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Abstract

I argue that Non-Photorealistic Rendering (NPR) research will play
a key role in the scientific understanding of visual art and illustra-
tion. NPR can contribute to scientific understanding of two kinds of
problems: how do artists create imagery, and how do observers re-
spond to artistic imagery? I sketch out some of the open problems,
how NPR can help, and what some possible theories might look
like. Additionally, I discuss the thorny problem of how to evaluate
NPR research and theories.

1 Introduction

Why does art work? How can a few lines or blobs drawn on a
piece of paper express motion, form, mood, and emotion? How
does an illustrator use lines to convey a 3D shape with greater clar-
ity than would a photograph, even though these lines seem entirely
unlike what we see in the real world? Despite centuries of interest
in these questions, they remain unanswered. These questions have
been raised in many disciplines, including art history, psychology,
cognitive science, and neuroscience. Scientific study of these ques-
tions could yield fundamental insights into art and illustration, shed
light on the workings of the human visual system, lead to new ways
to create art, illustration, and design, and lead to new kinds of art.

One way to understand how a complex system works is to attempt
to design and build one like it. Indeed, some insights in under-
standing human intelligence have directly resulted from attempts
to design machine intelligence. In constrast, mainstream analyses
of art—whether from art criticism or neuroscience—are highly de-
scriptive (e.g., [Cavanagh 2005; Kemp 2009; Ramachandran and
Hirstein 1999; Zeki 1998]). Art critics and neuroscientists alike
might discuss general features of a painting, or trends across paint-
ings, but without providing recipes for when these trends appear or
how they are combined to create images. Image processing meth-
ods that analyze artistic style (e.g., to detect forgeries) use linear
filter responses that give little insight into the style itself. Like-
wise, anyone who looks to books of art instruction and criticism
for tips on how to build an artistic rendering algorithm will be very
disappointed, because they lack a sufficiently precise language for
implementation.

In this paper, I argue that Non-Photorealistic Rendering (NPR)
research will play a key role in the scientific understanding of
visual art and illustration, and sketch out some possibilities for
what this understanding might look like. Attempting to create algo-
rithms for artistic imagery forces us to think about imagery in new
ways. Conversely, when an NPR algorithm is successful—even if
it seems entirely ad hoc—it provides an opportunity to understand
why it is successful, and, what, if anything, it has in common with
how humans make imagery. NPR is complementary to other ways
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of understanding art: in the future, I believe we will see more inter-
play between the analysis of art and synthesis. This research must
ultimately be interdisciplinary, involving NPR and other fields such
as neuroscience, cognitive science, and art history. Conventional
descriptions of art (and how to make it) lack a precise language
for describing art, and NPR could provide that language. I believe
that the development of NPR will be essential to the scientific un-
derstanding of art, and thus there exists a great opportunity for our
field to contribute to human knowledge.

Historically, theory and experiment have been described as the two
pillars of scientific research. In the past few decades, computer
simulation has become the third pillar of modern science [Denning
2007]. For scientific study of art, NPR will provide this third pillar.

There are two types of scientific questions about art that NPR can
help address. The first is:

How do artists create imagery?

For example, can we describe an artist’s style as a functional map-
ping from a photograph or 3D scene to an image? Second,

How do observers respond to artistic imagery?

For example, can we quantify the appeal or effectiveness of a com-
position? It is very hard to imagine being able to answer these
questions without the benefit of the computational tools of NPR.

My focus here is on 2D visual, representational art, graphic design,
and illustration, which I will often just refer to as “art” for short.
I mostly discuss representational painting and drawing, since these
are the areas I’ve worked in most, as a researcher and as an art
student. However, these same ideas are relevant for many kinds of
art. I take a very loose definition of art; just about anything creative
or expressive can be considered art. However, NPR is most relevant
to understanding art for purposes such as illustration, animation,
decoration, formal beauty, and so on.

Even for the reader solely interested in building tools—which is the
work most of us in the field are engaged in—I think it is nonetheless
useful and provocative to think about NPR as building theories of
art. Many of these questions are long-term questions that could
take years or even decades to address, if they are even solvable at
all. Nonetheless: there is enough excellent initial research—both
algorithms and experimental studies—to be optimistic that these
problems are well worth tackling. Furthermore, these ideas can
suggest a number of possible directions for future research, and I
will suggest several open problems in NPR along the way.

