

Published as a conference paper at ICLR 2019

Runtime The inset presents our runtime per
iteration for computing derivatives. An ad-
versary normally requires less than 10 itera-
tions, thus takes a few seconds. We evaluate
our CPU PYTHON implementation and the
OPENGL rendering, on an Intel Xeon 3.5GHz
CPU with 64GB of RAM and an NVIDIA
GeForce GTX 1080. Our runtime depends on the number of pixels requiring derivatives.

5 RENDERED ADVERSARIAL DATA AUGMENTATION AGAINST REAL PHOTOS

We inject adversarial examples, generated using our differentiable renderer, into the training process
of modern image classifiers. Our goal is to increase the robustness of these classifiers to real-world
perturbations. Traditionally, adversarial training is evaluated against computer-generated adversarial
images (Kurakin et al., 2017; Madry et al., 2018; Tramèr et al., 2017). In contrast, our evaluation
differs from the majority of the literature, as we evaluate performance against real photos (i.e., images
captured using a camera), and not computer-generated images. This evaluation method is motivated
by our goal of increasing a classifier’s robustness to “perturbations” that occur in the real world and
result from the physical processes underlying real-world image formation. We present preliminary
steps towards this objective, resolving the lack of realism of pixel norm-balls and evaluating our
augmented classifiers (i.e., those trained using our rendered adversaries) against real photographs.

Training We train the WideResNet (16 layers, 4 wide factor) (Zagoruyko & Komodakis, 2016)
on CIFAR-100 (Krizhevsky & Hinton, 2009) augmented with adversarial lighting examples. We
apply a common adversarial training method that adds a fixed number of adversarial examples each
epoch (Goodfellow et al., 2015; Kurakin et al., 2017). We refer readers to Appendix F for the training
detail. In our experiments, we compare three training scenarios: (1) CIFAR-100, (2) CIFAR-100
+ 100 images under random lighting, and (3) CIFAR-100 + 100 images under adversarial lighting.
Comparing to the accuracy reported in (Zagoruyko & Komodakis, 2016), WideResNets trained on
these three cases all have comparable performance (≈ 77%) on the CIFAR-100 test set.

Figure 11: Unlike much of the lit-
erature on adversarial training, we
evaluate against real photos (cap-
tured by a camera), not computer-
generated images. This figure il-
lustrates a subset of our test data.

Testing We create a test set of real photos, captured in a lab-
oratory setting with controlled lighting and camera parameters:
we photographed oranges using a calibrated Prosilica GT 1920
camera under different lighting conditions, each generated by
projecting different lighting patterns using an LG PH550 projec-
tor. This hardware lighting setup projects lighting patterns from
a fixed solid angle of directions onto the scene objects. Figure 11
illustrates samples from the 500 real photographs of our dataset.
We evaluate the robustness of our classifier models according
to test accuracy. Of note, average prediction accuracies over
five trained WideResNets on our test data under the three train-
ing cases are (1) 4.6%, (2) 40.4%, and (3) 65.8%. This result
supports the fact that training on rendered images can improve the networks’ performance on real
photographs. Our preliminary experiments motivate the potential of relying on rendered adversarial
training to increase the robustness to visual phenomena present in the real-world inputs.

6 LIMITATIONS & FUTURE WORK

Using parametric norm-balls to remove the lack of realism of pixel norm-balls is only the first step to
bring adversarial machine learning to real-world. More evaluations beyond the lab experimental data
could uncover the potential of the rendered adversarial data augmentation. Coupling the differentiable
renderer with methods for reconstructing 3D scenes, such as (Veeravasarapu et al., 2017b; Tremblay
et al., 2018), has the potential to develop a complete pipeline for rendered adversarial training. We
can take a small set of real images, constructing 3D virtual scenes which have real image statistics,
using our approach to manipulate the predicted parameters to construct the parametric adversarial

8

Published as a conference paper at ICLR 2019

examples, then perform rendered adversarial training. This direction has the potential to produce
limitless simulated adversarial data augmentation for real-world tasks.

Our differentiable renderer models the change of realistic environment lighting and geometry. In-
corporating real-time rendering techniques from the graphics community could further improve the
quality of rendering. Removing the locally constant texture assumption could improve our results.
Extending the derivative computation to materials could enable “adversarial materials”. Incorporating
derivatives of the visibility change and propagating gradient information to shape skeleton could also
create “adversarial poses”. These extensions offer a set of tools for modeling real security scenarios.
For instance, we can train a self-driving car classifier that can robustly recognize pedestrians under
different poses, lightings, and cloth deformations.

ACKNOWLEDGMENTS

This work is funded in part by NSERC Discovery Grants (RGPIN–2017–05235 & RG-
PAS–2017–507938), Connaught Funds (NR2016–17), the Canada Research Chairs Program, the
Fields Institute, and gifts by Adobe Systems Inc., Autodesk Inc., MESH Inc. We thank members
of Dynamic Graphics Project for feedback and draft reviews; Wenzheng Chen for photography
equipments; Colin Raffel and David Duvenaud for discussions and feedback.

