces occurred. While we get to remove the PSD constraint (L ⪰ 0
implies G⊤LG ⪰ 0), the price we have paid is that the energy is no longer quadratic in the
unknowns, but quartic.

Therefore in lieu of convex programming, we optimize this energy over the non-zeros
of G using a gradient-based algorithm with a fixed step size γ. Specifically, we use nadam
[Dozat, 2016] optimizer which is a variant of gradient descent that combines momentum
and Nesterov’s acceleration. For completeness, we provide the sparse matrix-valued gradi-
ent ∂Ek/∂G in App. 7.6.1. The sparse linear equality constraints are handled with the or-
thogonal projection in App. 7.6.2). We summarize our optimization in pseudocode Alg. 6.
We stop the optimization if it stalls (i.e., does not decrease the objective after 10 iterations)
and use a fixed step size γ = 0.02. This rather straightforward application of a gradient-
based optimization to maintaining the commutativity diagram in Eq. (7.2) performs quite
well for a variety of domains and operators.

7.4 Evaluation & Validation

Our input is a matrix L which can be derived from a variety of geometric data types. In
Fig. 7.12 we show that our method can preserve the property of the Laplace operators de-
fined on triangle meshes [Pinkall and Polthier, 1993; MacNeal, 1949; Desbrun et al., 1999],
point clouds [Belkin et al., 2009], graphs, and tetrahedral meshes [Sharf et al., 2007]. We
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Algorithm 7: Operator optimization using nadam
1. G← K⊤; // initialization
2. while not stalled do
3. ∂Ek/∂G← sparse gradient (G);
4. ∆G← nadam(∂Ek/∂G);
5. G← G− γ ∆G;
6. G← orthogonal projection (G, Φ0); // see App. 7.6.2

Figure 7.12: Our algebraic formulation is directly applicable to different data types, such as
triangle meshes, point clouds, graphs, and tetrahedral meshes.

also evaluate our method on a variety of operators, including the offset surface Laplacian
[Corman et al., 2017], the Hessian of the Ricci energy [Jin et al., 2008], anisotropic Lapla-
cian [Andreux et al., 2014], and the intrinsic Delaunay Laplacian [Fisher et al., 2006] (see
Fig. 7.13).

Figure 7.14: We optimize
for the first 100 eigenfunc-
tions and visualize the
200×200 functional map,
demonstrating a graceful
generalization beyond the
optimized eigenfunctions.

We further evaluate how the coarsening generalizes be-
yond the optimized eigenfunctions. In Fig. 7.4, we coarsen
the shape using the first 100 eigenfunctions and visualize the
200×200 functional map image. This shows a strong diago-
nal for the upper 100×100 block and a slowly blurring off-
diagonal for the bottom block, demonstrating a graceful gen-
eralization beyond the optimized eigenfunctions.

Our algebraic approach takes the operator as the input,
instead of the mesh, thus the output quality is robust to noise
or sharp features (see Fig. 7.15). In addition, we can apply
our method recursively to the output operator to construct a
multilevel hierarchy (see Fig. 7.16).
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Figure 7.13: Our method preserves the eigenfunctions of the offset surface Laplacian, the
Hessian of the Ricci energy, the anisotropic Laplace, and the the intrinsic Delaunay Lapla-
cian.

Figure 7.15: Our coarsening takes the operator as the input, thus the output quality is robust
to noise and sharp geometric features.
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Figure 7.16: We apply our approach recursively to construct a multilevel hierarchy: from
21,000 rows through 1,000 rows to finally 300 rows.

7.4.1 Comparisons

Existing coarsening methods are usually not designed for preserving the spectral property
of operators. Geometry-basedmesh decimation (i.e.,QSlim [Garland andHeckbert, 1997])
is formulated to preserve the appearance of the geometry, and results in poor performance
in preserving the operator (see Fig. 7.1). As an iterative solver, algebraic multigrid, i.e.,
root-node method [Manteuffel et al., 2017], optimizes the convergence rate and does not
preserve the spectral properties either. Recently, Nasikun et al. [2018] propose approx-
imating the isotropic Laplacian based on constructing locally supported basis functions.
However, this approach falls short in preserving the spectral properties of shapes with
high-curvature thin structures and anisotropic operators (see Fig. 7.17, Fig. 7.18). In con-
trast, our proposed method can effectively preserve the eigenfunctions for both isotropic
and anisotropic operators.

In addition, a simple derivation (App. 7.6.3) can show that minimizing the proposed
energy implies eigenvalue preservation (see Fig. 7.2 and Fig. 7.19).

In Fig. 7.20, we show that our method handles anisotropy in the input operator better
than existing methods. This example also demonstrates how our method gracefully de-
grades as anisotropy increases. Extreme anisotropy (far right column) eventually causes
our method to struggle to maintain eigenvectors.

7.4.2 Implementation

In general, let k be the number of eigenvectors/eigenvalues in use, we recommend to use
the number of root nodes m > k× 2. In Fig. 7.21 we show that if m is too small, the degrees
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Figure 7.17: We simplify the Laplacian from n = 30, 000 to m = 500. Our coarsening
preserve the first 200 eigenfunctions better than the QSlim [Garland and Heckbert, 1997],
the root-node algebraic multigrid [Manteuffel et al., 2017], and the fast approximation
[Nasikun et al., 2018].

Figure 7.18: We simplify the anisotropic Laplacian [Andreux et al., 2014] (with parameter
70) from n = 25, 000 to m = 600. Our approach can preserve eigenfunctions of anisotropic
operators better than the existing approaches.
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Figure 7.19: We compare the performance of preserving eigenvalues with different sim-
plification methods. As optimizing our proposed energy implies eigenvalue preservation,
we show that the eigenvalues of the simplified operator is well-aligned with the original
eigenvalues.

Figure 7.20: We increase the anisotropy parameter of [Andreux et al., 2014] (60, 120,
180) while simplifying an operator from 21,000 rows down to 500. Our approach han-
dles anisotropy better than existing approaches but still struggles to preserve extreme
anisotropic operators.
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Figure 7.21: Let k be the number of eigenvectors we want to preserve, experimentally we
observed that m > k× 2 leads to desired results.

of freedom are insufficient to capture the eigenfunctions with higher frequencies.
Our serial C++ implementation is built on top of libigl [Jacobson et al., 2018] and spec-

tra [Qiu, 2018]. We test our implementation on a Linux workstation with an Intel Xeon
3.5GHz CPU, 64GB of RAM, and an NVIDIA GeForce GTX 1080 GPU. We evaluate our
runtime using the mesh from Fig. 7.4 in three different cases: (1) varying the size of input
operators n, (2) varying the size of output operators m, and (3) varying the number of
eigenvectors in use k. All experiments converge in 100-300 iterations. We report our run-
time in Fig. 8.18. We obtain 3D shapes mainly from Thingi10K [Zhou and Jacobson, 2016]
and clean them with the method of [Hu et al., 2018].

7.4.3 Difference-Driven Coarsening

We also validate our combinatorial coarsening by applying it to the shape difference op-
erator [Rustamov et al., 2013] which provides an informative representation of how two
shapes differ from each other. As a positive definite operator it fits naturally into our frame-
work. Moreover, since the difference is captured via functional maps, it does not require
two shapes to have the same triangulation. We therefore take a pair of shapeswith a known
functional map between them, compute the shape difference operator and apply our com-
binatorial coarsening, while trying to best preserve this computed operator. Intuitively, we
expect the samples to be informed by the shape difference and thus capture the areas of
distortion between the shapes (see App. 7.6.4 for more detail). As shown in Fig. 7.23, our
coarsening indeed leads to samples in areas where the intrinsic distortion happens, thus
validating the ability of our approach to capture and reveal the characteristics of the input
operator.

We can further take the element-wise maximum from a collection of shape difference
operators to obtain a data-driven coarsening informed by many shape differences (see
Fig. 7.24).
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Figure 7.22: Our runtime shows that our approach is more suitable for aggressive coars-
ening (middle). For large input meshes and many eigenvectors in use (top, bottom), com-
puting eigendecomposition is the bottleneck.

Figure 7.23: Given a reference shapeR and its deformed version D, we combine the shape
difference operator with our coarsening to compute a set of samples that capture the areas
of highest distortion between the shapes.
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Figure 7.24: By combining the shape difference operators from the reference shape R to a
collection of deformed shapes D, algebraic coarsening can simplify a mesh based on the
“union” of all the deformations.

Figure 7.25: Efficient matching computes themap CN ,M between the original shapes by (1)
applying our proposed coarsening to the shape pair and obtain CN ,Ñ ,CM,M̃, (2) compute
shape correspondences CÑ ,M̃ in the reduced space, and (3) solve a linear system based on
the commutative diagram.
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7.4.4 Efficient Shape Correspondence

A key problem in shape analysis is computing correspondences between pairs of non-rigid
shapes. In this applicationwe show how our coarsening can significantly speed up existing
shapematchingmethodswhile also leading to comparable or even higher accuracy. For this
we use a recent iterativemethod based on the notion ofProductManifold Filter (PMF),which
has shown excellent results in different shape matching applications [Vestner et al., 2017a].
This method, however, suffers from high computational complexity, since it is based on
solving a linear assignment problem, O(n3), at each iteration. Moreover, it requires the
pair of shapes to have the same number of vertices. As a result, in practice before applying
PMF shapes are typically subsampled to a coarser resolution and the result is then prop-
agated back to the original meshes. For example in [Litany et al., 2017], the authors used
the standard QSlim [Garland and Heckbert, 1997] to simplify the meshes before matching
them using PMF. Unfortunately, since standard appearance-based simplification methods
can severely distort the spectral properties this can cause problems for spectral methods
such as [Vestner et al., 2017a] both during matching between coarse domains and while
propagating back to the dense ones. Instead our spectral-based coarsening, while not re-
sulting in a mesh provides all the necessary information to apply a spectral technique via
the eigen-pairs of the coarse operator, andmoreover provides an accurate way to propagate
the information back to the original shapes.

More concretely, we aim to find correspondences between the coarsened shapes Ñ ,M̃
and to propagate the result back to the original domainsN ,M by following a commutative
diagram (see Fig. 7.25). When all correspondences are encoded as functional maps this
diagam can be written in matrix form as:

CM,M̃CN ,M = CÑ ,M̃CN ,Ñ , (7.8)

where CX ,Y denotes the functional map from X to Y . Using Eq. 7.8, the functional map
CN ,M can be computed by solving a simple least squares problem, via a single linear solve.
Our main observation is that if the original function space is preserved during the coars-
ening, less error will be introduced when moving across domains.