This paper begins with a general framework for discussion: how
can NPR build theories of art? What kinds of theories are there?
I then discuss the question of experimental studies and evaluation.
This problem is one of the most difficult that confronts the NPR
community today, and this section is relevant to modern NPR re-
search, as well as the long-term vision of theories of art. In the
remaining sections of the paper, I sketch out several possible types
of NPR theories of art, including approaches based on theories of
optimization and computational neuroscience. Along the way, I de-
scribe a little about how these theories are used in other fields. This
is both to provide background information, but also to provide ex-
amples of how mathematical theories are used in other sciences.
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Figure 1: Some simple but effective ideas in NPR, for cartoon illustration, painting, and line drawing. The algorithms involved are based
on simple mathematical or algorithmic ideas, and, given a set of high-level parameters, run completely automatically. While there is much to
criticize in these results, I believe it is nonetheless amazing and intriguing that they can be achieved by simple and automatic algorithms. (a)
A photograph processed by the algorithm of Winnemöller et al. [2006], and the variant of Haeberli’s method [1990] from Hertzmann [1998].
(b) A suggestive contour line drawing [DeCarlo 2003] of a 3D model, and stylized versions [Goodwin 2007].

2 NPR theories of art

Before discussing specific theories, I begin by describing some
ways that NPR could be used to form theories of art, and the types
of questions that NPR can help answer.

2.1 How do artists create imagery?

I begin with a simple example of how an NPR algorithm can
form the basis of a scientific theory. Consider an automatic ver-
sion of Haeberli’s image-based painting algorithm [1990] (see also
Litwinowicz [1997]). Haeberli showed that, just by sampling a ran-
dom set of points in a photograph and placing simple brush strokes
over them, you can get something that, at first glance, resembles an
Impressionist painting. Strokes can be aligned to the normal of the
image gradient to better match the colors of the source image. This
procedure is so simple, but so remarkably effective, that it leads one
to ask: is there something there? Does this algorithm have anything
common with how humans paint? In effect, Haeberli’s algorithm
represents a theory of how humans paint. The theory is very coarse:
no one could really be convinced of the literal truth of the theory,
since it cannot recreate or predict any real human paintings. But it
provides a starting point: given this theory, we can evaluate it, and
ask how it is successful and where it fails, and use these observa-
tions to refine this theory. There are numerous other examples in
NPR that are both simple and effective (Figure 1), and lead one to
wonder what insights they give about art.

The key ingredient missing from most NPR research so far is exper-
imental study of art: we must test theories against data, not just look
at the pictures. The groundbreaking paper of Cole et al. [2008] enti-
tled “Where Do People Draw Lines?” provides an excellent demon-
stration of how to evaluate line drawing algorithms against human
data. This work provides a bridge from the recent progress in line
drawing algorithms to future work in this area. Similarly, Schmidt
et al.’s [2009] recent experiments indicate that some widespread
assumptions about how illustrators draw 3D shape are, in fact, in-
correct.

2.2 How do observers respond to artistic imagery?

A second way that NPR research can contribute to the study of
art is by modeling how human observers respond to artistic im-
agery. This includes both perception of shape, but also evaluating
aesthetics and other properties of images. Indeed, there has been
some initial progress in designing objective functions for aesthet-
ics (e.g., [Santella et al. 2006]) and clarity of communication (e.g.,
[Agrawala and Stolte 2001]), as well as perceptual studies of how
we view drawings [Cole et al. 2009]. We as a community have
much more expertise designing such models than evaluating them.
I will discuss the uses of optimization models more in Section 4.2.

There are many different types of viewer response. A work may be
viewed as beautiful; it may convey the perception of world quanti-
ties such as shape, materials, and motion; it may interest or intrigue
a viewer; it may instill in the viewer various emotions such as plea-
sure or boredom. It is important to distinguish between these re-
sponses, e.g., a work that is interesting is not necessarily beautiful.

2.3 Degrees of abstraction

NPR theories of art may operate at various degrees of abstraction.
Few, if any, algorithms can be said to model the process by which
artists operate, e.g., describing the order in which an artist paints
strokes or places tiles. Instead, they model the mapping from in-
puts to outputs. One may even describe the goals first and foremost,
e.g., via an objective function, with the choice of optimization al-
gorithm then being, ideally, incidental. These kinds of abstractions
are essential for allowing us to reason about high-level features of
art without getting bogged down in details like how the artist’s sen-
sorimotor system controls the muscles in their hand.

2.4 Descriptive vs. generative theories

It is worth distinguishing between theories that are descriptive and
those that are generative. Descriptive theories explain general fea-
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tures of artistic imagery, without providing recipes for how to create
it; generative theories describe how to create images.

Most scholarship in art history is descriptive, as are previous works
in the neuroscience and psychology of art; moreover, many descrip-
tive theories are also qualitative. Descriptive theories can be simple
and general, and may provide useful insights, but are usually in-
complete descriptions of the phenomena. For example, Ramachan-
dran and Hirstein’s “peak-shift principle” [1999] explains a possi-
ble role of exaggeration in artwork in terms of general observations
that may apply broadly across many types of art works, but without
making very specific predictions about any individual work.