REFERENCES

Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. Real-time rendering. AK Peters/CRC Press,
2008.

Naveed Akhtar and Ajmal S. Mian. Threat of adversarial attacks on deep learning in computer vision:
A survey. IEEE Access, 6:14410–14430, 2018.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
examples, 2017.

Ronen Basri and David W Jacobs. Lambertian reflectance and linear subspaces. IEEE transactions
on pattern analysis and machine intelligence, 25(2):218–233, 2003.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. ShapeNet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26. ACM,
2017.

Wenzheng Chen, Huan Wang, Yangyan Li, Hao Su, Zhenhua Wang, Changhe Tu, Dani Lischinski,
Daniel Cohen-Or, and Baoquan Chen. Synthesizing training images for boosting human 3d pose
estimation. In 3D Vision (3DV), 2016 Fourth International Conference on, pp. 479–488. IEEE,
2016.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting
adversarial attacks with momentum. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018.

TM Dunster. Legendre and related functions. NIST handbook of mathematical functions, pp. 351–381,
2010.

SM Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Geoffrey E Hinton,
et al. Attend, infer, repeat: Fast scene understanding with generative models. In Advances in
Neural Information Processing Systems, pp. 3225–3233, 2016.

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul
Prakash, Tadayoshi Kohno, and Dawn Song. Robust Physical-World Attacks on Deep Learning
Visual Classification. In Computer Vision and Pattern Recognition (CVPR), 2018.

9

Published as a conference paper at ICLR 2019

Kyle Genova, Forrester Cole, Aaron Maschinot, Aaron Sarna, Daniel Vlasic, and William T. Freeman.
Unsupervised training for 3d morphable model regression. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

Justin Gilmer, Ryan P Adams, Ian Goodfellow, David Andersen, and George E Dahl. Motivating the
rules of the game for adversarial example research. arXiv preprint arXiv:1807.06732, 2018.

Ian Goodfellow. Defense against the dark arts: An overview of adversarial example security research
and future research directions. arXiv preprint arXiv:1806.04169, 2018.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015. URL http://
arxiv.org/abs/1412.6572.

Robin Green. Spherical harmonic lighting: The gritty details. In Archives of the Game Developers
Conference, volume 56, pp. 4, 2003.

Ralf Habel, Bogdan Mustata, and Michael Wimmer. Efficient spherical harmonics lighting with the
preetham skylight model. In Eurographics (Short Papers), pp. 119–122, 2008.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks and Thomas G Dietterich. Benchmarking neural network robustness to common
corruptions and surface variations. arXiv preprint arXiv:1807.01697, 2018.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 2261–2269, 2017. doi: 10.1109/CVPR.
2017.243. URL https://doi.org/10.1109/CVPR.2017.243.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

Stephen James and Edward Johns. 3d simulation for robot arm control with deep q-learning. arXiv
preprint arXiv:1609.03759, 2016.

Matthew Johnson-Roberson, Charles Barto, Rounak Mehta, Sharath Nittur Sridhar, Karl Rosaen, and
Ram Vasudevan. Driving in the matrix: Can virtual worlds replace human-generated annotations
for real world tasks? In Robotics and Automation (ICRA), 2017 IEEE International Conference on,
pp. 746–753. IEEE, 2017.

James T Kajiya. The rendering equation. In ACM Siggraph Computer Graphics, volume 20, pp.
143–150. ACM, 1986.

Can Kanbak, Seyed Mohsen Moosavi Dezfooli, and Pascal Frossard. Geometric robustness of deep
networks: analysis and improvement. Proceedings of IEEE CVPR, 2018.

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3907–3916, 2018.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world. In
Proc. ICLR, 2016.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. 2017.

10

http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://doi.org/10.1109/CVPR.2017.243

Published as a conference paper at ICLR 2019

Guilin Liu, Duygu Ceylan, Ersin Yumer, Jimei Yang, and Jyh-Ming Lien. Material editing using a
physically based rendering network. In 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 2280–2288. IEEE, 2017.

Hsueh-Ti Derek Liu, Michael Tao, and Alec Jacobson. Paparazzi: Surface editing by way of
multi-view image processing. 2018.

Matthew M Loper and Michael J Black. OpenDR: An approximate differentiable renderer. In
European Conference on Computer Vision, pp. 154–169. Springer, 2014.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. International Conference on
Learning Representations, 2018.

Gavin Miller. Efficient algorithms for local and global accessibility shading. In Proceedings of the
21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’94, pp.
319–326, New York, NY, USA, 1994. ACM. ISBN 0-89791-667-0. doi: 10.1145/192161.192244.
URL http://doi.acm.org/10.1145/192161.192244.

Takeru Miyato, Shin-ichi Maeda, Shin Ishii, and Masanori Koyama. Virtual adversarial training: a
regularization method for supervised and semi-supervised learning. IEEE transactions on pattern
analysis and machine intelligence, 2018.

Seyed Mohsen Moosavi Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), number EPFL-CONF-218057, 2016.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 86–94, 2017.

