Drawing Visual Perception

Robert Pepperell Cardiff Metropolitan University & Fovotec

2. The perception of the world

2. The perception of the world

2. The perception of the world

4. The perception of the depiction of the world

Two kinds of display

How do we align what we perceive in our mental display when looking at the world with what we perceive when looking at physical displays?

How can these be best aligned?

Here I'm talking about the geometry of visual space rather than colour, dynamic range, contrast, sensitivity, etc.

In terms of spatial geometry, for a long time the standard approach has been to use linear perspective...

FILIPPO BRVNELLESCHI SCVL.E ARCHIT.

Brunelleschi (c. 1420)

Linear perspective geometry

Physical display

Flat

Monocular

Non-dynamic

Linear geometry

Narrow field of view

Physical display

Flat

Monocular

Non-dynamic

Linear geometry

Narrow field of view

Mental display

Deep Binocular

Dynamic

Non-linear geometry

Wide field of view

Linear perspective does not reflect the non-linear geometry of visual space

Helmholtz (1866)

Figure 1. The bulging grid.

Foster & Altschuler (2001)

Linear perspective cannot adequately represent the full scope of the human field of view

(a) A wide-angle photo with distortions on subjects' faces.

How can we align the space that appears on physical displays more closely with that of our mental display?

Natural perspectives based on non-linear projections...

Linear Perspective

Natural Perspective

Optical perspective (Fisheye)

Natural perspective

Fixated objects seem bigger and closer

JMW Turner, The South Wall of the Square Dining-Room, gouache and watercolour on paper, 1827 ©Tate

Measuring the structure of visual space with art and science

Baldwin et al. (2015)

Baldwin et al. (2015)

N = 30

Error bars: 95% CI

Baldwin et al. (2015)

Burleigh et al. (2018)

Photographic stimuli

Natural perspective (NP)

Fisheye perspective (FP)

Linear perspective (LP)

Burleigh et al. (2018)

Burleigh et al. (2018)

Computational modelling of visual space geometry

Natural perspective rendering

FovoRender

- Runs in Unreal 4.27.2 (current primary) & past versions in Unity, Cinema 4D (with either C4D's standard renderer, or Octane, or Arnold Renderers using Open Shading Language)
- Real time and path tracing modes:
 - Real time rasterizer mode adjusts vertex shader and adds tessellation on GPU
 - Path tracing mode alters ray direction, origin, and shape
- Both modes employ non linear projection techniques to adjust an image volumetrically (not a screen space or lens effect)
- Default settings are provided mapped to features of visual perception
- Or flexible user controlled settings based on subjective values for creative effect

Linear render

Gaming

Linear render

Confirmed

No.

1112

Metaverse/Social

Linear render

Aetaverse/Socia

ovoRender

Visualisation

Linear Perspective: 120° Equivalent

00000

DAVIDBAYLIS D E S I G N

Related work

Non-linear rendering and computational photography

Agrawala. M., Zorin, D. & Munzer, T. (2000). Artistic Multiprojection Rendering. Rendering Techniques, DOI:10.1007/978-3-7091-6303-0_12.

Carroll, R., Agrawala, A., and Agrawala, M. (2010). Image Warps for Artistic Perspective Manipulation. ACM Trans. Graph. 29.4 (July 2010). ISSN: 0730-0301. DOI: 10 . 1145 / 1778765.1778864

Sharpless, T., Postle, B. & German, D. (2010). Pannini: A new projection for rendering wide angle perspective images, in Proceedings of the Sixth international conference on Computational Aesthetics in Graphics, Visualization and Imaging. Eurographics Association, 2010, pp. 9–16.

Coleman, P. & Singh, K. (2004). Ryan: rendering your animation nonlinearly projected. NPAR '04 7 June 2004.

Singh, K. (2002). A Fresh Perspective, in Graphics Interface, vol. 2002, pp. 17–24.

Liu, S., Agrawala, M., DiVerdi, S., & Hertzmann, A. (2022). ZoomShop: Depth-Aware Editing of Photographic Composition. EUROGRAPHICS 2022, eds. R. Chaine and M. H. Kim, Vol. 41 (2022), No. 2.

Curvilinear and natural perspectives

Floçon, A. & Barre, A. (1988). Curvilinear perspective: From visual space to the constructed image. Berkeley, CA: University of California Press.

Hauck, G. (1879). Die Subjektive Perspektive und die Horizontalen Curvaturen des Dorischen Styls. Eine Perspektivisch- Ästhetische Studie, Wittwer, Stuttgart, Germany.

Hansen, R. (1973). This curving world: Hyperbolic linear perspective. Journal of Aesthetics and Art Criticism, 32(2), 147–161.

Visual space geometry

Luneburg, R. K. (1947). Mathematical analysis of binocular vision. Princeton, NJ: Princeton University Press.

Koenderink, J. & van Doorn, A. (2008). The Structure of Visual Spaces. Journal of Mathematic Imaging and Vision, 31: 171.

Oomes, A.H.J., Koenderink, J.J., van Doorn, A.J. and de Ridder, H. (2009). What are the Uncurved Lines in Our Visual Field? A Fresh Look at Helmholtz's Checkerboard. Perception, 38(9), pp.1284–1294.
We can improve alignment between mental and physical displays when depicting the perceived world

- We can improve alignment between mental and physical displays when depicting the perceived world
- This can be achieved by close analysis of the structure of visual space and by developing non-linear natural perspectives that more closely emulate that structure

 The benefit of natural non-linear perspectives can be to improve the user experience of 3D content on standard displays

- The benefit of natural non-linear perspectives can be to improve the user experience of 3D content on standard displays
- Drawing is a key research tool that, along with science methods, can be used to investigate perceptual geometries

'What does the world really look like? I know it doesn't look like photographs. The camera sees geometrically, and we must see psychologically.

> So what does it really look like? I think you have to draw it.'

> > David Hockney, 2021

Joe Baldwin Data collection and analysis Nicole Ruta Psychophysical research Data collection and interpretation and analysis

Heddwyn Loudon Data collection and analysis

Cardiff
Metropolitan
UniversityPrifysgol
Metropolitan
Caerdydd

Llywodraeth Cymru Welsh Government

INCEPTION PROGRAM

Network proposal

Beyond linear perspective: Representing visual experience in art & technology

Cardiff Metropolitan University