We tested this approach by evaluating a combination of our coarsening with [Vestner
et al., 2017a] and compared it to several baselines on a challenging non-rigid non-isometric
dataset containing shapes from the SHREC 2007 contest [Giorgi et al., 2007], and evaluated
the results using the landmarks and evaluation protocol from [Kim et al., 2011] (please see
the details on both the exact parameters and the evaluation in the Appendix). Figure 7.26
shows the accuracy of several methods, both that directly operate on the dense meshes
[Kim et al., 2011; Nogneng and Ovsjanikov, 2017] as well as using kernel matching [Vest-
ner et al., 2017a] with QSlim and with our coarsening. The results in Figure 7.26 show that
our approach producesmapswith comparable quality or superior quality to existingmeth-
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Figure 7.26: Using our coarsening (top) to infer functional maps between the original pair
from the coarse pair introduces less error than using the appearance-based mesh simplifi-
cation (bottom), QSlim [Garland and Heckbert, 1997].

ods on these non-isometric shape pairs, and results in significant improvement compared
to coarsening the shapes with QSlim. At the same time, in Table 7.1 we report the runtime
of different methods, which shows that our approach leads to a significant speed-up com-
pared to existing techniques, and enables an efficient and accurate PMF-based matching
method (see Fig. 7.27) with significantly speedup.

7.4.5 Graph Pooling

Convolutional neural networks [LeCun et al., 1998] have led to breakthroughs in image,
video, and sound recognition tasks. The success of CNNs has inspired a growth of interest
in generalizing CNNs to graphs and curved surfaces [Bronstein et al., 2017]. The funda-
mental components of a graph CNN are the pooling and the convolution. Our root node
representation P,K defines a way of performing pooling on graphs. Meanwhile, our out-

Table 7.1: We report the total time, pre-computation time + runtime, for computing a
60-by-60 functional map on a shape pair with 14,000 vertices each. Our pre-computation
time will be amortized by the number of pairs because we apply coarsening on each shape
independently, and the number of combinations is quadratic in the number of shapes. Our
runtime is orders of magnitude faster because we only need to perform shape matching in
the coarsened domain (i.e., 300 vertices).

[Nogneng 17]+ICP [Nogneng 17] [Kim 11] [Vestner 17]+ours
32.4 sec 4.6 sec 90.6 sec 10.8+0.3 sec
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Figure 7.27: Our efficient shape correspondence with kernel matching [Vestner et al.,
2017a] achieves comparable matching quality on many non-isometric shape pairs from
SHREC [Giorgi et al., 2007] dataset with methods that directly operator on dense meshes
[Kim et al., 2011; Nogneng and Ovsjanikov, 2017].

put L̃ facilitates graph convolution on the coarsened graph due to the convolution theorem
[Arfken and Weber, 1999].

To evaluate the performance of graph pooling, we construct several mesh EMNIST
datasets where each mesh EMNIST digit is stored as a real-value function on a triangle
mesh. Each mesh EMNIST dataset is constructed by overlaying a triangle mesh with the
original EMNIST letters [Cohen et al., 2017]. We compare our graph poolingwith the graph
pooling IN [Defferrard et al., 2016] by evaluating the classification performance. For the
sake of fair comparisons, we use the same graph Laplacian, the same architecture, and the
smae hyperparameters. The only difference is the graph pooling module. In addition to
EMNIST, we evaluate the performance on the fashion-MNIST dataset [Xiao et al., 2017] un-
der the same settings. In Fig. 7.28, we show that our graph pooling results in better training
and testing performance. We provide implementation details in App. 7.6.6.

7.5 Limitations & Future Work

Reconstructing a validmesh fromour output coarsened operatorwould enablemore down-
stream applications. Incorporating a fast eigen-approximation or removing the use of eigen
decomposition would further scale the spectral coarsening. Moreover, exploring sparse
SDP methods (e.g. [Sun and Vandenberghe, 2015]) could improve our operator optimiza-
tion. Jointly optimizing the sparsity and the operator entries may lead to even better solu-
tions. Further restricting the sparsity pattern of the coarsened operator while maintain-
ing the performance would aid to the construction of a deeper multilevel representation,
which could aid in developing a hierarchical graph representation for graph neural net-
works. A scalable coarsening with a deeper multilevel representation could promote a
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Figure 7.28: Graph pooling using our coarsening performs better than the pooling pre-
sented in [Defferrard et al., 2016] on classifying the mesh EMNIST (top row) and the mesh
fashion-MNIST (bottom row) datasets.

multigrid solver for geometry processing applications.

7.6 Appendix

7.6.1 Derivative with Respect to Sparse G

To use a gradient-based solver in Alg. 6 to solve the optimization problem in Eq. (7.7) we
need derivatives with respect to the non-zeros in G (the sparsity of SG). We start with the
dense gradient:

∂Ek

∂G
=

∂

∂G

1
2
∥PM−1LΦ− M̃−1G⊤LGPΦ∥2

M̃
.

Westart the derivation by introducing two constant variablesA,B to simplify the expression

∂Ek

∂G
=

∂

∂G

1
2
∥A− M̃−1G⊤LGB∥2

M̃

A = PM−1LΦ, B = PΦ.
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Using the fact that L,M,Mc are symmetric matrices and the rules in matrix trace derivative,
we expand the equation as follows.

∂Ek

∂G
=

∂

∂G

1
2
∥A− M̃−1G⊤LGB∥2

M̃

=
∂

∂G

1
2
tr ((A⊤ − B⊤G⊤LGM̃−1)M̃(A− M̃−1G⊤LGB)

)
= − ∂

∂G

(
tr (B⊤G⊤LGA)+ 1

2
tr (B⊤G⊤LGM̃−1G⊤LGB

))
= − (LGAB⊤ + LGBA⊤)

+ (LGM̃−1G⊤LGBB⊤ + LGBB⊤G⊤LGM̃−1)

= LG(−AB⊤ − BA⊤ + M̃−1G⊤LGBB⊤ + BB⊤G⊤LGM̃−1)

Computing the ∂Ek/∂G subject to the sparsity SG can be naively achieved by first computing
the dense gradient ∂Ek/∂G and then project to the sparsity constraint through an element-
wise product with the sparsity SG. However, the naive computation would waste a large
amount of computational resources on computing gradient values that do not satisfy the
sparsity. We incorporate the sparsity and compute gradients only for the non-zero entries
as (∂Ek

∂G

)
ij
= Yi∗Z∗j, i, j ∈ SG

Y = LG

Z = −AB⊤ − BA⊤ + M̃−1G⊤LGBB⊤ + BB⊤G⊤LGM̃−1,

where Yi∗, Z∗j denote the ith row of Y and the jth column of Z.

7.6.2 Sparse Orthogonal Projection

Let g ∈ Rz be the vector of non-zeros in G, so that vec(G) = Zg, where Z ∈ {0, 1}mn×z

scatter matrix. Given some G1 that does not satisfy our constraints, we would like to find
its closest projection onto the matrices that do satisfy the constraints. In other words, we
aim at solving:

minimize
G

.
=SG

∥G− G1∥

subject to GPΦ0 −Φ0 = 0.
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Using properties of the vectorization and the Kronecker product, we can now write this in
terms of vectorization:

minimize
g

∥g− g1∥

subject to ((PΦ0)
⊤ ⊗ idm)Zg− vec(Φ0) = 0.

g = g1 − A⊤(AA⊤)−1b

A = ((PΦ0)
⊤ ⊗ idm)Z

b = ((PΦ0)
⊤ ⊗ idm)Zg1 − vec(Φ0).

This can be simplified to an element-wise division when Φ0 is a single vector.

7.6.3 Eigenvalue Preservation

Minimizing the commutativity energy Eq. (7.4) implies

PM−1LΦi = M̃−1L̃PΦi. (7.9)

As Φi comes from solving the generalized eigenvalue problem, for every Φi we must have:
LΦi = λiMΦi. Therefore, Eq. (7.9) implies λiPM

−1Φi = M̃−1L̃PΦi, which means that PΦi

must be an eigenvector of M̃−1L̃ corresponding to the same eigenvalue λi.

7.6.4 Modified Shape Difference

Rustamov et al. [2013] capture geometric distortions by tracking the inner products of real-
valued functions induced by transporting these functions fromone shape to another one via
a functional map [Ovsjanikov et al., 2012]. This formulation allows us to compare shapes
with different triangulations and encode the shape difference between two shapes using
a single matrix. Given a functional map C between a reference shape R and a deformed
shape D, the area-based shape difference operator A can be written as ([Rustamov et al.,
2013] option 2)

AR,D = C⊤C,

where C is the functional map from functions on R to functions on D. The operator AR,D

encodes the difference between R and D. Its eigenvectors corresponding to eigenvalues
larger than one encode area-expanding regions; its eigenvectors corresponding to eigen-
values smaller than one encode area-shrinking regions.

Motivated by the goal of producing denser samples in the parts undergoing shape
changes, regardless of whether area is expanding or shrinking, our modified shape dif-
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ference operator Ã has the form

ÃR,D = (id− AR,D)
⊤(id− AR,D).

This formulation treats area expanding and shrinking equally, the eigenvectors of eigenval-
ues larger than zero capture where the shapes differ.

Note that this Ã is a size k-by-k matrix where k is the number of basis vectors in use. We
map Ã back to the original domain by

Ã
orig
R,D = ΦRÃR,DΦ⊤R.

Although the Ãorig
R,D is dense andmany components do not correspond to any edge in the tri-

angle mesh, the non-zero components corresponding to actual edges contain information
induced by the operator. Therefore by extracting the inverse of the off-diagonal compo-
nents of Ãorig

R,D that correspond to actual edges as the−Lij, we can obtain a coarsening result
induced by shape differences.

7.6.5 Efficient Shape Correspondence

We obtain dense functional maps from coarse ones by solving

CM,M̃CN ,M = CÑ ,M̃CN ,Ñ , (7.10)

where CN ,M,CM,M̃,CÑ ,M̃ are functional maps represented in the Laplace basis. CÑ ,M̃
is the functional map of functions stored in the hat basis. To distinguish CÑ ,M̃ from the
others, we use TÑ ,M̃ to represent the map in the hat basis. Eq. (7.10) can be re-written as

ΦM̃CM,M̃CN ,M = TÑ ,M̃ΦÑCN ,Ñ ,

where Φ are eigenvectors of the Laplace-Beltrami operator. Then we can solve the dense
map by, for example, the MATLAB backslash.

CN ,M = (ΦM̃CM,M̃) \ (TÑ ,M̃ΦÑCN ,Ñ ),

Due to limited computational power, we often use truncated eigenvectors and functional
maps. To avoid having the truncation error destroy the map inference, we use rectangular
wide functionalmaps for bothCM,M̃,CN ,Ñ to obtain a smaller squaredCN ,M. For instance,
the experiments in Fig. 7.27 use size 120-by-200 for both CM,M̃,CN ,Ñ , and we only use the
top left 120-by-120 block of CN ,M.

To compute CÑ ,M̃ (or TÑ ,M̃), we normalize the shape to have surface area 2,500 for
numerical reasons, coarsen the shapes down to 500 vertices, and use the kernel matching
[Vestner et al., 2017a] for finding bijective correspondences. We use α = 0.01 (the same
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notation as [Vestner et al., 2017a]) to weight the pointwise descriptor, specifically the wave
kernel signature [Aubry et al., 2011]; we use time parameter 0.01× surface area for the heat
kernel pairwise descriptors; we use 7 landmarks for shape pairs in the SHREC dataset.