Yair Movshovitz-Attias, Takeo Kanade, and Yaser Sheikh. How useful is photo-realistic rendering
for visual learning? In European Conference on Computer Vision, pp. 202–217. Springer, 2016.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security, pp. 506–519. ACM, 2017.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically based rendering: From theory to
implementation. Morgan Kaufmann, 2016.

Arcot J Preetham, Peter Shirley, and Brian Smits. A practical analytic model for daylight. In
Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp.
91–100. ACM Press/Addison-Wesley Publishing Co., 1999.

Ravi Ramamoorthi and Pat Hanrahan. An efficient representation for irradiance environment maps.
In Proceedings of the 28th annual conference on Computer graphics and interactive techniques,
pp. 497–500. ACM, 2001.

Andras Rozsa, Ethan M Rudd, and Terrance E Boult. Adversarial diversity and hard positive
generation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 25–32, 2016.

Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a single real image.
arXiv preprint arXiv:1611.04201, 2016.

Dave Shreiner and The Khronos OpenGL ARB Working Group. OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Versions 3.0 and 3.1. Addison-Wesley Professional, 7th
edition, 2009. ISBN 0321552628, 9780321552624.

11

http://doi.acm.org/10.1145/192161.192244

Published as a conference paper at ICLR 2019

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Peter-Pike Sloan, Ben Luna, and John Snyder. Local, deformable precomputed radiance transfer. In
ACM Transactions on Graphics (TOG), volume 24, pp. 1216–1224. ACM, 2005.

Hao Su, Charles R Qi, Yangyan Li, and Leonidas J Guibas. Render for CNN: Viewpoint estimation in
images using CNNs trained with rendered 3d model views. In Proc. ICCV, pp. 2686–2694, 2015.

Jiawei Su, Danilo Vasconcellos Vargas, and Sakurai Kouichi. One pixel attack for fooling deep neural
networks. arXiv preprint arXiv:1710.08864, 2017.

Sining Sun, Ching-Feng Yeh, Mari Ostendorf, Mei-Yuh Hwang, and Lei Xie. Training augmentation
with adversarial examples for robust speech recognition. arXiv preprint arXiv:1806.02782, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. 2014.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick McDaniel. Ensemble
adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204, 2017.

Jonathan Tremblay, Aayush Prakash, David Acuna, Mark Brophy, Varun Jampani, Cem Anil, Thang
To, Eric Cameracci, Shaad Boochoon, and Stan Birchfield. Training deep networks with synthetic
data: Bridging the reality gap by domain randomization. 2018.

Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J Black, Ivan Laptev, and
Cordelia Schmid. Learning from synthetic humans. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2017), 2017.

VSR Veeravasarapu, Constantin Rothkopf, and Ramesh Visvanathan. Model-driven simulations for
computer vision. In Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on,
pp. 1063–1071. IEEE, 2017a.

VSR Veeravasarapu, Constantin A Rothkopf, and Visvanathan Ramesh. Adversarially tuned scene
generation. In CVPR, pp. 6441–6449, 2017b.

Lance Williams. Casting curved shadows on curved surfaces. In ACM Siggraph Computer Graphics,
volume 12, pp. 270–274. ACM, 1978.

Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli. Neural scene de-rendering. In Proc. CVPR,
volume 2, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the British
Machine Vision Conference 2016, BMVC 2016, York, UK, September 19-22, 2016, 2016.

Xiaohui Zeng, Chenxi Liu, Weichao Qiu, Lingxi Xie, Yu-Wing Tai, Chi Keung Tang, and Alan L
Yuille. Adversarial attacks beyond the image space. arXiv preprint arXiv:1711.07183, 2017.

12

Published as a conference paper at ICLR 2019

Supplementary Material

A COMPARISON BETWEEN PERTURBATION SPACES

We extend our comparisons against pixel norm-balls methods (Figure 1) by visualizing the results
and the generated perturbations (Figure 12). We hope this figure elucidates that our parametric
perturbation are more realistic several scales of perturbations.

original
image

parametric
(lighting)

texture color
[Athalye 17]

one-step pixel
[Goodfellow 14]

multi-step pixel
[Moosavi Dezfooli 16]

parametric
(geometry)

sm
al

l n
or

m
im

g.
 d

iff
. x

5
m

ed
. n

or
m

im
g.

 d
iff

. x
1

la
rg

e
no

rm
im

g.
 d

iff
. x

0.
5

Figure 12: We compare our parametric perturbations (the first two columns) with pixel/color perturba-
tions under the same L∞ pixel norm (small: 0.12, medium: 0.53, large: 0.82). As changing physical
parameters corresponds to real-world phenomena, our parametric perturbation are more realistic.

B PHYSICALLY BASED RENDERING

scene

Camera

light
source

Figure 13: PBR models the
physics of light that emitted from
the light source, interact with the
scene, then arrive a camera.