On the other hand, NPR theories are, by their very nature, genera-
tive: they describe how to create specific types of imagery. How-
ever, they do not apply as broadly to many different styles. A major
goal of applying NPR to understand art is to create generative theo-
ries: if we can explain how to generate something—or to compute
the viewer’s response—then we have a much better claim to saying
we understand it. NPR could be a great source of possible theories
about art.

Descriptive and generative theories can support and refine each
other in various ways. Descriptive models give hints as to fac-
tors to take into account when creating NPR algorithms. They can
even be used to define terms in an energy function for optimization
methods. They provide explicit things to look for when comparing
artist-made imagery to computer-generated imagery. Conversely,
the trial-and-error process of designing generative models can lead
to insights about what factors are necessary to describe artwork. In
Section 3.6, I describe our experience with developing a model for
line thickness, in which descriptive and generative models fed into
each other.

Descriptive theories may also be quantitative. For example, several
authors have used image statistics to quantify and classify painting
style [Hughes et al. 2010; Lyu et al. 2004; Taylor et al. 1999]. One
application of this work is in detecting forgeries, a task for which
generative models are not strictly necessary. Taylor et al. [1999]
discovered that a range of Jackson Pollock’s abstract drip paintings
are fractal, i.e., their statistics are self-similar at multiple scales.
This observation is interesting because many natural images have
the similar fractal properties, which suggests a possible explanation
for the appeal of his work. However, the observation does not tell
us how to create Pollock paintings: there are many classes of self-
similar images that look nothing like Pollock paintings, and, so far,
the theory has not been explored carefully, e.g., it has not yet been
tested whether “drip” paintings without these fractal properties look
less appealing or less “Pollockesque.”

3 Evidence and arguments

Presenting research results requires convincing one’s audience and
oneself of the value of the work. When developing algorithms, we
want to show that the algorithms are useful; when developing the-
ories, we must persuade the reader that the theory is likely to have
some element of truth. One must make plausible arguments, and
provide evidence that support the arguments.

Broadly speaking, most current NPR algorithms are aimed at one
of two types of goals: task-oriented goals are to communicate spe-
cific information such as shape and part relationships, and artistic
goals are to create images that are beautiful or expressive, and/or
that mimic existing artistic styles. Methods can be tested against
these goals using methodology from the Human-Computer Interac-
tion (HCI) and perceptual psychology literatures, e.g., [Agrawala
and Stolte 2001; Cole et al. 2009]. Task-oriented goals are easier
to define and to measure carefully, as they can easily be defined ob-

jectively and measurably. Defining the artistic goals in a useful and
measurable way is much more difficult.

In the long run, developing good experimental methods for eval-
uation of algorithms and validation of theories will be crucial for
increasing the scientific merit of our work. Our current applica-
tion of experimental methods is inconsistent and varies in quality.
We must develop new experimental methodologies, specific to our
field, and we must expand our experimental enterprise. However,
we must also become aware of the dangers of inappropriate exper-
imental methods. An uncritical reliance on quantitative evaluation
could be disastrous for the field.

3.1 Current use of studies

In most NPR papers, evaluation consists solely of demonstrating al-
gorithmic results, possibly with comparisons to results from earlier
methods. When the improvement over previous results is visually
obvious, little further evaluation seems necessary. This was espe-
cially common in the early days of the field. For example, the early
work of Haeberli [1990] and of Winkenbach and Salesin [1994]
demonstrated very clear advances over what little prior work had
come before. As the field becomes more mature, it becomes more
difficult to demonstrate a major improvement over previous meth-
ods, and the visual evaluation becomes subtler. Furthermore, many
of us are sensitive to the criticism that computer graphics is just
a bunch of hacking and pretty pictures, and, thus, unscientific and
non-rigorous. Hence, there is a push for more rigorous evaluation
and testing. Consequently, many authors of NPR (and computer
graphics papers in general) have turned to user studies to provide
means of evaluation, even for aesthetic algorithms.

Experimental studies are extremely appealing as a way to add scien-
tific rigor to research papers. NPR research has, so far, largely bor-
rowed two main types of methodologies from other fields. Percep-
tual studies, from the psychology literature, aim to elicit rules of hu-
man perception by careful presentation of specific stimuli, such as
perceived 3D surface orientation under conflicting cues. User stud-
ies, from the HCI literature, evaluate user performance on perform-
ing some task, such as the efficiency of a particular type of menu.
Many types of studies are reductionist, often boiling down the ef-
fect of an image or rendering to a single number. This reduction-
ism is necessary for performing controlled experiments. However,
reductionism can also be antithetical to creativity and exploratory
research.