7.6.6 Graph Pooling Implementation Detail

We use the LeNet-5 network architecture, the same as the one used in [Defferrard et al.,
2016], to test our graphpooling on themeshEMNIST [Cohen et al., 2017] andmesh fashion-
MNIST [Xiao et al., 2017] datasets. Specifically, the network has 32, 64 feature maps at the
two convolutional layers respectively, and a fully connected layer attached after the second
convolutional layerwith size 512. We use dropout probability 0.5, regularizationweight 5e-
4, initial learning rate 0.05, learning rate decay 0.95, batch size 100, and train for 150 epochs
using the SGD optimizer with momentum 0.9. The graph filters have a support of 25, and
each average pooling reduces the mesh size to roughly 1/8 of the size before pooling.

Our mesh is generated by the Poisson disk sampling followed by the Delaunay triangu-
lation and a planar flipping optimization implemented in MeshLab [Cignoni et al., 2008].
We also perform local midpoint upsampling to construct meshes with non-uniform dis-
cretizations. Then EMNIST letters are “pasted” to the triangle mesh using linear interpo-
lation.



Chapter 8

Surface Multigrid via Intrinsic
Prolongation

Figure 8.1: We introduce a novel geometric multigrid solver for curved surfaces. Our key
ingredient is an intrinsic prolongation operator computed via parameterizing the high res-
olution shape via its coarsened counterpart, visualized using colored triangles. By recur-
sively applying this self-parameterization, we obtain a hierarchy (from left to right) for our
multigrid method (e.g., to solve heat geodesics [Crane et al., 2017], far left). ©model by
Benoı̂t Rogez under CC BY-NC.

This paper introduces a novel geometric multigrid solver for unstructured curved surfaces.
Multigridmethods are highly efficient iterativemethods for solving systems of linear equa-
tions. Despite the success in solving problems defined on structured domains, generaliz-
ing multigrid to unstructured curved domains remains a challenging problem. The critical
missing ingredient is a prolongation operator to transfer functions across different multi-
grid levels. We propose a novel method for computing the prolongation for triangulated
surfaces based on intrinsic geometry, enabling an efficient geometric multigrid solver for
curved surfaces. Our surface multigrid solver achieves better convergence than existing
multigrid methods. Compared to direct solvers, our solver is orders of magnitude faster.
We evaluate our method on many geometry processing applications and a wide variety of
complex shapes with and without boundaries. By simply replacing the direct solver, we
upgrade existing algorithms to interactive frame rates, and shift the computational bottle-
neck away from solving linear systems.

161
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Figure 8.2: Many geometry processing algorithms that involve solving linear systems
Ax = ul often consist of four steps: (1) loading a geometry, (2) building the left-hand-side
A, (3) building the right-hand-side ul , and (4) solving the system Ax = ul . Direct solvers
(e.g., Cholesky) perform pre-computation after building A, making it suitable for applica-
tions where only ul is changing. Geometric multigrid methods perform pre-computation
solely based on the geometry. Thus, even when the entire system A, ul changes, geometric
multigrid solvers can still leverage the same pre-computed hierarchy to solve the system
efficiently.

8.1 Introduction

Linear solvers are the heart of many geometry processing algorithms. For positive semi-
definite problems defined on surface meshes, direct solvers (e.g., Cholesky factorization)
are commonplace. Unfortunately, direct solvers do not scale and often become the bottle-
neck for problems on high-resolution surface meshes. Especially for applications where
the linear system changes at every iteration (e.g., simulation), direct solvers require an ex-
pensive re-factorization.

For problems on structured domains (e.g., 2D/3D regular grids), an excellent alterna-
tive is geometric multigrid methods. Geometric multigrid solvers perform pre-computation
solely based on the geometry without knowing the linear system of interest (see Fig. 8.2).
This enables multigrid methods to solve the system efficiently in linear time even when the
system changes at each time step. Multigrid solvers already become non-trivial for unstruc-
tured grids (e.g., arbitrary triangle meshes in 2D or tetrahedral meshes in 3D), the added
complexity of immersing triangle meshes in 3D has left a “black-box” multigrid solver for
curved surfaces elusive until now.

In this paper, wepropose aGalerkin geometricmultigrid solver formanifold surfacemeshes
with or without boundaries. Our key ingredient is a method for computing the prolonga-
tion operator based on the intrinsic geometry. Our multigrid solver achieves a better con-
vergence rate compared to alternative multigrid methods. Replacing direct solvers with
our black-box surface multigrid solver leads to orders of magnitude speed-up. We show
that our method is effective in a variety of applications ranging from data smoothing to
shell simulation, with linear systems of different sparsity patterns and density. Our contri-
butions turn existing algorithms into interactive applications (e.g., Fig. 8.19) and shift the
bottleneck away from solving linear systems (e.g., Fig. 8.23).
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8.2 Related Works

Multigrid methods [Brandt, 1977] have earned a reputation as one of the fastest numerical
solvers for solving linear systems. On structured domains (e.g., 2D/3D grid), multigrid is
very well-studied both theoretically [Trottenberg et al., 2000; Hackbusch, 2013] and prac-
tically [Brandt and Livne, 2011]. In graphics, multigrid has been an attractive solution for
interactive and large-scale applications on structured domains, most prominently for im-
age processing [Kazhdan and Hoppe, 2008; Krishnan and Szeliski, 2011] and simulating
fluids on large grids [McAdams et al., 2010; Aanjaneya et al., 2019; Lai et al., 2020]. Even
for problems where the original representation is unstructured, an auxiliary background
grid can be introduced for multigrid to perform efficient computation and transfer the so-
lution back to the unstructured representation. For example, one can run multigrid on a
background hexahedral mesh to simulate elastic deformations [Zhu et al., 2010; Dick et al.,
2011] and character skinning [McAdams et al., 2011]. Chuang et al. [2009] deploy multi-
grid on a background voxel grid to solve Poisson problems defined on the surface mesh. To
reduce the complexity of using structured representations, adaptivemultigridmethods are
developed for subsurface scattering [Haber et al., 2005], smoke simulation [Setaluri et al.,
2014], and other graphics applications [Kazhdan and Hoppe, 2019].

Unstructured Euclidean Domains Directly deploying multigrid to unstructured “grids”
in Euclidean domains (e.g., 2D triangle meshes and 3D tetrahedral meshes) has also been
an important problem for decades. The main difficulties lie in how to construct the multi-
grid hierarchy and how to transfer signals back-and-forth across different grid levels. In
graphics, unstructured multigrid for 2D triangle meshes is widely applied to cloth sim-
ulation where the design pattern is prescribed by a 2D boundary curve. In the methods
proposed in [Oh et al., 2008; Jeon et al., 2013; Wang et al., 2018b], the authors generate the
hierarchy in a coarse-to-fine manner by triangulating the 2D design pattern and then re-
cursively subdividing it to get finer resolutions. Wang et al. [2018b] generate the multigrid
hierarchy from fine-to-coarse by clustering vertices on the fine mesh and re-triangulating
the 2D domain. When it comes to 3D tetrahedral meshes, multigrid is commonly used to
simulate deformable objects. Georgii andWestermann [2006] build the hierarchy with dif-
ferent tetrahedralizations of the same 3Ddomain. Otaduy et al. [2007] repetitively compute
the offset surface of the boundary mesh, decimate the offset surface, and tetrahedralize the
interior to obtain the hierarchy. Sacht et al. [2015] follow a similar technique but with more
elaborate and tighter fitting offsets. Adams and Demmel [1999] recursively remove the
maximum independent set of vertices and tetrahedralize the interior. These unstructured
multigrid methods for the Euclidean domains rely on the fact that every level in the hierar-
chy is a triangulation or tetrahedralization of the same space. Thus, they can easily define
linear prolongation using barycentric coordinates on triangles or tetrahedra. Recently, Xian
et al. [2019] propose a “mesh-free” alternative for tetrahedral meshes. They propose to use
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Figure 8.3: When solving a Poisson problem defined on the surface mesh (top right),
we demonstrate that our multigrid based on the intrinsic prolongation (blue) converges
faster than the algebraicmultigridmethods (green), including the classic Ruge-Stüben (RS-
AMG) [Ruge and Stüben, 1987] and the Smoothed Aggregation algebraic multigrid (SA-
AMG) [Vanek et al., 1996]. Note that we use an off-the-shelf implementation from PyAMG
[Olson and Schroder, 2018] with their default multigrid hyperparameters. ©models by
3DWP (right) under CC BY-SA.

farthest point sampling to get “meshes” at coarser levels, and define the prolongation using
piecewise constant interpolation which only requires the closest point query.

Algebraic Multigrid A popular alternative to deal with unstructured meshes is to use
algebraic multigrid [Brandt et al., 1985] which builds the hierarchy by treating the linear
system matrix as a weighted graph and coarsening it. This approach makes no assump-
tions on the structure of the geometry. Thus, it is directly applicable to any unstructured
domain. For this reason, algebraic methods are deployed to mesh deformation [Shi et al.,
2006], cloth simulation [Tamstorf et al., 2015], and other graphics applications [Krishnan
et al., 2013]. However, the cost of algebraic multigrid’s generality is the need to re-build
the hierarchy whenever the system matrix changes (see Fig. 8.2). Furthermore, defining
the inter-grid transfer operators for algebraic methods is more challenging and leads to
worse performance compared to our method (see Fig. 8.3).

Curved Surfaces When it comes to surface meshes, defining the prolongation operator
becomes more challenging compared to the Euclidean case. This is because the vertices of
a high-resolution surface mesh do not lie on its coarsened counterpart, thus the straight-
forward barycentric computation is not immediately applicable. In the special case of sub-
division surfaces where the hierarchy is given, there exists efficient geometric multigrid
[Green et al., 2002] and multilevel [de Goes et al., 2016] solvers that leverage the subdi-
vision’s regular refinement process to define the prolongation. For unstructured surface
meshes, Ray and Lévy [2003] build the hierarchy based on the progressivemeshes [Hoppe,
1996; Kobbelt et al., 1998] and define the prolongation operator using global texture coordi-
nates. Ni et al. [2004] (and similarly Shi et al. [2009]) find a maximum independent set of
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Figure 8.4: Compared to the prolongation based on the vertex 1-ring average [Aksoylu et al.,
2005] (orange), our prolongation (blue) leads to a faster convergence rate when solving a
Poisson problem on the surface where the top right colors are the solutions to the problem.

vertices to build a hierarchy and compute a prolongation operator based on a weighted av-
erage among one-ring neighboring vertices. Aksoylu et al. [2005] propose several methods
for hierarchy construction based on removing the maximum independent set of vertices.
Similarly, they also compute the prolongation by averaging among the one-ring neighbors.
These approaches either need additional information (e.g., having subdivision connectiv-
ity or texture information) or use one-ring average (combinatorial information) to define
the prolongation. But one-ring average often leads to a denser system because it requires
on average 6 vertices to interpolate the result on a vertex, in contrast to 3 when using the
barycentric interpolation. Performance wise, in Fig. 8.4 we show that our prolongation
leads to a better convergence compared to the multigrid based on averaging one-ring ver-
tices.