Physically based rendering (PBR) seeks to model the flow of
light, typically the assumption that there exists a collection of
light sources that generate light; a camera that receives this
light; and a scene that modulates the flow light between the light
sources and camera (Pharr et al., 2016). What follows is a brief
discussion of the general task of rendering an image from a scene
description and the approximations we take in order to make our
renderer efficient yet differentiable.

Computer graphics has dedicated decades of effort into devel-
oping methods and technologies to enable PBR to synthesize
of photorealistic images under a large gamut of performance

13

Published as a conference paper at ICLR 2019

requirements. Much of this work is focused around taking approximations of the cherished Rendering
equation (Kajiya, 1986), which describes the propagation of light through a point in space. If we
let uo be the output radiance, p be the point in space, ωo be the output direction, ue be the emitted
radiance, ui be incoming radiance, ωi be the incoming angle, fr be the way light be reflected off the
material at that given point in space we have:

uo(p, ωo) = ue(p, ωo) +

∫
S2

fr(p, ωi, ωo)ui(p, ωi)(ωi · n)dωi.

From now on we will ignore the emission term ue as it is not pertinent to our discussion. Furthermore,
because the speed of light is substantially faster than the exposure time of our eyes, what we perceive
is not the propagation of light at an instant, but the steady state solution to the rendering equation
evaluated at every point in space. Explicitly computing this steady state is intractable for our
applications and will mainly serve as a reference for which to place a plethora of assumptions and
simplifications we will make for the sake of tractability. Many of these methods focus on ignoring
light with nominal effects on the final rendered image vis a vis assumptions on the way light travels.
For instance, light is usually assumed to have nominal interacts with air, which is described as the
assumption that the space between objects is a vacuum, which constrains the interactions of light to
the objects in a scene. Another common assumption is that light does not penetrate objects, which
makes it difficult to render objects like milk and human skin1. This constrains the complexity of light
propagation to the behavior of light bouncing off of object surfaces.

B.1 LOCAL ILLUMINATION

Figure 14: Rasterization converts
a 3D scene into pixels.

It is common to see assumptions that limit number of bounces
light is allowed.In our case we chose to assume that the steady
state is sufficiently approximated by an extremely low number
of iterations: one. This means that it seems sufficient to model
the lighting of a point in space by the light sent to it directly by
light sources. Working with such a strong simplification does,
of course, lead to a few artifacts. For instance, light occluded
by other objects is ignored so shadows disappear and auxiliary
techniques are usually employed to evaluate shadows (Williams,
1978; Miller, 1994).

When this assumption is coupled with a camera we approach what is used in standard rasterization
systems such as OPENGL (Shreiner & Group, 2009), which is what we use. These systems compute
the illumination of a single pixel by determining the fragment of an object visible through that pixel
and only computing the light that traverses directly from the light sources, through that fragment, to
that pixel. The lighting of a fragment is therefore determined by a point and the surface normal at
that point, so we write the fragment’s radiance as R(p,n, ωo) = uo(p, ωo):

R(p,n, ωo) =

∫
S2

fr(p, ωi, ωo)ui(p, ωi)(ωi · n)dωi. (6)

B.2 LAMBERTIAN MATERIAL

Lambertian Non-Lambertian

Figure 15: We consider the Lam-
bertian material (left) where lights
get reflected uniformly in every
direction.

Each point on an object has a model approximating the transfer
of incoming light to a given output direction fr, which is usually
called the material. On a single object the material parameters
may vary quite a bit and the correspondence between points and
material parameters is usually called the texture map which forms
the texture of an object. There exists a wide gamut of material
models, from mirror materials that transport light from a single
input direction to a single output direction, to materials that
reflect light evenly in all directions, to materials liked brushed
metal that reflect differently along different angles. For the sake
of document we only consider diffuse materials, also called Lambertian materials, where we assume

1this is why simple renderers make these sorts of objects look like plastic

14

Published as a conference paper at ICLR 2019

that incoming light is reflected uniformly, i.e fr is a constant function with respect to angle, which
we denote fr(p, ωi, ωo) = ρ(p):

R(p,n) = ρ(p)

∫
Ω(n)

u(p, ω)(ω · n)dω. (7)

This function ρ is usually called the albedo, which can be perceived as color on the surface for diffuse
material, and we reduce our integration domain to the upper hemisphere Ω(n) in order to model light
not bouncing through objects. Furthermore, since only the only ω and u are the incoming ones we
can now suppress the “incoming” in our notation and just use ω and u respectively.