3.2 The dangers of studies

We should learn as much as possible from the collective experience
of related fields when developing our own experimental methodol-
ogy. The field of HCI is more active and more mature than NPR,
and may provide some lessons for the way NPR is headed. Like
NPR, HCI has a significant component of designing new systems
and techniques, and it has significant overlap with both design and
psychology. Experimental evaluation plays a major role in most
HCI papers. However, in a recent paper entitled “Usability Evalua-
tion Considered Harmful (Some of the Time),” Greenberg and Bux-
ton [2008] argue that HCI’s over-reliance on user testing is damag-
ing to the field. As one example, Greenberg and Buxton argue that it
is very difficult to publish HCI papers without experimental results,
particularly quantitative results. This biases research towards prob-
lems with established evaluation metrics. For example, there are
many publications on pointing and selection, where one can com-
pare methods by measuring time to select a desired target. More
speculative but creative research is harder to publish. Greenberg
and Buxton make many other relevant points; I urge anyone inter-
ested in these issues to read their paper. Kosara et al. [2003] also
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discuss the benefits and dangers of using studies in the context of
visualization.

An uncritical reliance on testing can be very dangerous to the field
of NPR, for several reasons. First, as noted above, an uncritical de-
mand for experimental evaluation can make it difficult to publish
creative, exploratory research. (It has often been observed that in-
stitutions tend to optimize for what is easily measurable rather than
what is really important.) Second, even in cases that are measur-
able, the requirement to publish studies puts additional burden on
the authors. Performing meaningful studies requires significant ef-
fort and specialized expertise, and thus slows down progress while
also erecting barriers to newcomers to the field. We should only
require this effort in cases where it is really warranted.

Within an individual paper, poorly-designed studies may be un-
informative or even severely misleading. The use of significance
statistics (e.g., p-values) can give the false appearance of objec-
tivity; we must remember that every study is limited by the sam-
ple size, the quality of the experimental protocol, and the assump-
tions of the significance test itself. Designing experimental proto-
cols that yield meaningful results—and not just confirm the exper-
imenter’s preconceptions, even unintentionally—requires expertise
and is subject to numerous non-obvious pitfalls. At our discussion
at NPAR 2009, Doug DeCarlo’s advice to researchers wishing to
begin performing studies was: “Get help.” That is, you should seek
out colleagues with proper training who can collaborate in design-
ing meaningful experiments.

At present, I do not believe that we as a community do have a good
sense for how to make effective use of studies in papers. Anecdo-
tally, as a papers committee member and reviewer, I have witnessed
cases where both authors and reviewers seem to treat studies as per-
functory but necessary “check box.” Authors may include a study
in an attempt to inoculate against reviewer criticism, without taking
care to ensure that the study is meaningful. Worse, I have seen re-
viewers write statements to the effect “I don’t think the results look
very good; your paper might be more convincing with a user study,”
as if experimental evaluation would be persuasive when the images
are not. To paraphrase the Marx Brothers: who are you going to
believe, a study, or your own lying eyes?

3.3 Building a convincing case

Presenting research requires building a coherent argument for the
methods or theories. An author must attempt to persuade the reader
of their theory, marshaling whatever arguments and evidence are
necessary. The key point about studies is that

Experimental studies provide evidence, not proof

In other words, a study can provide evidence for the existence of an
effect, or the superiority of one method over another on a particu-
lar metric, but it cannot prove these things. Some studies are more
persuasive than others: in medical sciences, studies are judged ac-
cording to their methodological rigor (e.g., whether the experiment
is randomized and double-blind) as well as the size of the sample
set and how it was selected.

In NPR research, a convincing case can often be made without the
use of studies. To date, our evaluations have largely been based
on providing imagery and relying on the aesthetic judgement of the
reader/reviewer. This has served us well so far — we would not
have made nearly so much progress had we insisted on quantitative
user studies for every paper. But relying solely on arguments and
pictures is not sustainable. Careful experimentation will be essen-
tial if we wish to produce results that yield fundamental insights
and stand the test of time.

As in fields such as physics and HCI, we should allow some sepa-
ration between exploration and evaluation. We need to explore and
develop many new ideas, and later sort out which are most suc-
cessful through testing and evaluation. These tasks need not be
performed by the same researchers, and some may reasonably be
more skilled or interested in one of these tasks or the other1.