Our method computes the prolongation based on intrinsic geometry, in a similar spirit
to [Sharp et al., 2019]. This enables us to define a linear prolongation simply using the
barycentric coordinates, echoing the success of using barycentric coordinates in the Eu-
clidean case. Furthermore, our approach allows one to plug-and-play different decimation
strategies to construct multigrid hierarchies (see Fig. 8.13). This flexibility allows one to
pick a well-suited decimation method for their tasks of interest.

Purely algebraic direct solvers (e.g., sparse Cholesky) are the de facto standard in ge-
ometry processing due to their reliability, scalability (as memory allows), and precision.
Factorizations can be reused for changing right-hand sides (see Fig. 8.2), but trouble arises
for the myriad applications where the systemmatrix also changes. Special classes of sparse
changes can be efficiently executed: low-rank updates [Chen et al., 2008; Cheshmi et al.,
2020] or partial re-factorizations [Herholz and Alexa, 2018; Herholz and Sorkine-Hornung,
2020]. However, many other scenarios trigger full numerical refactorization, such as chang-
ing parameters in amultiobjective optimization andHessian updates for Newton’s method
Due to the overwhelming popularity of Cholesky factorization, we focus on it for many of
our head-to-head comparisons.
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Figure 8.5: The multigrid V-cycle proceeds from the finest grid (level 0) to the coarsest grid
(level H) and goes back up to the finest grid again. On each level (except for the coars-
est level), we pre-relax the solution, restrict it to the coarser grid, compute the correction,
prolong the correction back to the finer level, post-relax the correction, and then add the
correction to the current solution. Our approach belongs to the family of Galerkin multigrid
methods where we define the system matrix at a coarser level as Ah = P⊤h Ah−1Ph. ©model
by Takeshi Murata under CC BY-SA.

8.3 Multigrid Overview

Multigrid is a type of iterative solver that is scalable to solve large linear systems Ax = ul .
In this paper, we propose a novel geometric multigrid method for solving linear systems
defined on curved surfaces, represented as irregular triangle meshes. We refer readers to
excellent resources on multigrid [Trottenberg et al., 2000; Brandt and Livne, 2011], here we
give only the essential components needed to understand our method. Note that we use
“grid” or “mesh” interchangeably to denote the underlying geometry.

Multigrid methods solve a linear system in a hierarchical manner by employing two
complementary processes: relaxation and coarse-grid correction. Relaxation involves apply-
ing classic iterative methods to correct the high-frequency error between the current solu-
tion and the exact solution of the system. Coarse-grid correction involves transferring the
low-frequency error to a coarser mesh through restriction, solving a coarse-grid system of
equations, then transferring the correction back to the finer mesh via prolongation (a.k.a.
interpolation). This process of going from the fine grid to the coarse grid and then back to
the fine grid is called the V-cycle (see Fig. 8.5). How to build the multigrid hierarchy and
how to transfer information back and forth between grid levels are keys to determine the
efficiency of a multigrid method.

Our method belongs to geometric multigrid based on the Galerkin coarse grid approxima-
tion. Geometric multigrid is a class of multigrid methods that builds the hierarchy purely
based on the geometry, requiring no knowledge about the linear system. Galerkin coarse
grid approximation builds the system matrix Ac on the coarsened mesh from the system
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Figure 8.6: We visualize the bijective map computed using our method by coloring the
high-resolution shape using the coarsened triangulation (as different colors). Our method
is applicable to man-made objects, organic shapes, high-genus shapes, and meshes with
boundaries. ©models by Oliver Laric (left 1, 5, 8) under CC BY-NC-SA and Landru (left 7)
under CC BY.

matrix A on the original mesh as

Ac = RAP, (8.1)

where R is the restriction operator to transfer signals from the fine mesh to the coarsened
mesh andP is the prolongation operator to transfer the dual of signals (dot product between
the signals with the fine basis functions) from coarse to fine. When A is symmetric, many
methods often define R = P⊤. Thus, defining the prolongation operator P is extremely
critical for Galerkinmultigrid because it determines both the quality of the coarsened linear
system P⊤AP and the quality of the inter-grid transfer (restriction P⊤ and prolongation
P). In Alg. 9, we provide pseudo code of the Galerkin multigrid V-cycle where P plays
a crucial role in the entire algorithm. An ideal prolongation must accurately interpolate
smooth functions (low distortion) to ensure fast convergence. The prolongation also needs
to be sparse to enhance the solver efficiency at coarser levels.

Defining a prolongation that satisfies these properties is well-studied on structured do-
mains, but extending to unstructured curved surfaces remain a challenging problem. In
this paper, we use successive self-parameterization to compute a prolongation operator
P for curved surfaces based on the intrinsic geometry. Our novel joint flattening further
reduces the distortion caused by the parameterization and our extension to meshes with
boundaries broadens the applicability of our method to many complex geometries. When
deploying our prolongation to the Galerkin multigrid framework, our method achieves
better convergence than alternative multigrid methods for curved surfaces.

8.4 Intrinsic Prolongation

The central ingredient of Galerkinmultigrid is the prolongation operator to interpolate sig-
nals from a coarsened mesh to its fine version. We compute the prolongation by maintain-
ing an intrinsic parametrization, as opposed to extrinsic prolongation based on 3D spatial
coordinates (cf. [Manson and Schaefer, 2011; Liu and Jacobson, 2019b]). Specifically, we
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Figure 8.7: Given a high-resolution shape (left) and its coarsened counterpart (right), we
compute a bijectivemap between the two so that for any given point on the finemeshwe can
compute its corresponding barycentric coordinates on the coarsened mesh, and vice versa.
We visualize the map by coloring the coarse triangulation on top of the high-resolution
model.

parameterize the high-resolution mesh using the coarsened mesh to obtain a bijective map
between the two (see Fig. 8.7). Given a point on the high-resolution mesh, we can obtain
its corresponding barycentric coordinates on the low-resolution mesh, and vice versa. We
can then assemble a linear prolongation operator based on the barycentric information.

We compute the bijective map using successive self-parameterization. The key idea is to
successively build a bijective map for each decimation step and assemble the full map via
composition. Our method for computing the successive parameterization is based on the
framework of [Liu et al., 2020], which can be perceived as a combination of Lee et al. [1998]
and Cohen et al. [2003]. The key differences of our method compared to [Liu et al., 2020]
are a novel joint flattening method (see Sec. 8.4.2) to further reduce the distortion and a
generalization to meshes with boundaries (see Sec. 8.4.3). For the sake of reproducibility,
we reiterate the main ideas of successive self-parameterization here.

8.4.1 Successive Self-Parameterization

LetM0 be the input fine mesh with/without boundary. The meshM0 is simplified into
a series of meshesMl with 0 ≤ l ≤ L through successive edge collapses. For each pair
of meshes Ml ,Ml+1, we use f l

l+1 : Ml → Ml+1 to denote the bijective map between
them. The main idea is to compute each f l

l+1 on-the-fly during the decimation process and
composite all the maps between subsequent levels to obtain the final map f 0

L :M0 →ML

as

f 0
L = f L

L+1 ◦ · · · ◦ f 0
1 . (8.2)

Thus, the question boils down to the computation of the individual maps f l
l+1 before and

after a single edge collapse.
For each edge collapse, the triangulation mostly remains the same except for the neigh-

borhood of the collapsed edge. Thus, computing f l
l+1 only requires to figure out the map-
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Figure 8.8: Since both the edge 1-ring before the collapse (left) and the vertex 1-ring after
the collapse (right) are mapped to the same 2D domain with a consistent boundary curve
(middle), we can easily use the shared UV space to map a point back and forth between
Ml andMl+1.

pingwithin the edge 1-ring neighborhood. LetN l(k) be the neighboring vertices of a vertex
k (including vertex k itself) at level l and letN l(i, j) = N l(i)∪N l(j)denote the neighboring
vertices of an edge i, j. The key observation is that the boundary vertices of N l(i, j) before
the collapse are the same as the boundary vertices of N l+1(k) after the collapse, where
k is the newly inserted vertex after collapsing edge i, j. Hence, we compute a shared UV-
parameterization for the patches enclosed byN l(i, j) andN l+1(k)with the same boundary
curve. Then, for any given point pl ∈ Ml (represented in barycentric coordinates), we can
utilize the shared UV parameterization to map pl to its corresponding barycentric coordi-
nates pl+1 ∈ Ml+1 and vice-versa, as shown in Fig. 8.8.

8.4.2 Joint Flattening

Figure 8.9: For each edge
1-ring on this bunny mesh,
we collapse the edge and
flatten the patch using the
method of [Liu et al., 2020]
and our joint flattening
method. We visualize the
sorted quasiconformal
distortion among all the
1-rings and demonstrate
that our method (blue)
leads to less distortion.

The base method proposed by Liu et al. [2020] ensures
boundary consistency by first flattening the edge 1-ring
N l(i, j) and setting the boundary vertices as hard constraints
when flattening the vertex 1-ring N l+1(k) after the collapse.
Although this method can ensure boundary consistency, it al-
ways favors minimizing the distortion of N l(i, j) and creates
larger distortion when flattening N l+1(k).

We instead compute the shared UV-parameterization by
jointlyminimizing a distortion energy Edefined on the edge 1-
ringN l(i, j) before the collapse and the vertex 1-ringN l+1(k)
after the collapse while ensuring boundary consistency. In
Fig. 8.4.2, we demonstrate that our joint flattening results
in a parameterization with less distortion compared to the
method by Liu et al. [2020].

For notational convenience, weuseV l , Fl to denote the ver-
tices and faces of the local patch withinN l(i, j) before the col-
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Figure 8.10: Ensuring bijectivity between V l and V l+1 requires their boundary vertices
(black b) to have the same UV positions (right). We handle this constraint by introduc-
ing a joint variable U which contains shared degrees of freedom on the boundary.

lapse, and V l+1, Fl+1 to denote the vertices and faces of the
local patch within N l+1(k) after the collapse. We then write the joint energy optimization
problem as

minimize
Ul ,Ul+1

E(V l , Fl ,Ul) + E(V l+1, Fl+1,Ul+1) (8.3)

subject to ul
b = ul+1

b (8.4)

where we use Ul ∈ R|V
l |×2 to represent the UV locations of V l at level l and each ul

i ∈ R2

denotes a UV-vertex position. We also use ul
b, ul+1

b to represent the boundary vertices of
N l(i, j) and N l+1(k), respectively.

In order to handle the constraints, we introduce a joint variable U = Ul ∪ Ul+1 (see
Fig. 8.10) to incorporate the equalities into the degrees of freedom and turn Eq. (8.3) into
an unconstrained problem

min
U

E(V l , Fl ,U) + E(V l+1, Fl+1,U) (8.5)

Introducing the joint variable U allows us to minimize the distortion energy for the patch
before and after the collapse simultaneously.

8.4.3 Boundary Edges

The creation of the joint variable in Fig. 8.10 is only applicable when the collapsed edge
lies fully in the interior of the triangle mesh. For boundary edges, different treatment is
required to ensure the shared parameterization has a consistent boundary curve in order
to preserve the bijectivity (cf. [Liu et al., 2017b]).

In the case where one of the two incident vertices lies on the boundary, we create a
joint variable which snaps the UV position of the other (interior) vertex to the boundary
(see Fig. 8.11). Note that we only perform this snapping operation in the parameteriza-
tion domain, their corresponding vertices vj, vk in R3 are still placed at the locations which
minimize the decimation error metric (e.g., appearance preservation).