B.3 ENVIRONMENT MAPPING

The illumination of static, distant objects such as the ground, the sky, or mountains do not change
in any noticeable fashion when objects in a scene are moved around, so u can be written entirely in
terms of ω, u(p, ω) = u(ω). If their illumination forms a constant it seems prudent to pre-compute
or cache their contributions to the illumination of a scene. This is what is usually called environment
mapping and they fit in the rendering equation as a representation for the total lighting of a scene, i.e
the total incoming radiance ui. Because the environment is distant, it is common to also assume that
the position of the object receiving light from an environment map does not matter so this simplifies
ui to be independent of position:

R(p,n) = ρ(p)

∫
Ω(n)

u(ω) (ω · n) dω. (8)

B.4 SPHERICAL HARMONICS

Despite all of our simplifications, the inner integral is still a fairly generic function over S2. Many
techniques for numerically integrating the rendering equation have emerged in the graphics community
and we choose one which enables us to perform pre-computation and select a desired spectral
accuracy: spherical harmonics. Spherical harmonics are a basis on S2 so, given a spherical harmonics
expansion of the integrand, the evaluation of the above integral can be reduced to a weighted product
of coefficients. This particular basis is chosen because it acts as a sort of Fourier basis for functions
on the sphere and so the bases are each associated with a frequency, which leads to a convenient
multi-resolution structure. In fact, the rendering of diffuse objects under distant lighting can be 99%
approximated by just the first few spherical harmonics bases (Ramamoorthi & Hanrahan, 2001).

We will only need to note that the spherical harmonics bases Y ml are denoted with the subscript
with l as the frequency and that there are 2l + 1 functions per frequency, denoted by superscripts m
between −l to l inclusively. For further details on them please take a glance at Appendix C.

If we approximate a function f in terms of spherical harmonics coefficients f ≈
∑
lm fl,mY

m
l the

integral can be precomputed as∫
S2

f ≈
∫
S2

∑
lm

fl,mY
m
l =

∑
lm

fl,m

∫
S2

Y ml , (9)

Thus we have defined a reduced rendering equation that can be efficiently evaluated using OPENGL
while maintaining differentiability with respect to lighting and vertices. In the following appendix we
will derive the derivatives necessary to implement our system.

C DIFFERENTIABLE RENDERER

Rendering computes an image of a 3D shape given lighting conditions and the prescribed material
properties on the surface of the shape. Our differentiable renderer assumes Lambertian reflectance,
distant light sources, local illumination, and piece-wise constant textures. We will discuss how
to explicitly compute the derivatives used in the main body of this text. Here we give a detailed
discussion about spherical harmonics and their advantages.

15

Published as a conference paper at ICLR 2019

C.1 SPHERICAL HARMONICS

Spherical harmonics are usually defined in terms of the Legendre polynomials, which are a class of
orthogonal polynomials defined by the recurrence relation

P0 = 1 (10)
P1 = x (11)

(l + 1)Pl+1(x) = (2l + 1)xPl(x)− lPl−1(x). (12)

The associated Legendre polynomials are a generalization of the Legendre polynomials and can be
fully defined by the relations

P 0
l = Pl (13)

(l −m+ 1)Pml+1(x) = (2l + 1)xPml (x)− (l +m)Pml−1(x) (14)

2mxPml (x) = −
√

1− x2
[
Pm+1
l (x) + (l +m)(l −m+ 1)Pm−1

l (x)
]
. (15)

Using the associated Legendre polynomials Pml we can define the spherical harmonics basis as

Y ml (θ, φ) = Km
l


(−1)m

√
2P−ml (cos θ) sin(−mφ) m < 0

(−1)m
√

2Pml (cos θ) cos(mφ) m > 0

P 0
l (cos θ) m = 0

. (16)

where Km
l =

√
(2l + 1)(l − |m|)!

4π(l + |m|)!
. (17)

We will use the fact that the associated Legendre polynomials correspond to the spherical harmonics
bases that are rotationally symmetric along the z axis (m = 0).

In order to incorporate spherical harmonics into Equation 8, we change the integral domain from the
upper hemisphere Ω(n) back to S2 via a max operation

R(p,n) = ρ(p)

∫
Ω(n)

u(ω)(ω · n)dω (18)

= ρ(p)

∫
S2

u(ω) max(ω · n, 0)dω. (19)

We see that the integral is comprised of two components: a lighting component u(ω) and a component
that depends on the normal max(ω · n, 0). The strategy is to pre-compute the two components by
projecting onto spherical harmonics, and evaluating the integral via a dot product at runtime, as we
will now derive.

C.2 LIGHTING IN SPHERICAL HARMONICS

Approximating the lighting component u(ω) in Equation 19 using spherical harmonics Y ml up to
band n can be written as

u(ω) ≈
n∑
l=0

l∑
m=−l

Ul,mY
m
l (ω),

where Ul,m ∈ R are coefficients. By using the orthogonality of spherical harmonics we can use
evaluate these coefficients as an integral between u(ω) and Y ml (ω)

Ul,m = 〈u, Y ml 〉S2 =

∫
S2

u(ω)Y ml (ω)dω,

which can be evaluated via quadrature.

C.3 CLAMPED COSINE IN SPHERICAL HARMONICS

So far, we have projected the lighting term u(ω) onto the spherical harmonics basis. To complete
evaluating Equation 19 we also need to approximate the second component max(ω ·n, 0) in spherical

16

Published as a conference paper at ICLR 2019

harmonics. This is the so-called the clamped cosine function.

g(ω,n) = max(ω · n, 0) =
n∑
l=0

l∑
m=−l

Gl,m(n)Y ml (ω),

where Gl,m(n) ∈ R can be computed by projecting g(ω,n) onto Y ml (ω)

Gl,m(n) =

∫
S2

max(ω · n, 0)Y ml (ω)dω.