3.4 How do we evaluate aesthetics?

This raises the difficult question of how we judge methods designed
for artistic goals, such as beauty or expressiveness, since these qual-
ities are not easily quantified. What studies do we perform? How
do we convince readers, reviewers, and ourselves that one work
achieves an artistic goal better than another? How do we explore
and test theories about how artists create images? Measuring sub-
jective qualities of art — beauty, appeal, emotional expression —
is a tricky business. Responses may vary from culture to culture,
and from viewer to viewer. The question of how to perform these
evaluations is itself arguably one of the most important research
problems that we face today. To date, there have been few attempts
to directly compare viewers’ subjective aesthetic assessments, in-
cluding [Isenberg et al. 2006; Liu et al. 2010; Santella et al. 2006].

Proxy metrics. Due to the difficulty of directly evaluating aes-
thetics, some researchers have assessed related measures. Santella
and DeCarlo [2004] were among the first to argue for the impor-
tance of evaluation. They performed experiments to determine how
their image stylization algorithm [2002] affects the viewer’s eye
gaze. Similarly, Gooch et al. [2004] and Winnemöller et al. [2006]
measured the effect of image stylization algorithms on memory and
learning tasks. In each case, these tests were interesting and infor-
mative, and supported the stated goals of the paper. But they did
not directly measure the “artistic” qualities of the imagery, nor did
they claim to.

Here, I call these tests proxy metrics: they do not directly test aes-
thetics, but they do test measurable properties that are relevant to
evaluating art. In order for a proxy metric to be meaningful, we
must gather baseline measurements from humans on real artworks
and whether or not it is discriminative of types of images, or predic-
tive of some quantity of interest. How do real artworks direct gaze
or improve memory performance, as compared to photographs or
photorealistic renderings? Is there any correlation between a hu-
man’s assessment of the beauty of a work with fractal dimension
or memory performance? Does a good score on one or several of
these metrics usual imply a good score on another? Functional MRI
[Kawabata and Zeki 2004] or other biophysical measurements may
also provide ways to link proxies to the desired quantities. If an
algorithm scores highly with a proxy metric, that provides at best
weak evidence for the artistic success of the algorithm. Proxy met-
rics may actually be more useful when scores are bad, because they
can distinguish among competing methods and point to opportuni-
ties for improvement.

Fractal dimension statistics (mentioned in Section 2.4) are another
example of a proxy metric. Lee et al. [2006] describe a method for
mimicking Pollock’s style. They show that their method does suc-
cessfully mimic the fractal dimension of his paintings, even though
it was not specifically designed to do so. This does not prove the
correctness of their algorithm, but supports it: if an algorithm pro-
duces images with a different fractal dimension, this is evidence of
a mismatch with Pollock’s style. However, it is only evidence, not

1The quantum theorist Wolfgang Pauli was so bad at performing exper-
iments that it was said that merely his presence in the vicinity of an experi-
ment would cause it to fail. This did not prevent him from winning a Nobel
Prize for his theoretical contributions.
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proof, because we do not yet know if fractal dimension is an infor-
mative measurement for artistic imagery; testing this with human
observers and appropriate controls remains to be done.

Asking artists. One often hears the suggestion that one evalu-
ate NPR results by “asking artists” for feedback. These sugges-
tions completely underestimate the difficulty of doing so in a mean-
ingful way. In my experience, the range of opinions and prefer-
ences of professional artists is so broad as to be useless for eval-
uation. The term “artist” itself is nearly meaningless, encompass-
ing, for example, individuals who exhibit art in avant garde gal-
leries, highly-trained commercial designers and animators, “out-
sider” artists, calligraphers, and people who paint graffiti on build-
ings. Even within one of these groups, tastes and preferences may
vary widely. One must be wary of the usual difficulties of non-
controlled experiments, e.g., the well-known “good subject effect,”
where people generally like to tell their questioners what they want
to hear. Artists working with computer tools sometimes even prefer
the visual artifacts and “computery-ness” that we researchers are
working so hard to eliminate.

Informal feedback from artists can be extremely valuable when de-
veloping ideas and techniques. However, it should not be mistaken
for evaluation, and can be extremely misleading if presented as
such. Ideally, artist evaluations should be obtained using the same
careful methodologies as any other experimental studies.

3.5 Evaluating theories

How do we test theories of how artists create images? The work
of Cole et al. [2008] provides one intriguing example along this
direction. In some cases, we can attempt to predict or regenerate
existing works, being careful to avoid over-fitting. Proxy metrics
provide another tool for comparing NPR results to traditional art-
works. In the next section, I describe a complementary approach.

3.6 A case study and a proposal

In our NPAR 2007 paper [Goodwin et al. 2007], we described a
formula for stroke thickness for line drawings of 3D shapes. We
conjectured that this approach reveals something about how artists
use line thickness. In this section, I will describe the approach we
used to evaluate our hypothesis and to make an argument to sup-
port it. In doing this work, we developed a new methodology for
explaining art works in terms of our theory. This methodology or
variants could prove very useful for other NPR algorithms.