In the case where both edge vertices are on the boundary, we determine the joint vari-
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Figure 8.11: When one of the edge vertices is on the boundary (vertex j in this case), we
have to also constrain the vertex j and k to have the same UV location to ensure bijectivity,
as shown in the joint variable U on the right.

Figure 8.12: When the edge i, j is a boundary edge, we consider three cases: ul
i = ul+1

k (left),
ul

j = ul+1
k (middle), and vertex i, j, k are colinear in the UV space (right). To ensure the

boundary curves remain consistent, these cases result in three different sets of colinearity
constraints (see the bottom row), where we use q to represent the next boundary vertex of
the edge i, j and we use p to represent the previous boundary vertex of the edge i, j.
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able U by choosing best of three possible choices. Suppose the boundary edge i, j is col-
lapsed to a boundary vertex k, we consider the cases where (1) vertex k lies on vertex i, (2)
vertex k lies on vertex j, and (3) vertex k lies on the line defined by i, j. Even though case
(1), (2) seem unnecessary when we have case (3), these cases end up with different sets of
constraints in the joint flattening optimization. Thus, we consider all three cases and take
the one with the minimum energy value. In Fig. 8.12, we show how we group variables
for the three cases and their corresponding colinearity constraints to maintain the same
boundary curve. We impose the colinearity via adding Dirichlet constraints (ui)y = 0 for
all the vertices i that are colinear.

8.4.4 Decimation Strategies & Distortion Energies

Our joint flattening makes no assumption on the edge collapse algorithm in use. For in-
stance, one could use the quadric error edge collapse (qslim) [Garland and Heckbert, 1997] to
preserve the appearance, mid-point edge collapse to encourage the coarse triangulation to be
more uniformly distributed, and the vertex removal (via half-edge collapses [Kobbelt et al.,
1998]) to ensure that the vertices on the coarsened mesh are a subset of the fine vertices.

The distortion energy E in Eq. (8.5) provides another design parameter. In Fig. 8.13,
we demonstrate the flexibility of our joint flattening by minimizing the as-rigid-as-possible
(arap) [Liu et al., 2008] and the least square conformal map (lscm) [Lévy et al., 2002] energies.

Depending on the intended application, different combinations of the decimation strat-
egy and the parameterization algorithm may lead to different performance. For instance,
in Fig. 8.14 we compare the convergence behavior of our Galerkin multigrid solvers con-
structed using these combinations. In our experiments, using the uniform decimation with
lscm leads to the best performance among these options. Other options for minimizing the
distortion [Khodakovsky et al., 2003], computing themap [Guskov et al., 2000, 2002; Friedel
et al., 2004], and decimation strategies (e.g., [Trettner and Kobbelt, 2020]) seem attractive
to combinewith our joint flattening. It is howevermore challenging and thus left as a future
work.

8.4.5 Prolongation Operator

The above discussion computes a bijective map between a pair of meshes that undergoes
a single edge collapse. We can easily extend the method to compute a map between two
consecutive multigrid levels via composition (see Eq. (8.2)). Given this information, we
can now compute a prolongation operator for surface multigrid.

We choose linear interpolation as our prolongation operator because it is sufficient for
the convergence of the second-order PDEs typically employed in computer graphics [Hemker,
1990]. Although some of our experiments consider higher order PDEs, many of them are
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Figure 8.13: Our method allows to plug-and-play different decimation strategies and pa-
rameterization algorithms. In these examples, wedecimate themodel using qslim [Garland
and Heckbert, 1997], vertex removal via half-edge collapse, and uniform mid-point edge
collapse. We use arap [Liu et al., 2008] and lscm [Lévy et al., 2002] as the parameteriza-
tion algorithms. The influence of these combinations to the solver convergence is shown in
Fig. 8.14.

Figure 8.14: Different combinations of the decimation and the parameterization methods
lead to different performance in down-stream applications. For example, in the context of
multigrid solvers on a Poisson problem, the uniform edge decimation with lscm leads to a
better convergence rate.
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Figure 8.15: We compare our intrinsic prolongation with naive extrinsic prolongations
based on the closest-point projection. When evaluating on a simple shape (left), most
methods can converge; when evaluating on a complex shape (right), only our intrinsic
prolongation converges. ©model by Oliver Laric (right) under CC BY-NC-SA.

Figure 8.16: Compared to an extrinsic prolongation proposed by Jiang et al. [2020], our
prolongation leads to faster convergence.

reduced to low-order systems in practice via mixed finite elements [Jacobson et al., 2010].
Empirically, we find that linear prolongation still converges in most cases.

Our linear prolongation P is a tall matrix whose size is the number of fine vertices by
the number of coarse vertices. Each row of P contains 3 non-zeros corresponding to the
barycentric coordinates of the fine vertex with respect to the vertices of the coarse triangle
containing it. We evaluate the quality of our prolongation on solving Poisson problems on a
variety meshes. We demonstrate that our intrinsic prolongation leads to faster convergence
compared to the naive closest point projection (Fig. 8.15), an extrinsic bijective projection
by Jiang et al. [2020] (Fig. 8.16), vertex 1-ring average [Aksoylu et al., 2005] (Fig. 8.4), and
algebraic multigrid prolongations (Fig. 8.3).

8.5 Multigrid Implementation

Switching from direct solvers to our multigrid method is very simple. In Alg. 8 we sum-
marize how one can implement a Galerkin geometric multigrid method to solve a linear
system. The key difference is that the pre-computation happens right after loading the in-
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Figure 8.17: We compare the multigrid convergence between our default parameters (re-
sulting in four multigrid levels) and an extreme coarsening (6 levels). The extreme coars-
ening hurts the performance (right) because the coarsest mesh fails to represent the target
solution.

Algorithm 8: Galerkin Surface Multigrid Solver
1. V,F← load triangle mesh
2. P1, · · · ,PH ← precompute multigrid hierarchy (V,F)
3. A← build left-hand-side
4. ul ← build right-hand-side
5. initialize a solution x
6. while error is larger than ϵ do
7. x← V-cycle (A, x, ul , 0) // see Alg. 9
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Algorithm 9: xnew = V-cycle (A, xold , ul , h)
Param. : P1,P2, · · · ,PH, // hierarchy of prolongations

µpre, µpost // pre- and post-relaxation iterations
Input : A, // left-hand-side system matrix

xold, // current solution
ul , // right-hand-side of the linear system
h, // current multigrid level

Output: xnew // new solution
1. if h is not the coarsest level H then
2. // pre-relaxation
3. x′old ← Relaxation (A, xold , ul , µpre)
4. // coarse-grid correction
5. rh+1 ← P⊤h+1(u

l − Ax′old) // restrict residual
6. ch+1 ← V-cycle (P⊤h+1APh+1, 0, rh+1, h + 1)
7. ch ← Ph+1ch+1 // prolong correction
8. x′new ← xold + ch // update solution
9. // post-relaxation
10. xnew ← Relaxation (A, x′new , ul , µpost);

11. else
12. solve Axnew = ul // direct solve
13. return xnew

put mesh. This pre-computation takes the vertex and face lists as the inputs, and outputs
a series of prolongation operators P1, · · · ,PH for different levels on the hierarchy. After
building the linear system A, ul , one can run the V-cycle until getting the desired accuracy.

In Alg. 9, we summarize the pseudo code of the V-cycle algorithm which consists of
two procedures: relaxation and coarse-grid correction. For the relaxation step, we use the
standard serial Gauss-Seidel method. In the coarse-grid correction step, the process is well-
defined given the prolongation operatorP. We start by restricting the residual to the coarser
level via P⊤, solving a coarsened linear system with the left-hand-side defined as P⊤AP,
prolonging the low-res solution back to the fine domain using P, and using it to update the
current high-res solution. We can further accelerate the computation by storing the system
matrix hierarchy Ah+1 = P⊤h+1AhPh+1 to save some redundant computation.

In terms of hyperparameters of our multigrid method, we conduct an ablation study
summarized in App. 8.9.4. In each V-cycle, we use the Gauss-Seidel relaxation with 2 pre-
and post-relaxation iterations. Our default setup coarsens the geometry down to 0.25 of
the number of vertices at its previous level until we reach the coarsest mesh with no fewer
than 500 vertices. Note that we do not recommend to coarsen the mesh to an extreme. In
Fig. 8.17, we show that an extremely aggressive coarsening often hurts the performance
because the coarsest mesh fails to represent the target solution. In terms of stopping crite-
ria, the accuracy ε that allows us to get visually indistinguishable results compared to the
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Figure 8.18: On the left, we report the runtime of our successive self-parameterization for
constructing the bijective map. On the right, we report the query time of a single point
through the bijective map.

ground truth depends on the problem and the size of the mesh. In our experiments, we set
it to be 10−3 ≥ ε ≥ 10−5. Our experiments suggest that the optimal set of parameters that
minimizes the wall-clock runtime depends on the geometry and the PDE of interest. But
we use our default parameters for all our experiments in Sec. 8.6 for consistency.

We implement our algorithm in C++ with Eigen and evaluate our method on a Mac-
Book Pro with an Intel i5 2.3GHz processor. In comparison with the Cholesky solver where
pre-factorization is requiredwhenever the systemmatrixA is changed, ourmultigrid solver
leads to orders of magnitude speed-ups (see Fig. 8.21).

Boundary conditions Our implementation currently supports natural boundary condi-
tions (Fig. 8.21 right), zeroNeumann boundary conditions (Fig. 8.21 left), and theDirichlet
boundary condition. We handle the Dirichlet constrains by reformulating the system us-
ing only the unknown variables. This results in a reduced and unconstrained linear system,
allowing us to solve it as usual. For more details, please refer to App. 8.9.2.

Successive Self-Parameterization We report the runtime of our pre-computation (query-
ing points and self-parameterization) in Fig. 8.18 anddetail the implementation inApp. 8.9.3.
Note that this pre-computation solely depends on the geometry. We only need to do this
computation once for each shape and we can reuse the same hierarchy for many different
linear systems. Thus, in our runtime comparisons in Sec. 8.6, we do not include the runtime
of this pre-computation.

8.6 Applications

We evaluate ourmethod on a variety of geometry processing applications that involve solv-
ing linear systems as a subroutine. We especially focus on the case where the systemmatrix
A is changing due to different time steps (e.g., simulation) or user interactions (e.g., data
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Figure 8.19: In the data smoothing application, onewould adjust the smoothness parameter
α until getting the desired smoothness. Using direct solvers (e.g., Cholesky) would need
to recompute the expensive pre-factorization, but our multigrid solver can reuse the same
hierarchy and leads to interactive performance.