Unfortunately, this formulation turns out to be tricky to compute. Instead, the common practice is to
analytically compute the coefficients for unit z direction G̃l,m = Gl,m(nz) = Gl,m([0, 0, 1]ᵀ) and
evaluate the coefficients for different normals Gl,m(n) by rotating G̃l,m. This rotation, G̃l,m, can be
computed analytically:

G̃l,m =

∫
S2

max(ω · nz, 0)Y ml (ω)dω

=

∫ 2π

0

∫ π

0

max([sin θ cosφ, sin θ sinφ, cos θ][0, 0, 1]ᵀ, 0)Y ml (θ, φ) sin θdθdφ

=

∫ 2π

0

∫ π

0

max(cos θ, 0)Y ml (θ, φ) sin θdθdφ

=

∫ 2π

0

∫ π/2

0

cos θ Y ml (θ, φ) sin θdθdφ. (20)

In fact, because max(ω ·nz, 0) is rotationally symmetric around the z-axis, its projection onto Y ml (ω)
will have many zeros except the rotationally symmetric spherical harmonics Y 0

l . In other words,
G̃l,m is non-zero only when m = 0. So we can simplify Equation 20 to

G̃l = G̃l,0 = 2π

∫ π/2

0

cos θ Y 0
l (θ) sin θdθ.

The evaluation of this integral can be found in Appendix A in (Basri & Jacobs, 2003). We provide
this here as well:

G̃l =



√
π

2 l = 0√
π
3 l = 1

(−1)
l
2 +1 (l−2)!

√
(2l+1)π

2l(l
2−1)!(l

2 +1)!
l ≥ 2, even

0 l ≥ 2, odd

.

The spherical harmonics coefficients Gl,m(n) of the clamped cosine function g(ω,n) can be com-
puted by rotating G̃l (Sloan et al., 2005) using this formula

Gl,m(n) =

√
4π

2l + 1
G̃l Y

m
l (n). (21)

So far we have projected the two terms in Equation 19 into the spherical harmonics basis. Orthogo-
nality of spherical harmonics makes the evaluation of this integral straightforward:∫

S2

u(ω) max(ω · n, 0)dω =

∫
S2

[∑
l,m

Ul,mY
m
l (ω)

][∑
j,k

Gj,k(n)Y kj (ω)

]
dω

=
∑
j,k,l,m

Ul,mGj,k(n)δljδ
m
k (22)

=
∑
l,m

Ul,mGl,m(n). (23)

17

Published as a conference paper at ICLR 2019

This, in conjunction with Equation 21allows us to derive the rendering equation using spherical
harmonics lighting for Lambertian objects:

R(p,n) = ρ(p)
n∑
l=0

l∑
m=−l

Ul,m

√
4π

2l + 1
G̃l Y

m
l (n). (24)

So far we have only considered the shading of a specific point p with surface normal n. If we consider
the rendered image I given a shape V , lighting U , and camera parameters η, the image I is the
evaluation of the rendering equation R of each point in V visible through each pixel in the image.
This pixel to point mapping is determined by η. Therefore, we can write I as

I(V,U, η) = ρ(V, η)
n∑
l=0

l∑
m=−l

Ul,m

√
4π

2l + 1
G̃l Y

m
l (N(V))︸ ︷︷ ︸

F (V,U)

, (25)

where N(V) is the surface normal. We exploit the notation and use ρ(V, η) to represent the texture
of V mapped to the image space through η.

C.4 LIGHTING AND TEXTURE DERIVATIVES

For our applications we must differentiate Equation 25 with respect to lighting and material parameters.
The derivative with respect to the lighting coefficients U can be obtained by

∂I

∂U
=

∂ρ

∂U
F + ρ

∂F

∂U
(26)

= 0 + ρ
n∑
l=0

l∑
m=−l

∂F

∂Ul,m
. (27)

This is the Jacobian matrix that maps from spherical harmonics coefficients to pixels. The term
∂F/∂Ul,m can then be computed as

∂F

∂Ul,m
=

√
4π

2l + 1
G̃l Y

m
l (N(V)). (28)

The derivative with respect to texture is defined by

∂I

∂ρ
=

n∑
l=0

l∑
m=−l

Ul,m

√
4π

2l + 1
G̃l Y

m
l (N(V)). (29)

Note that we assume texture variations are piece-wise constant with respect to our triangle mesh
discretization.

D DIFFERENTIATING SKYLIGHT PARAMETERS

To model possible outdoor daylight conditions, we use the analytical Preetham skylight model
(Preetham et al., 1999). This model is calibrated by atmospheric data and parameterized by two
intuitive parameters: turbidity τ , which describes the cloudiness of the atmosphere, and two polar
angles θs ∈ [0, π/2], φs ∈ [0, 2π], which are encode the direction of the sun. Note that θs, φs are not
the polar angles θ, φ for representing incoming light direction ω in u(ω). The spherical harmonics
representation of the Preetham skylight is presented in (Habel et al., 2008) as

u(ω) =
6∑
l=0

l∑
m=−l

Ul,m(θs, φs, τ)Y ml (ω).

