Bayesian Learning for Computer graphics

Aaron Hertzmann
University of Toronto

Computers are really fast

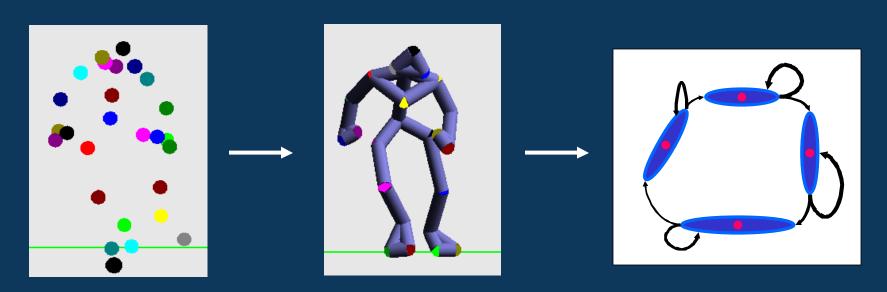
If you can create it, you can render it

How do you create it?



Two problems

- How do we get the data into the computer?
- How do we manipulate it?

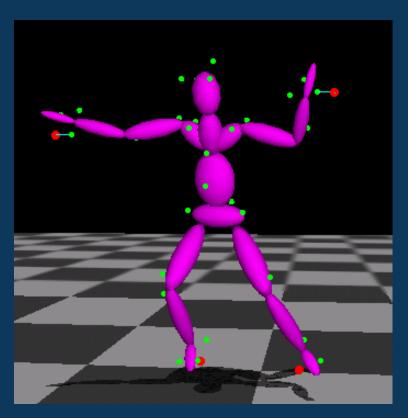


Data fitting

```
\frac{1}{j;t} jjm_{j}(q_{t}) \hat{a} s_{j;t}jj^{2} 

+ W_{1} \frac{1}{j;t} jjq_{t} \hat{a} q_{t\hat{a}1}jj^{2} 

+ W_{2} \frac{1}{j;t} jj:::jj^{2}
```



Key questions

- How do you fit a model to data?
 - How do you choose weights and thresholds?
 - How do you incorporate prior knowledge?
 - How do you merge multiple sources of information?
 - How do you model uncertainty?

Bayesian reasoning provides a solution

Talk outline

- Bayesian reasoning
- Facial modeling example
- Non-rigid modeling from video

What is reasoning?

- How do people reason?
- How should computers do it?

Aristotelian Logic

- If A is true, then B is true
- A is true
- Therefore, B is true

A: My car was stolen

B: My car isn't where I left it

Real-world is uncertain

Problems with pure logic

- Don't have perfect information
- Don't really know the model
- Model is non-deterministic

Beliefs

- Let B(X) = "belief in X",
- $B(\neg X) = "belief in not X"$

- 1. An ordering of beliefs exists
- 2. $B(X) = f(B(\neg X))$
- 3. B(X) = g(B(X|Y),B(Y))

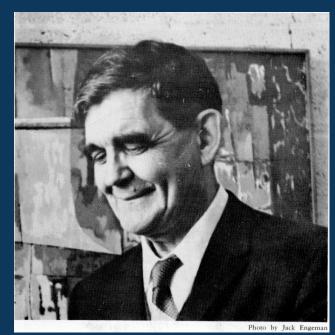
Cox axioms

R.T. Cox, "Probability, frequency, and reasonable expectation," American J. Physics, 14(1):1-13, 1946

$$p(TRUE) = 1$$

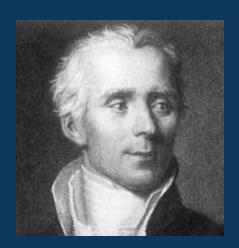
$$p(A) = \int_{fB=b_i g} p(A; B)$$

$$p(A; B) = p(AjB)p(B)$$



"Probability theory is nothing more than common sense reduced to calculation."