Figure 8.20: We evaluate our method on data smoothing with different smoothness ener-
gies, including the Bilaplacian E∆2 and the squared Hessian EH2 . Our method is orders of
magnitude faster than the direct solver.

smoothing). In our experiments, we ignore the multigrid pre-computation and compare
our multigrid V-cycle (in blue) against the runtime of both the factorization and the solv-
ing time combined of the Cholesky solver (in red) because both these steps are required
when A is changing. We also pick the applications that involve different system matrices
with different sparsity patterns. This includes the cotangent Laplacian (1-ring sparsity),
the Bilaplacian (2-ring sparsity), the squared Hessian (2-ring sparsity) [Stein et al., 2020],
a systemmatrix derived from Lagrangemultipliers [Azencot et al., 2015], and also the Hes-
sian matrices from shell simulation which has 3|V|-by-3|V| dimensionality.
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Figure 8.21: We compare the runtime of our multigrid solver against the Cholesky solver
on smoothing the noisy data on a sphere cap at different resolutions until reaching a suffi-
ciently small mean squared error (visually indistinguishable). We evaluate the smoothing
with the Dirichlet energy E∆ (1-ring sparsity) and with the squared Hessian energy EH2

[Stein et al., 2020] (2-ring sparsity). Our method is asymptotically faster than the direct
solver. On meshes with 200K vertices and 3 million vertices (using EH2), a serial imple-
mentation of our method is 39× and 231× faster, respectively.

Data smoothing Smoothing data on the surface is a fundamental task in geometry pro-
cessing. We often treat it as an energy minimization problem

x∗ = arg min
x

αEs(x) + (1− α)
∫

Ω
∥x− f ∥2dx, (8.6)

where α is the parameter controlling the smoothness, f is the input noisy function, and Es is
an energy of choice, measuring the smoothness of the output signal x. As a different input f
may contain a different amount of noise, onewould typically adjust the α or the smoothness
energy Es until getting the desired smoothness. However, these adjustments boil down to
solving a different linear system. When using direct solvers, this requires recomputing the
factorization in order to solve the system. In comparison, using our multigrid allows one to
reuse the same precomputed multigrid hierarchy and leads to orders of magnitude speed-
ups (see Fig. 8.19). We evaluate our method on different smoothness energies, including
the Dirichlet energy E∆ (Fig. 8.19), the squared Laplacian energy E∆2 (Fig. 8.20 top), and
the squared Hessian energy EH2 [Stein et al., 2020] (Fig. 8.20 bottom). In Fig. 8.21, we
quantitatively evaluate the runtime on the same shape at different resolutions obtained via
subdivision. On a mesh with millions of vertices, our approach has over 100× speed-ups.
With our multigrid setup, the precomputed prolongation operator can be reused not only
when changing the value of α (full rank update to A), but also when swapping between
energies Es.

Mesh deformation We also evaluate our method on mesh deformations to demonstrate
that even though the vertex positions have changed, as long as the connectivity of the mesh
remains the same, we can still reuse the same multigrid hierarchy computed on the rest
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Figure 8.22: We compare our multigrid against the direct solver on the polycube deforma-
tion proposed by [Zhao et al., 2017]. Although the vertex positions are changed at every
iteration, we can still reuse the precomputed multigrid hierarchy because the connectivity
remains the same. We report the runtime of other steps in the algorithm in black and the
runtime for solving linear systems in red and in blue.

Figure 8.23: Running themean curvature flow [Kazhdan et al., 2012] requires to update the
system matrix at every step according to the mass matrix of the current mesh. By reusing
the hierarchy computed on the input shape (left), ourmultigridmethod is orders ofmagni-
tude faster than the direct solver. We report the runtime of other subroutines in black and
the time for solving the linear system in red (direct solver) and in blue (our multigrid).
©model by Oliver Laric under CC BY-NC-SA.

Figure 8.24: The surface fluid simulation [Azencot et al., 2015] involves solving different
linear systems at each time step. Our method reuses the precomputed hierarchy and leads
to a faster solver in contrast to the direct solver. We split the runtime of other procedures
(black) and the runtime of solving the linear system (red and blue). Note that this runtime
comparison is in MATLAB using the original implementation from [Azencot et al., 2015].
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Figure 8.25: Replacing the Cholesky solver with our surface multigrid method, we can
accelerate the linear solve part in the balloon simulation proposed by [Skouras et al., 2012]
by 28× so that solving linear systems becomes no longer the bottleneck of the algorithm.

Table 8.1: Multigrid runtime.

profile (sec.) Fig. 8.23
precompute 50.6
total solve time 1.44
1. prepare P⊤AP 0.72
2. relaxation 0.38
3. prolong & restrict 0.10
4. get residual norm 0.10
5. others 0.14

mesh. One possible intuition is to view the deformation field on vertices as a function on
the rest shape. Thus, a hierarchy built on the rest shape could still be used to compute the
deformation “function”. In Fig. 8.22, we evaluate our method on a polycube deformation
method proposed by [Zhao et al., 2017] whose system matrix is re-built at every iteration
based on the current deformed mesh. Our method accelerates the algorithm by 3.2 × on
a relatively low-resolution mesh. In Fig. 8.23, we replace the Cholesky solver with our
method on a mean curvature flow method proposed in [Kazhdan et al., 2012] and achieve
23× speedup.

In many simulation algorithms, the system matrix A changes at every time step. In
Fig. 8.24, we demonstrate the speed-up of our multigrid solver on a surface fluid simula-
tion [Azencot et al., 2015]. Note that the surface fluid simulation is evaluated in Matlab
(for both the direct solver and our multigrid) respecting the original implementation. In
Fig. 8.25, we evaluate our method on a balloon simulation method proposed by [Skouras
et al., 2012]. Due to the speedup of ourmultigridmethod, we shift the bottleneck of balloon
simulation away from solving linear systems.
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8.7 Discussion

In our experiments in Sec. 8.6, we evaluate our runtime using a simple serial implemen-
tation of our method. In Table 8.1, we further provide a detailed runtime decomposition
of the experiment in Fig. 8.23 as a representative example. We can observe that preparing
the matrix hierarchy P⊤AP and doing the relaxation take most of the time when solving
a linear system. Thus, we can achieve even more speedup if we leverage the structure of
the problem when computing the matrix hierarchy, such as the data smoothing detailed in
App. 8.9.5, or a parallel implementation of the entire V-cycle. To validate our hypothesis,
our initial attempt uses the CPU to parallelize the Gauss-Seidel method based on graph
coloring. This reduces the runtime of our relaxation from 0.38 seconds down to 0.17 sec-
onds (2.2× speedup) for the experiment in Fig. 8.23. Similarly, for the top and the bottom
examples in Fig. 8.20, the fast Gauss-Seidel accelerates the relaxation by 1.8× and 3.3×
repetitively. We provide details about our graph coloring Gauss-Seidel in the App. 8.9.1
for completeness. An even higher speed-up can be expected via a GPU implementation
of the Gauss-Seidel relaxation (cf. [Fratarcangeli et al., 2016]). Besides the Gauss-Seidel
relaxation, parallelizing the entire solver could also be an interesting future direction to
accelerate our method.

8.8 Limitations & Future Work

We present a geometric multigrid solver for triangulated curved surfaces. Multigrid meth-
ods are asymptotically faster than direct solvers, thus it offers a promising direction for
scalable geometry processing. Our multigrid method can obtain a fast approximation of
the solution with orders of magnitude speedup. However, obtaining a highly accurate
solution would require more iterations which results in a less significant speed-ups. For
higher-order problems, our method may not converge to high accuracy because our choice
of linear interpolation is insufficient [Hemker, 1990]. Thus, exploring high-order prolon-
gation (e.g., subdivision barycentric coordinates [Anisimov et al., 2016]) or learning-based
prolongation (e.g, [Katrutsa et al., 2020]) would also be valuable directions to improve the
solver. Another interesting direction to improve the solver is to use our multigrid solver as
the pre-conditioner for other solvers such as the conjugate gradient method.

Developing a reliable and robust surface multigrid solver would be an important next
step. Our current solver ismore sensitive to the triangle quality of the inputmesh compared
to the existing direct solver. In our experiments, we remesh troublesome input shapes us-
ing availablemethods [Jakob et al., 2015; Hu et al., 2020; Schmidt and Singh, 2010]. A better
future approachwould be extending our self-parameterization to the entire remeshing pro-
cess, to maintain bijectivity from the remeshed object to the input mesh. Having a deeper
understanding of the relationship between the convergence and mesh quality would give
insights towards developing a suitable remeshing algorithm for surface multigrid solvers.
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Achieving thismay also require theoretical tools to estimate the convergence property, such
as extending the Local Fourier Analysis from subdivision meshes [Gaspar et al., 2009] to
generic unstructured meshes. Once surface multigrid has become a reliable solver for lin-
ear systems on manifold meshes, generalizing it to non-manifolds or point clouds would
be another exciting future direction.

Another avenue for future work is to further optimize each component of the prolonga-
tion construction and multigrid solver routines. Although our method outputs a bijective
map in most cases, bijectivity is not guaranteed. A more rigorous analysis is required to
identify potential edge cases that may result in non-bijective maps. Currently, we use off-
the-shelf simplification and distortion objectives (as-rigid-as-possible [Liu et al., 2008] and
conformal [Lévy et al., 2002] energies), but these methods that are designed for other pur-
poses may not be the optimal ones for surface multigrid methods. For instance, we notice
that the distortion in the self-parameterization is not closely correlated to the convergence
of our multigrid solver (see Fig. 8.14). We however use the off-the-shelf parameterization
energy designed to measure the distortion in our multigrid solver. Developing simplifica-
tion and parameterization methods tailored-made for multigrid solver performance could
further improve eventual solver speed.

The relationship between multigrid convergence and bijectivity requires a deeper un-
derstanding. Although we empirically demonstrate the superior performance of our pro-
longation compared to other non-bijective prolongations, bijectivity is not required for a
multigridmethod to converge. In our construction, we even pay the price of high distortion
to achieve bijectivity along the boundary (zoom in Fig. 8.6). Thus, a deeper understanding
of the connections between distortion, bijectivity, and multigrid convergence is important
to reach optimal performance.

8.9 Appendix

Figure 8.26: Given a system matrix with the sparsity pattern showing on the left, we first
use a greedy graph coloring approach detailed in Alg. 10 to “paint” the variables that are
independent of each other with the same color (middle). Then we perform reordering to
group the variables with the same color together (right) to parallelize our Gauss-Seidel
relaxation.
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Algorithm 10: Graph Coloring
1. sort nodes {ni} by degree
2. pallette← {}
3. for each node ni do
4. N ← gather colors from painted neighbors of ni
5. c← find first entry in pallette not occurring in N
6. if c is not found then
7. c← new color
8. append c to pallette
9. else
10. move c to back of pallette
11. paint ni with color c

8.9.1 Multi-Color Gauss Seidel

Our multigrid method spends a lot of the runtime on the Gauss-Seidel relaxation. We
further accelerate the Gauss-Seidel relaxation by exploiting graph coloring (see Fig. 8.26),
a standard optimization. Specifically, we treat the non-zero off-diagonal entries of a given
sparse matrix A as a graph. We color this graph so that each node has a different color from
its neighbors using a simple modification of the method proposed by Welsh and Powell
[1967], summarized in Alg. 10 and repeated here for completeness. We color each node in
descending order of degree. When considering node i, we try each color from a list of k
colors that have been previously used for nodes (1, · · · , i− 1). A color choice is valid if not
matching any of the previously colored neighbors of node i. If valid, node i is colored and
that color is moved to the back of the list. If no valid color is found in the list, a new color
is used and added to the back of the list. This algorithm has O(|V|log|V|+ |E|k) runtime
and O(|V|+ |E|)memory complexity, respectively, where k is the number of output colors
(for sparse matrices, k ≪ |V|). Although suboptimal (finding the optimal coloring is NP-
complete), it handily outperforms the method of [Fratarcangeli et al., 2016] in runtime,
memory usage, and color parsimony. By moving selected colors dynamically to the back
of the list, we achieve better color balance (see, e.g., Fig. 8.26) than considering the list in
fixed order of insertion.