This is derived by first performing a non-linear least squares fit to write Ul,m as a polynomial of θs
and τ which lets them solve for Ũl,m(θs, τ) = Ul,m(θs, 0, τ)

Ũl,m(θs, τ) =
13∑
i=0

7∑
j=0

(pl,m)i,jθ
i
sτ
j ,

18

Published as a conference paper at ICLR 2019

where (pl,m)i,j are scalar coefficients, then Ul,m(θs, φs, τ) can be computed by applying a spherical
harmonics rotation with φs using

Ul,m(θs, φs, τ) = Ũl,m(θs, τ) cos(mφs) + Ũl,−m(θs, τ) sin(mφs).

We refer the reader to (Preetham et al., 1999) for more detail. For the purposes of this article we just
need the above form to compute the derivatives.

D.1 DERIVATIVES

The derivatives of the lighting with respect to the skylight parameters (θs, φs, τ) are

∂Ul,m(θs, φs, τ)

∂φs
= −mŨl,m(θs, τ) sin(mφs) +mŨl,−m(θs, τ) cos(mφs) (30)

∂Ul,m(θs, φs, τ)

∂θs
=
∂Ũl,m(θs, τ) cos(mφs) + Ũl,−m(θs, τ) sin(mφs)

∂θs
(31)

=
∑
ij

iθi−1
s τ j(pl,m)i,j cos(mφs) +

∑
ij

iθi−1
s (pl,−m)i,j sin(mφs) (32)

∂Ul,m(θs, φs, τ)

∂τ
=
∑
ij

jθisτ
j−1(pl,m)i,j cos(mφs) +

∑
ij

jθisτ
j−1(pl,−m)i,j sin(mφs) (33)

E DERIVATIVES OF SURFACE NORMALS

Taking the derivative of the rendered image I with respect to surface normals N is an essential task
for computing the derivative of I with respect to the geometry V . Specifically, the derivative of the
rendering equation Equation 25 with respect to V is

∂I

∂V
=

∂ρ

∂V
F + ρ

∂F

∂V
(34)

=
∂ρ

∂V
F + ρ

∂F

∂N

∂N

∂V
(35)

We assume the texture variations are piece-wise constant with respect to our triangle mesh discretiza-
tion and omit the first term ∂ρ/∂V as the magnitude is zero. Computing ∂N/∂V is provided in
Section 3.2. Computing ∂F/∂Ni on face i is

∂F

∂Ni
=

n∑
l=0

l∑
m=−l

Ul,m

√
4π

2l + 1
G̃l
∂Y ml
∂Ni

, (36)

where the ∂Ym
l /∂Ni is the derivative of the spherical harmonics with respect to the face normal Ni.

To begin this derivation recall the relationship between a unit normal vector n = (nx, ny, nz) and its
corresponding polar angles θ, φ

θ = cos−1

(
nz√

n2
x + n2

y + n2
z

)
φ = tan−1

(
ny
nx

)
,

19

Published as a conference paper at ICLR 2019

we can compute the derivative of spherical harmonics with respect to the normal vector through

∂Y ml (θ, φ)

∂n

= Km
l



(−1)m
√

2

[
∂P−ml (cos θ)

∂θ

∂θ

∂n
sin(−mφ) + P−ml (cos θ)

∂ sin(−mφ)

∂φ

∂φ

∂n

]
m < 0

(−1)m
√

2

[
∂Pml (cos θ)

∂θ

∂θ

∂n
cos(mφ) + Pml (cos θ)

∂ cos(mφ)

∂φ

∂φ

∂n

]
m > 0

∂P 0
l (cos θ)

∂θ

∂θ

∂n
m = 0

= Km
l



(−1)m
√

2

[
∂P−ml (cos θ)

∂θ

∂θ

∂n
sin(−mφ)−mP−ml (cos θ) cos(−mφ)

∂φ

∂n

]
m < 0

(−1)m
√

2

[
∂Pml (cos θ)

∂θ

∂θ

∂n
cos(mφ)−mPml (cos θ) sin(mφ)

∂φ

∂n

]
m > 0

∂P 0
l (cos θ)

∂θ

∂θ

∂n
m = 0

(37)

Note that the derivative of the associated Legendre polynomials Pml (cos θ) can be computed by
applying the recurrence formula Dunster (2010)

∂Pml (cos θ)

∂θ
=
− cos θ(l + 1)Pml (cos θ) + (l −m+ 1)Pml+1(cos θ)

cos2 θ − 1
× (− sin θ)

=
− cos θ(l + 1)Pml (cos θ) + (l −m+ 1)Pml+1(cos θ)

sin θ
. (38)

Thus the derivatives of polar angles (θ, φ) with respect to surface normals n = [nx, ny, nz] are