- Pierre-Simon Laplace, 1814



Bayesian vs. Frequentist

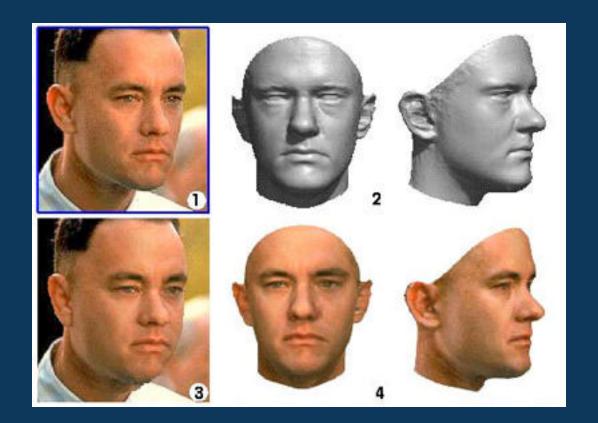
- Frequentist ("Orthodox"):
 - -Probability = percentage of events in infinite trials
- Medicine, biology: Frequentist
- Astronomy, geology, EE, computer vision: largely Bayesian

Learning in a nutshell

- Create a mathematical model
- Get data
- Solve for unknowns

Face modeling

 Blanz, Vetter, "A Morphable Model for the Synthesis of 3D Faces," SIGGRAPH 99



Generative model

Faces come from a Gaussian

$$p(Sj\ddot{S}; b) = \frac{p^{-1}}{(2\dot{u})^{dj}bj} e^{\dot{a}(S\dot{a}\dot{S})^{T}b^{\dot{a}1}(S\dot{a}\dot{S})=2}$$

$$p(fS_igj9; b) = _i p(S_ij9; b)$$

Learning

arg max_{ë;b} p(9; þjfS_ig)

 S_i

Bayes Rule

$$P(A; B) = p(AjB)p(B)$$

= $p(BjA)p(A)$

$$P(BjA) = p(AjB)p(B)=p(A)$$

p(modeljdata) / p(datajmodel)p(model)

Often: p(modeljdata) / p(datajmodel)

Learning a Gaussian

```
arg max<sub>\ddot{S};b</sub> p(\ddot{S};b)
= arg max<sub>\ddot{S};b</sub> p(fS_igjS;b)
= arg max<sub>\ddot{S};b</sub> = i p(S_ijS;b)
= arg max<sub>\ddot{S};b</sub> = i p(S_ijS;b)
= arg max<sub>\ddot{S};b</sub> = i p(S_ijS;b)
= arg max_{\ddot{S};b} = i p(S_ijS;b)
```

$$S_{i}^{T} S_{i} = N$$

$$(S_{i} \hat{a} \hat{g})(S_{i} \hat{a} \hat{g})^{T} = N$$

Maximization trick

Maximize p(x)<-> minimize à ln p(x)

Fitting a face to an image

Generative model

$$\mathbf{p}(\mathbf{S}\mathbf{j}\ddot{\mathbf{S}};\mathbf{b}) = \mathbf{p}_{(2\dot{\mathbf{u}})d\mathbf{j}\mathbf{b}\mathbf{j}}^{1} e^{\dot{\mathbf{a}}(\mathbf{S}\dot{\mathbf{a}}\dot{\mathbf{S}})^{\mathsf{T}}\mathbf{b}^{\dot{\mathbf{a}}\mathbf{1}}(\mathbf{S}\dot{\mathbf{a}}\dot{\mathbf{S}})=2}$$

$$I = Render(S; \acute{u}) + n$$

$$p(IjS; u; \hat{u}^2) = \frac{p^{-1}}{(2\hat{u})^{dj}bj} e^{\hat{a}jjI\hat{a}Render(S; u)jj^2 = 2\hat{u}^2}$$

Fitting a face to an image

```
Maximize

p(S; újI; 9; þ; û^2)

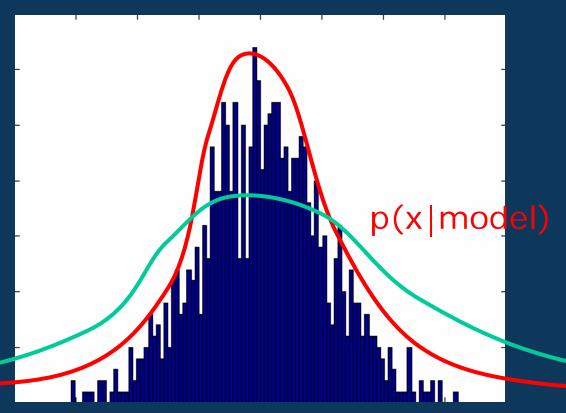
minimize

alp(S; újI; 9; þ; û^2) =
```

jjl à Render(S; ú)jj²=2û² + (S à
$$\ddot{\mathbf{S}}$$
)^Tþ^{à1}(S à $\ddot{\mathbf{S}}$)=2 + $\frac{N}{2}$ ln 2ùû² + $\frac{1}{2}$ ln(2ù)^djþj