Our line thickness formula is based on a quantity we called Isophote
Distance; see [Goodwin et al. 2007] for details. We hypothesized
that

Stroke thickness in many real-world line drawings and
paintings is proportional to Isophote Distance, clamped
to a fixed range of values.

While developing the work, we were met with lukewarm responses
when we showed our initial results to colleagues (for the most part,
computer science students in our lab). They could not tell whether
we were on the right track or not. In part, this was because our pre-
liminary renderings were not very polished. But, more importantly,
line thickness is a subtle property of drawings, and there is a lot of
inconsistency in line drawing style. Hence, we needed some way to
“validate” or justify the method.

Our first approach was to try to recreate human-made line drawings.
We created a 3D model of a character from the “Bone” graphic nov-
els, and a 3D model of a dung beetle from a technical illustration

Figure 2: Left: Illustration from “Bone” [Smith 1998] (BONE® is
Copyright © 2010 Jeff Smith; image used with permission.). Mid-
dle: A 3D model of the possum we created, and a rendering of
the possum with our algorithm described in [Goodwin et al. 2007].
Right: The line thicknesses in the drawing exhibit a number of
properties that can be derived from the Isophote Distance formula.
These are rules that can be checked without knowing the 3D ge-
ometry. (top) Because the wrist has higher curvature than the up-
per arm, it has thinner strokes. (middle) Occluded strokes are not
tapered. (right) Distant objects have thinner strokes than nearby
objects of the same type.

manual. We then rendered both models with our algorithm, and,
visually, we found both to match the original drawings (Figure 2).
One could argue that we may have “overfitted” by designing the 3D
model to match the 3D rendering, though the 3D models look visu-
ally plausible. A more rigorous test would be to attempt to predict
how each artist would draw these models from another viewpoint,
but no such data was available for these artists. Nonetheless, it is
promising that our very simple formula was able to fit two very
different examples with reasonable accuracy.

A broader survey. Throughout the course of this project, we
looked at outlines in drawings and paintings from many sources, in-
cluding from many kinds of art and animation. At first, this was just
to determine whether or not these lines seemed to match or model
at all, to determine if it was worth proceeding with the project.
While we found many promising examples that seemed to fit, we
had little hope of reproducing all these styles with our method, for
two reasons. First, these examples had many different effects, such
as sketchy strokes, for which we had no model. Second, it was
clear that, in many cases, the artist-drawn strokes were inconsistent
with our model. These artists were either following some additional
rules we had not yet deduced, or else there was significant random-
ness or sloppiness that we could not easily model.

Nonetheless, we still believed there was some “truth” to our initial
hypothesis, even if the hypothesis would need to be weakened or
modified. We observed that, even if we could not fit the data, our
method could suggest qualitative properties or rules that many of
the examples did seem to follow. This observation grew out of the
many hours initially spent looking at artworks, trying to determine
whether it was worth conducting the project in the first place.

Without knowing the geometry in any given scene, it is not possi-
ble to directly compute Isophote Distance. However, up to a first-
order approximation, Isophote Distance is inversely proportional to
object depth and to radial curvature. Hence, when we could find
two identical objects at different depths, we expect the more dis-
tant one to have smaller strokes (Figure 2). Furthermore, for most
people and animals, the legs have lower curvature than the arms, so
the legs should have thicker strokes than the arms. A more subtle
consequence is that, in 3/4-view drawings of human faces, stroke
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thicknesses become thinner above the cheekbone. We formulated
roughly a half-dozen such rules, all of which can be tested simply
by looking for specific relationships in drawings, without knowing
3D geometry.

In surveying our collected artistic imagery, we were able to find
a broad range of examples that matched our rules, including ex-
amples from technical illustrations, paintings, cartoon animation,
comic books, and so on2. Some of rules were very widely followed,
including the rules about distant objects and cheekbones. Some we
were unable to find much evidence for or against, particularly the
rule that foreshortened objects should have thicker strokes.

These qualitative properties suggest a generalized version of our
original hypothesis:

Artists often use stroke thicknesses with the same rela-
tionships as determined by Isophote Distance.

In other words, let p and q be two different points on strokes, and
let dI(p) and dI(q) be their Isophote Distances. Then, the stroke
thickness at p should be thicker than that at q if and only if dI(p) >
dI(q). This new hypothesis does not predict the actual ratio of
thicknesses. Exploring this new hypothesis remains future work.