8.9.2 Dirichlet Boundary Conditions

Solving a linear system Ax = ul is equivalent to minimizing a quadratic energy

E(x) =
1
2
x⊤Ax− x⊤ul (8.7)

where one canderive the same linear systemby setting ∂E/∂x = 0. Oneway to handleDirich-
let boundary conditions x(known) = c is to reformulate the quadratic energy using only the
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unknown variables. Here we use known and unknown to represent indices of knowns and
unknowns. We further use xk = x(known) to denote known variables and xu = x(unknown)
for unknown variables in x. For matrices, we follow the same notation. For example, we
use Auk = A(unknown, known) to represent the corresponding sub-block in matrix A. We
then rewrite the energy as (assuming A is symmetric)

E(xu) =
1
2
x⊤u Auuxu + x⊤u Aukxk − x⊤u u

l
u + constant. (8.8)

By setting the derivative to zero, we can derive a reduced linear system for only unknowns

Auu︸︷︷︸
LHS

xu = −Aukxk + ul
u︸ ︷︷ ︸

RHS

(8.9)

We can leverage the same trick to incorporate Dirichlet constraints in the multigrid sys-
tem. We use xc to denote the coarse variable such that x = Pxc where the P is the Galerkin
prolongation operator. We can then write the unknowns as

xu = Pu:xc (8.10)

where Pu: = P(unknown, :) (MATLAB notation) represents the rows of P that correspond
to the unknown indices. Adding this to Eq. (8.11) leads to

E(xc) =
1
2
(Pu:xc)

⊤Auu(Pu:xc) + (Pu:xc)
⊤Aukxk (8.11)

− (Pu:xc)
⊤ul

u + constant. (8.12)

=
1
2
x⊤c P

⊤
u:AuuPu:xc + x⊤c P

⊤
u:Aukxk (8.13)

− x⊤c P
⊤
u:u

l
u + constant. (8.14)

Similarly, setting the derivative with respect to xc results in

P⊤u:AuuPu:︸ ︷︷ ︸
reduced LHS

xc = P⊤u:(−Aukxk + ul
u)︸ ︷︷ ︸

reduced RHS

(8.15)

We can notice that, except at the second finest level where we need to extract the rows in
prolongation that correspond to the unknowns Pu:, we can solve the linear system at coarser
levels without worrying about the constraints.

Another special case may occur when there are too many known indices. If too many
variables in x are given the reduced systemP⊤u:AuuPu: mayhave completely zero rows/columns.
To handle this edge case, we further remove the columns on Pu: where the maximum value
is zero and the corresponding rows in the prolongation at the next level.
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8.9.3 Successive self-parameterization

Our pre-computation of multigrid hierarchy involves decimating the triangle mesh with
successive self-parameterization andmapping vertices on the fine mesh to the coarse mesh
to obtain their barycentric coordinates. We report the runtime of both pre-computation
steps in Fig. 8.18.

Implementing successive self-parameterization only requires a small change to an ex-
isting edge collapse algorithm. Specifically, right after collapsing a single edge, the only
modification is to use themethod described in Sec. 8.4.2 and Sec. 8.4.3 to formulate the joint
variable and then flatten both patches to a consistent UV domain. To determine whether
the collapse and the flattening is valid, we refer to the Sec. 4.8.3 for more details. During
the querying stage, for a given query point represented as barycentric coordinates, we sim-
ply go through the list of local joint UV parameterization we stored from the decimation
stage and update the barycentric coordinates successively using the method described in
Fig. 8.8. We pre-store the face indices involved in each edge collapse so that for each query
point, we can easily check whether this point is involved in the collapse via checking the
face indices.

8.9.4 Ablation Study

In addition to the prolongation operator, the hyperparameters of a multigrid method also
play a role in the convergence behavior. In terms of stopping criteria, the accuracy ε de-
pends on the problem and the size of the mesh. We usually set 10−5 ≤ ε ≤ 10− in order
to get visually indistinguishable results compared to the ground truth. Using a reason-
able initialization, such as the vertex positions in the previous iteration in mesh deforma-
tion, would further reduce the number of iterations to get the desired accuracy. For other
hyperparameters, we conduct ablation studies on the choice of relaxation methods, pre-
/post-relaxation iterations µpre, µpost, and the coarsening ratio between consecutive levels
(see Fig. 8.27). In terms of the relaxation methods, Gauss-Seidel is usually the go-to choice
due to its effectiveness in smoothing out the high-frequency error. Practitioners may also
prefer the (damped) Jacobi because it is faster and easier to parallelize, even though each
iteration is less effective. In terms of the number of relaxation iterations, usually a couple
of iterations (2 or 3) are sufficient to handle the high-frequency error. While we also notice
that some multigrid methods (e.g., [Xian et al., 2019]) use lower-order prolongation with
many more relaxation iterations to compensate for the inter-grid transfer error. In terms
of coarsening ratio, using a less aggressive coarsening (e.g., 0.5) could reduce the error
caused by the inter-grid transfer, but it often results in a bigger multigrid hierarchy and
a longer runtime per cycle. On the other hand, using a more aggressive coarsening often
leads to large inter-grid transfer error and slow convergence. Our default setup coarsens
the geometry down to 0.25 of its previous resolution until we reach the coarsest mesh with
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Figure 8.27: We conduct an ablation study on themultigrid hyperparameters, including the
relaxation method (left), the number of relaxation iterations (middle), and the coarsening
ratio (right). ©model by Oliver Laric under CC BY-NC-SA.

no fewer than 500 vertices. In each V-cycle, we use the Gauss-Seidel relaxation with 2 pre-
and post-relaxation iterations. Our experiments suggest that the optimal set of parameters
that minimizes the wall-clock runtime depends on the geometry and the PDE of interest.
But we use our default parameters for all our experiments in Sec. 8.6 for consistency.

8.9.5 Fast Data Smoothing

When we discretize the data smoothing energy Eq. (8.6), we often arrive the following
linear system

(αQ+ (1− α)M)︸ ︷︷ ︸
A

x = (1− α)Mf (8.16)

where Q is a matrix that depends on the choice of the smoothness energy, M is the mass
matrix, f is the noisy function, and α is the smoothness parameter. In order to build the
coarsened systemmatrix, a straightforward implementationwould be doingP⊤AP directly,
but we can actually split the computation via

P⊤AP = α(P⊤QP) + (1− α)(P⊤MP). (8.17)

Then we can pre-compute P⊤QP and P⊤MP even before knowing the parameter α. As a
results, during the online stage when a user adjusts α, we only require an efficient matrix
addition to compute the system matrices for all the multigrid levels.



Chapter 9

Conclusion

3D content creation has enabled breakthroughs in engineering and manufacturing indus-
tries. However, existing tools are still insufficient to unlock future experiences, such as
customized manufacturing, 3D virtual shopping, and the metaverse. This is because using
existing modeling tools requires professional training, thus preventing the general public
from using them to create, for instance, their digital avatars. The geometric stylization al-
gorithms we explored in this thesis demonstrate the possibility of significantly lowering
the difficulty in manipulating 3D shapes.

We began by showing how rendering can be used, not as a visualization tool, but as a
“translator” to generalize image filters to filter 3D objects (Chapter. 2). By a careful treat-
ment on rendering parameters, camera sampling, and mesh surgery, we can analytically
differentiate through the rendering function and enable one to plug-and-play image filters
on 3D meshes. In Chapter. 3, we further show that how this differentiable renderer can be
used improve robustness of deep learning image classifers against geometry and lighting
changes.

We demosntrate the effectiveness of geometric machine learning in capturing detailed
geometric styles and transferring from one shape to another in Chapter. 4. This is enabled
by a novel data-efficient self-supervised training formulation which can learn from only a
single or a few training shapes. Furthermore, we provide solutions to handle challenges in
mesh-based geometric learning, such as irregular mesh structure, various discretizations,
and rigid transformations.

We propose variational methods to turn a geometry into the cubic style (Chapter. 5).
Our key contribution is to define amathematical formula to characterize the style of the cu-
bic geometry and a reformulation to enable efficient optimization. The resulting algorithm
is an easy-to-use and interactive stylization framework. In Chapter. 6, we show how this
formulation can be further extended to different polygonal styles, in addition to cubes.

We further expand our topics to numerical tools for assisting interactive geometric styl-
ization and computation. In Chapter. 7, we focus on high-quality simplification of a 3D
shape where the quality is measured by the spectral property of the model. Our main con-
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tribution is a commutative energy for measuring the spectral similarity before and after the
simplification process. This energy enables us to do spectrum-preserving simplification in
order to maintain the quality of the solutions on coarsened meshes.

However, some applications (e.g., physics simulation) desireworking onhigh-resolution
models to capture high-frequency details in the solution. We provide an alternative route
by proposing a scalable multigrid solver to efficiently solve linear systems defined on sur-
face trianglular meshes. The key contribution is a self-parameterization technique to build
the multigrid hierarchy and define the inter-resolution transfer operators. Our approach
enables generalizing the scalable multigrid solvers to surface meshes.

9.1 Future Directions

However, the algorithmswe explore in the thesis aremerely the first steps towards a broader
goal ofmaking generic 3D content creation fast and accessible to everyone. Here are several
important questions for future exploration.

ParallelMeshData-Structures Accelerating and scaling upgeometry processing requires
to harness the power of parallel computation. However, common data-structures for stor-
ing meshes (e.g., list of vertices/faces and half-edge data-structure) are difficult to deploy
in parallel. Can we develop new mesh data-structure that can support existing geometry
processing applications in parallel?

Robust&Scalable Solvers Our surfacemultigridmethod inChapter. 8 has demonstrated
the promise in utilizing multigrid methods to scale up geometry processing, but it still suf-
fers frommesh defects and does not fully leverage the parallel computation power. Can we
develop a robust multigridmethods with parallel processes to extend geometry processing
to the scale of billions of vertices?

Robust Geometric Learning Geometric learning is a fundamental building block for de-
veloping data-driven geometry processing tools. However, existing geometric learning
models fail to operate to real-world “dirty” geometric datawith defects, such as non-manifold,
terrible triangle quality. Canwe develop novel ingredients to support robust geometricma-
chine learning?