Why does it work?

```
p(fx_igimodel) = p(x_ijmodel)
s:t: p(xjmodel) = 1
```



General features

- Models uncertainty
- Applies to any generative model
- Merge multiple sources of information
- Learn all the parameters

Caveats

- Still need to understand the model
- Not necessarily tractable
- Potentially more involved than ad hoc methods

Applications in graphics

- Shape and motion capture
- Learning styles and generating new data

Learning Non-Rigid 3D Shape from 2D Motion

Joint work with Lorenzo Torresani and Chris Bregler (Stanford, NYU)

Camera geometry

Orthographic projection



Non-rigid reconstruction

Input: 2D point tracks

Output: 3D nonrigid motion

$$p_t = R_t S_t + T_t$$

Totally ambiguous!

Shape reconstruction

Least-squares version

$$p_t = R_t S_t + T_t$$

minimize

$$_{t}$$
 jjp $_{t}$ à $R_{t}S_{t}$ à T_{t} jj 2 + w_{t}^{2} $_{t}$ jj S_{t} à 9 jj 2

Bayesian formulation

$$p(S_t j \ddot{S}; b) = \frac{p^{-1}}{(2\dot{u})^d j b j} e^{\dot{a}(S_t \dot{a}\dot{S})^T b^{\dot{a}1}(S_t \dot{a}\dot{S}) = 2}$$

$$p_{t} = R_t S_{t+1} + T_t + n \qquad \text{non}(0; \hat{u}^2)$$

maximize p(R; S; T; 9:pjP)/ p(PjR; S; T)p(Sj9:p)

How does it work?

Maximize p(R; S; T; 9: | p|) / p(PjR; S; T)p(Sj9: | b)

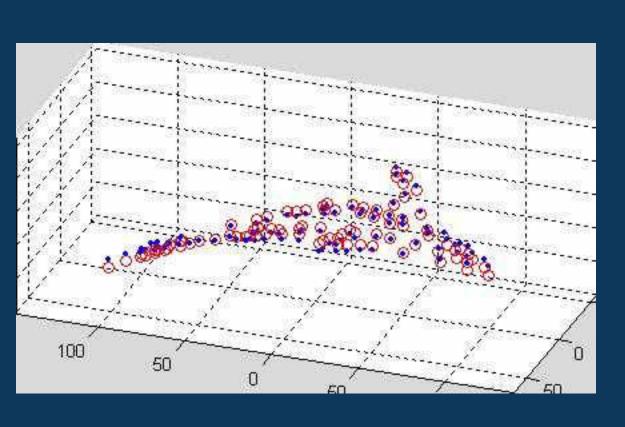
Minimize

$$\dot{a}_{t} \ln p(P_{t}jR_{t}; S_{t}; T_{t}) \dot{a}_{t} \ln p(S_{t}jS; b)$$

$$= \int_{t}^{t} jjp_{t} \, \hat{a} \, R_{t}S_{t} \, \hat{a} \, T_{t}jj^{2} = 2\hat{u}^{2} + \frac{N}{2}\ln\hat{u}^{2} \\ + \int_{t}^{1} \frac{1}{2}(S_{t} \, \hat{a} \, \hat{\mathbf{S}})^{T}p^{\hat{a}1}(S_{t} \, \hat{a} \, \hat{\mathbf{S}}) + \frac{T}{2}\ln jpj$$

(actual system is slightly more sophisticated)

Results



Input

Least-squares, no reg. View 2

Least-squares, reg.

Gaussian

LDS

Conclusions

- Bayesian methods provide unified framework
- Build a model, and reason about it
- The future of data-driven graphics