Discussion. Our survey has distinct advantages and disadvan-
tages. We made no attempt to be systematic in our selection of
examples, and we could easily be convicted of the crime of confir-
mation bias, as we only picked examples that support our argument.
We have no quantitative measurements or statistical way to test sig-
nificance. For these reasons, our study should not be taken as a
rigorous scientific study that resolves the question.

Nonetheless, it is hard to imagine another way in which one could
make a persuasive case about such a broad range of existing art-
works. Nor would one expect to see a study like this in the typical
literature about art. Ultimately, our approach is an attempt to per-
suade the reader that there is some truth to our hypothesis. Whether
or not we were successful is for the reader to decide.

It would have also been premature to attempt a rigorous study in
an area where so little is known about what artists do. Our work
may be viewed as a form of “pilot” study; future work may refine
or reject our theories and perform more rigorous studies.

It is worth noting that finding useful example imagery and study-
ing was a significant effort in itself. We spent many hours por-
ing over books, looking at art and instructional webpages, and
freeze-framing animations searching for good examples and study-
ing them.

The general methodology. This experience suggests a possible
methodology for assessing NPR algorithms. For a given NPR al-
gorithm or formula, we derive a set of properties, or rules, for how
the algorithm produces images. These properties could be quali-
tative or quantitative, but they should be designed so that one can
judge whether or not an existing artwork satisfies them. For exam-
ple, it is easy to assess a rule that says that “leg strokes should be
thicker than arm strokes,” whereas, without knowing 3D geometry,
it is impossible to judge a rule that says that stroke thickness should
be inversely proportional to radial curvature. One can then assess to
what degree these rules are or are not obeyed by existing artworks.

2The examples may be found in the slides at
http://www.dgp.toronto.edu/~todd/isophote/.

4 Optimality theories

Having discussed some general topics related to NPR and science,
for the remainder of this paper, I now switch to discussion of some
particular possible directions. What would theories of art that make
use of NPR look like?

One of the most powerful forms of abstraction in both computer
science and biology is optimization. Expressing artistic imagery as
the result of optimization allows us to abstract away details of the
artistic process. More importantly, optimization provides a useful
model for explaining how conflicting goals are resolved.

It might seem absurd to explain human behavior in terms of opti-
mization of simple mathematical functions. However, researchers
in many disciplines, most notably economics and biology, have
demonstrated the usefulness of optimization in explaining aspects
of biological systems and human behavior. It is not necessary for
the optimization to be completely describe the system of interest:
optimization is a useful model, and, like all models, it makes sim-
plifying assumptions in order to make a problem manageable.

4.1 Optimization theories in biology

For context, it is helpful to be aware of the role that optimization
has played in biology. Optimality theories of biological organisms
have shown to be quite powerful; many biological structures and
activities can be viewed as optimizing various quantities such as ef-
ficiency or energy consumption in search of evolutionary advantage
[Alexander 1996; Alexander 2001; Parker and Smith 1990; Suther-
land 2005]. Optimality theories allow us to explain what an organ-
ism (and/or evolution) is “trying to achieve” without explaining the
precise mechanism by which it is achieved.

Optimality theories have been applied to a wide variety of organ-
isms, from the structure of the body and bones, to different types of
animal gait, to behavior [Alexander 1996; Parker and Smith 1990].
Modern theories of vision and neuroscience are based on optimal
inferences and actions, a topic I discuss in more detail in Section
5.1.

Why would organisms be optimal? Optimization in biology can
be thought of as arising from two related mechanisms. First, nat-
ural selection can be thought of as optimizing biological fitness, in
order to allow the species to survive and flourish. Because species
naturally compete with one another (e.g., competing for a particular
niche, or in a predator-prey relationship), survival requires acquir-
ing resources and producing healthy offspring with maximum effi-
ciency. Second, an individual may optimize their behavior for new
situations, i.e., a human can learn new actions, and, with repeated
practice, can make their performance of the action better and better.
The ability to learn is itself a product of evolution.

For the time being, optimality arguments for art are unlikely to di-
rectly reference evolution. Even for traits that are obviously rele-
vant for survival such as, say, bone density or running speed, bi-
ologists have understandable difficulty making a direct mathemat-
ical link to the survival of the species; informal arguments must
be used. The evolutionary rationale for art is even more unclear,
and remains a topic of speculation (e.g., [Dutton 2009]). Instead,
optimality models for art may appeal to the extensive training and
practice that an artist conducts in order to hone their skills, and, in
some cases, the many iterations required to refine a work.