Geometric Learning on Large Data In this thesis, we demonstrate the effectiveness of
learning from scarce geometric data. These data-efficient methods are capable of reasoning
about lower-level geometric features but are limited to capturing high-level semantics. With
the assistance of robust geometric learning, canwe learn froma large amount of rawgeometric
data to achieve high-level shape understandings?
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Data-Driven 3D Content Creation This thesis only focuses on a sub-problem, geometric
stylization, within the larger field of 3D content creation. With advances in 3D capturing
technologies (e.g., scanning, photogrammetry), geometric learning, and large geometric
datasets, can we extend the vision to renovating the entire 3Dmodeling pipeline with data-
driven approaches?
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J. R. and Akeley, K., editors, Proceedings of the 27th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH 2000, New Orleans, LA, USA, July 23-28, 2000, pages
95–102. ACM.

Habel, R., Mustata, B., andWimmer, M. (2008). Efficient spherical harmonics lighting with
the preetham skylight model. In Eurographics (Short Papers), pages 119–122.

Haber, T., Mertens, T., Bekaert, P., andReeth, F. V. (2005). A computational approach to sim-
ulate subsurface light diffusion in arbitrarily shaped objects. In Inkpen, K. and van de
Panne, M., editors, Proceedings of the Graphics Interface 2005 Conference, May 9-11, 2005,



BIBLIOGRAPHY 201

Victoria, British Columbia, Canada, pages 79–86. Canadian Human-Computer Communi-
cations Society.

Hackbusch, W. (2013). Multi-grid methods and applications, volume 4. Springer Science &
Business Media.

Haeberli, P. (1990). Paint by numbers: abstract image representations. In Baskett, F., editor,
Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 1990, Dallas, TX, USA, August 6-10, 1990, pages 207–214. ACM.

Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., and Cohen-Or, D. (2019).
Meshcnn: A network with an edge. ACM Transactions on Graphics (TOG), 38(4):90.

He, K. and Sun, J. (2015). Fast guided filter. CoRR, abs/1505.00996.

He, K., Sun, J., and Tang, X. (2010). Guided image filtering. In European conference on
computer vision, pages 1–14. Springer.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778.

He, L. and Schaefer, S. (2013). Mesh denoising via l 0 minimization. ACM Transactions on
Graphics (TOG), 32(4):64.

He, Y., Wang, H., Fu, C.-W., and Qin, H. (2009). A divide-and-conquer approach for auto-
matic polycube map construction. Computers & Graphics, 33(3):369–380.

Hemker, P. (1990). On the order of prolongations and restrictions in multigrid procedures.
Journal of Computational and Applied Mathematics, 32(3):423–429.

Henderson, L. D. (1983). The Fourth Dimension and Non-Euclidean Geometry. Princeton,
Princeton University Press.

Hendrycks, D. and Dietterich, T. G. (2018). Benchmarking neural network robustness to
common corruptions and surface variations. arXiv preprint arXiv:1807.01697.

Herholz, P. and Alexa, M. (2018). Factor Once: Reusing Cholesky Factorizations on Sub-
Meshes. ACM Transaction on Graphics (Proc. of Siggraph Asia), 37(6):9.

Herholz, P. and Sorkine-Hornung, O. (2020). Sparse cholesky updates for interactive mesh
parameterization. ACM Trans. Graph., 39(6):202:1–202:14.

Hertz, A., Hanocka, R., Giryes, R., and Cohen-Or, D. (2020). Deep geometric texture syn-
thesis. ACM Trans. Graph., 39(4):108.



BIBLIOGRAPHY 202

Hertzmann, A., Jacobs, C. E., Oliver, N., Curless, B., and Salesin, D. (2001). Image analogies.
In Pocock, L., editor, Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH 2001, Los Angeles, California, USA, August 12-17, 2001,
pages 327–340. ACM.

Hertzmann, A., Oliver, N., Curless, B., and Seitz, S. M. (2002). Curve analogies. In Gibson,
S. and Debevec, P. E., editors, Proceedings of the 13th Eurographics Workshop on Rendering
Techniques, Pisa, Italy, June 26-28, 2002, volume 28 ofACM International Conference Proceed-
ing Series, pages 233–246. Eurographics Association.

Hertzmann, A., O’Sullivan, C., and Perlin, K. (2009). Realistic human body movement for
emotional expressiveness. In ACM SIGGRAPH 2009 Courses, page 20. ACM.

Hoppe, H. (1996). Progressive meshes. In Fujii, J., editor, Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, New Orleans,
LA, USA, August 4-9, 1996, pages 99–108. ACM.

Hoppe, H. (1997). View-dependent refinement of progressive meshes. In Owen, G. S.,
Whitted, T., and Mones-Hattal, B., editors, Proceedings of the 24th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH 1997, Los Angeles, CA, USA, Au-
gust 3-8, 1997, pages 189–198. ACM.

Hoppe, H. (1999). New quadric metric for simplifying meshes with appearance attributes.
In Visualization’99. Proceedings, pages 59–510. IEEE.

Hoppe, H., DeRose, T., Duchamp, T., Halstead, M. A., Jin, H., McDonald, J. A., Schweitzer,
J., and Stuetzle, W. (1994). Piecewise smooth surface reconstruction. In Schweitzer,
D., Glassner, A. S., and Keeler, M., editors, Proceedings of the 21th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH 1994, Orlando, FL, USA, July 24-
29, 1994, pages 295–302. ACM.

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J. A., and Stuetzle, W. (1993). Mesh opti-
mization. In Whitton, M. C., editor, Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 1993, Anaheim, CA, USA, August 2-6, 1993,
pages 19–26. ACM.

Hu, R., Li, W., Kaick, O. V., Huang, H., Averkiou, M., Cohen-Or, D., and Zhang, H. (2017).
Co-locating style-defining elements on 3d shapes. ACM Transactions on Graphics (TOG),
36(3):33.

Hu, Y., Schneider, T., Wang, B., Zorin, D., and Panozzo, D. (2020). Fast tetrahedral meshing
in the wild. ACM Trans. Graph., 39(4):117.

Hu, Y., Zhou, Q., Gao, X., Jacobson, A., Zorin, D., and Panozzo, D. (2018). Tetrahedral
meshing in the wild. ACM Transactions on Graphics (TOG), 37(4):60.



BIBLIOGRAPHY 203

Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2017). Densely connected
convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 2261–2269.

Huang, J., Jiang, T., Shi, Z., Tong, Y., Bao, H., andDesbrun,M. (2014). l1-based construction
of polycube maps from complex shapes. ACM Trans. Graph., 33(3).

Huang, Q., Adams, B., Wicke, M., and Guibas, L. J. (2008). Non-rigid registration under
isometric deformations. Comput. Graph. Forum, 27(5):1449–1457.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer, K. (2016).
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size.
arXiv preprint arXiv:1602.07360.

Igarashi, T., Moscovich, T., and Hughes, J. F. (2005a). As-rigid-as-possible shape manipu-
lation. In ACM transactions on Graphics (TOG), volume 24, pages 1134–1141. ACM.

Igarashi, T., Moscovich, T., and Hughes, J. F. (2005b). As-rigid-as-possible shape manipu-
lation. ACM Trans. Graph., 24(3):1134–1141.

J., K., Smith, E., Lafleche, J.-F., Fuji Tsang, C., Rozantsev, A., Chen,W., Xiang, T., Lebaredian,
R., and Fidler, S. (2019). Kaolin: A pytorch library for accelerating 3d deep learning
research. arXiv:1911.05063.

Jacobson, A., Panozzo, D., et al. (2018). libigl: A simple C++ geometry processing library.
http://libigl.github.io/libigl/.

Jacobson, A., Tosun, E., Sorkine, O., and Zorin, D. (2010). Mixed finite elements for varia-
tional surface modeling. Comput. Graph. Forum, 29(5):1565–1574.

Jakob, W., Tarini, M., Panozzo, D., and Sorkine-Hornung, O. (2015). Instant field-aligned
meshes. ACM Trans. Graph., 34(6):189:1–189:15.

James, S. and Johns, E. (2016). 3d simulation for robot arm control with deep q-learning.
arXiv preprint arXiv:1609.03759.

Jeon, I., Choi, K., Kim, T., Choi, B., and Ko, H. (2013). Constrainable multigrid for cloth.
Comput. Graph. Forum, 32(7):31–39.

Jiang, Z., Schneider, T., Zorin, D., and Panozzo, D. (2020). Bijective projection in a shell.
ACM Trans. Graph., 39(6):247:1–247:18.

Jin, M., Kim, J., Luo, F., and Gu, X. (2008). Discrete surface ricci flow. IEEE Transactions on
Visualization and Computer Graphics, 14(5):1030–1043.



BIBLIOGRAPHY 204

Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S. N., Rosaen, K., and Vasudevan, R.
(2017). Driving in the matrix: Can virtual worlds replace human-generated annotations
for realworld tasks? InRobotics andAutomation (ICRA), 2017 IEEE International Conference
on, pages 746–753. IEEE.

Kahl, K. and Rottmann, M. (2018). Least angle regression coarsening in bootstrap algebraic
multigrid. arXiv preprint arXiv:1802.00595.

Kajiya, J. T. (1986). The rendering equation. InACMSiggraph Computer Graphics, volume 20,
pages 143–150. ACM.

Kanbak, C., Moosavi Dezfooli, S. M., and Frossard, P. (2018). Geometric robustness of deep
networks: analysis and improvement. Proceedings of IEEE CVPR.

Karciauskas, K. and Peters, J. (2018). A new class of guided C2 subdivision surfaces com-
bining good shape with nested refinement. Comput. Graph. Forum, 37(6):84–95.

Kato, H., Ushiku, Y., and Harada, T. (2018). Neural 3d mesh renderer. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 3907–3916.

Katrutsa, A., Daulbaev, T., and Oseledets, I. V. (2020). Black-box learning of multigrid
parameters. J. Comput. Appl. Math., 368.

Kavan, L., Gerszewski, D., Bargteil, A. W., and Sloan, P.-P. (2011). Physics-inspired upsam-
pling for cloth simulation in games. ACM Trans. Graph., 30(4).

Kazhdan, M. and Hoppe, H. (2019). An adaptive multi-grid solver for applications in
computer graphics. In Computer Graphics Forum, volume 38, pages 138–150. Wiley Online
Library.

Kazhdan,M., Solomon, J., and Ben-Chen,M. (2012). Canmean-curvature flow bemodified
to be non-singular? Comput. Graph. Forum, 31(5):1745–1754.

Kazhdan, M. M. and Hoppe, H. (2008). Streaming multigrid for gradient-domain opera-
tions on large images. ACM Trans. Graph., 27(3):21.

Kazhdan, M. M. and Hoppe, H. (2013). Screened poisson surface reconstruction. ACM
Trans. Graph., 32(3):29:1–29:13.

Kerautret, B., Granier, X., and Braquelaire, A. (2005). Intuitive shape modeling by shading
design. In International Symposium on Smart Graphics, pages 163–174. Springer.

Kerber, J., Tevs, A., Belyaev, A., Zayer, R., and Seidel, H.-P. (2009). Feature sensitive bas
relief generation. In 2009 IEEE International Conference on Shape Modeling and Applications,
pages 148–154. IEEE.



BIBLIOGRAPHY 205

Kharevych, L., Mullen, P., Owhadi, H., and Desbrun, M. (2009). Numerical coarsening of
inhomogeneous elastic materials. ACM Trans. on Graph.
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