∂θ

∂n
=
[∂θ
∂nx

,
∂θ

∂ny
,
∂θ

∂nz

]
=

[
nxnz, nynz, −(n2

x + n2
y)
]

(n2
x + n2

y + n2
z)
√
n2
x + n2

y

, (39)

∂φ

∂n
=
[∂φ
∂nx

,
∂φ

∂ny
,
∂φ

∂nz

]
=
[−ny
n2
x + n2

y

,
nx

n2
x + n2

y

, 0
]
. (40)

In summary, the results of Equation 37, Equation 38, Equation 39, and Equation 40 tell us how to
compute ∂Ym

l /∂Ni. Then the derivative of the pixel j with respect to vertex p which belongs to face i
can be computed as

∂Ij
∂Vp

≈ ρj
∂F

∂Ni

∂Ni
∂Vp

= ρj

n∑
l=0

l∑
m=−l

Ul,m

√
4π

2l + 1
G̃l
∂Y ml (θ, φ)

∂Ni

∂Ni
∂Vp

. (41)

F ADVERSARIAL TRAINING IMPLEMENTATION DETAIL

Our adversarial training is based on the basic idea of injecting adversarial examples into the training
set at each step and continuously updating the adversaries according to the current model parameters
(Goodfellow et al., 2015; Kurakin et al., 2017). Our experiments inject 100 adversarial lighting
examples to the CIFAR-100 data (≈ 0.17% of the training set) and keep updating these adversaries
at each epoch.

We compute the adversarial lighting examples using the orange models collected from
cgtrader.com and turbosquid.com. We uses five gray-scale background colors with inten-
sities 0.0, 0.25, 0.5, 0.75, 1.0 to mimic images in the CIFAR-100 which contains many pure color
backgrounds. Our orthographic cameras are placed at polar angle θ = π/3 with 10 uniformly sampled
azimuthal angles ranging from φ = 0 to 2π. Our initial spherical harmonics lighting is the same as

20

Published as a conference paper at ICLR 2019

CIFAR-100 random light adv. light (early epochs) adv. light (late epochs)

Figure 16: This figure visualizes the images of oranges from CIFAR-100, random lighting, and
adversarial lighting. In early training stage, small changes in lighting are sufficient to construct
adversarial examples. In late training stage, we require more dramatic changes as the model is
becoming robust to differ lightings.

other experiments, using the real-world lighting data provided in (Ramamoorthi & Hanrahan, 2001).
Our stepsize for computing adversaries is 0.05 along the direction of lighting gradients. We run our
adversarial lighting iterations until fooling the network or reaching the maximum 30 iterations to
avoid too extreme lighting conditions, such as turning the lights off.

Our random lighting examples are constructed at each epoch by randomly perturb the lighting
coefficients ranging from -0.5 to 0.5.

When training the 16-layers WideResNet (Zagoruyko & Komodakis, 2016) with wide-factor 4, we
use batch size 128, learning rate 0.125, dropout rate 0.3, and the standard cross entropy loss. We
implement the training using PYTORCH (Paszke et al., 2017), with the SGD optimizer and set the
Nesterov momentum 0.9, weight decay 5e-4. We train the model for 150 epochs and use the one with
best accuracy on the validation set. Figure 16 shows examples of our adversarial lights at different
training stages. In the early stages, the model is not robust to different lighting conditions, thus small
lighting perturbations are sufficient to fool the model. In the late stages, the network becomes more
robust to different lightings. Thus it requires dramatic changes to fool a model or even fail to fool the
model within 30 iterations.

G EVALUATE RENDERING QUALITY

.20 .4 .6 .8 1

Histogram of Model Confidence

Confidence (max: 1)

nu
m

be
r o

f i
m

ag
es

Figure 17: Prediction confidence
on rendered images, showing
our rendering quality is faithful
enough to be confidently recog-
nized by ImageNet models.

We evaluated our rendering quality by whether our rendered
images are recognizable by models trained on real photographs.
Although large 3D shape datasets, such as ShapeNet (Chang
et al., 2015), are available, they do not have have geometries
or textures at the resolutions necessary to create realistic ren-
derings. We collected 75 high-quality textured 3D shapes from
cgtrader.com and turbosquid.com to evaluate our render-
ing quality. We augmented the shapes by changing the field of
view, backgrounds, and viewing directions, then keep the configu-
rations that were correctly classified by a pre-trained ResNet-101
on ImageNet. Specifically, we place the centroid, calculated as
the weighted average of the mesh vertices where the weights are
the vertex areas, at the origin and normalize shapes to range -1 to
1; the field of view is chosen to be 2 and 3 in the same unit with
the normalized shape; background images include plain colors
and real photos, which have small influence on model predictions; viewing directions are chosen to
be 60 degree zenith and uniformly sampled 16 views from 0 to 2π azimuthal angle. In Figure 17, we
show that the histogram of model confidence on the correct labels over 10,000 correctly classified
rendered images from our differentiable renderer. The confidence is computed using softmax function
and the results show that our rendering quality is faithful enough to be recognized by models trained
on natural images.

21