In the biological literature, optimization approaches are sometimes
controversial, since biological organisms are not really optimal. We
may be near local rather than global optima, the objective func-
tion may be ill-defined and ever changing, and many evolutionary
changes may be due to random events rather than adaptation. The

6



In Proc. NPAR 2010

classic and eloquent paper of Gould and Lewontin [1979], though
predating most work on optimality theory in biology, provides the
template for modern attacks on optimality theory. Nonetheless, in
the pages of Nature, Sutherland argued “There are increasing calls
for biology to be predictive. Optimization is the only approach biol-
ogy has for making predictions from first principles.” [2005]. That
is, if we hypothesize a possible principle (e.g., animals select the
diet that maximizes energy intake), we can then optimize the animal
and its behavior to see if the predictions match the animal behavior.
Again, optimality is a model that we can develop and test; it should
not be mistaken for the complete truth.

4.2 Optimization models of art

Modeling artwork as the result of an optimization process allows us
to think about what are we trying to compute while largely abstract-
ing away the steps required to compute it. For example, correctly
modeling the order in which an artist applies strokes to a painting
may be very difficult, but, ultimately, incidental to goals of the fi-
nal image. In contrast, many current NPR methods are described
algorithmically: given an input, a sequence of processing steps are
applied to the input data to produce an image. This makes it hard to
reason about the goals of the work. The idea of using optimization
in NPR goes back at least to Haeberli’s seminal paper [1990], but
optimization methods remain very much in the minority.

One can formulate image creation as optimizing a viewer’s re-
sponse [Durand 2002]. The basic hypothesis can be formulated as:
an artist creates an image to maximize a desired visual response
in the viewer, subject to the constraints of the artistic medium. That
is, suppose we could model the human visual system’s response r
to a stimulus S as a mapping

r = V (S) (1)

Then, producing an artwork is a matter of finding the stimulus S
that minimizes the difference between V (S) and some desired re-
sponse r0:

min
S
d(r0, V (S)) (2)

subject to the constraints of a particular medium, e.g., the stimu-
lus must be created with oil paints. The response r might be a
vector that includes attributes of the perceived shape, the aesthetic
response, the content of a scene, and so on. For example, the goal
might to be induce in the viewer a sense of space and shape that
matches the actual shape in a scene.

Of course, an accurate model of the human visual system is not yet
available. Instead, we must formulate approximate models, while
also justifying and validating the approximation.

Practical methods. Stroke-based optimization methods in NPR
can be expressed in terms of data-fitting or compression objectives,
e.g., [Haeberli 1990; Hertzmann 2001]. As a simple example, con-
sider the problem of using a collection of paint strokes P to repre-
sent a source image I . The goal is to produce an image that con-
veys the same scene as the photograph, but using a limited number
of brush strokes, in order to “look like a painting.” The objective
function then has the form:

E(P ) = D(P, I) + λC(P ) (3)

The first term D(P, I) is a measure of the “perceptual distance”
between the source image and the painting. The second term C(P )
measures the “painterliness” of the image. Some current methods
use an L2-norm as a measure of perceptual distance: D(P, I) =
||P − I||2. The second term will often enforce some kind of par-
simony on the representation. For example, we want to avoid the

situation that millions of tiny strokes are placed that exactly repro-
duce the input photograph. Hence, a simple choice of this term is
to penalize the number of strokes used, or to enforce a hard limit on
the number of strokes. The parameter λ controls the trade-off be-
tween these two terms. In effect, this formulation splits our original
optimization problem (Equation 2) into two terms, even though the
approximation is very weak. This same formulation can be applied
whether one represents the image with paint strokes, stipples, mo-
saic tiles, collage elements, or glued-on macaroni noodles [Hertz-
mann 2003].

There is a natural parallel between this formulation and informa-
tion theory and compression. In a compression problem, we seek to
compress a signal I with an encoding P , so that we minimize the
divergence between the signal and its reconstruction from the en-
coding, while also minimizing the number of bits in the encoding.
At a higher level, information theory seeks optimal representations
that can be used to compress many signals. Perhaps the evolution
of artistic style can also be expressed in these terms: painting and
drawing styles have evolved to be able to best express broad classes
of visual scenes.

For task-oriented rendering, one can formulate an optimization by
a set of objective terms that measure specific goals that are hypoth-
esized to be relevant to the task. For example, the LineDrive system
optimizes several properties of line-drawn maps that are believed to
be important for the goal of aiding navigation [Agrawala and Stolte
2001]. Automatic cropping systems optimize several terms that are
hypothesized to be important for good photo composition [Liu et al.
2010; Santella et al. 2006].

Validating and improving the objectives. One benefit of an op-
timization formulation is that we can test and improve the individ-
ual terms of the objective function, even basing them on data from
human subjects. To date, NPR research has not done nearly enough
of this. Experimentation, when performed at all, is normally done
on a system as a whole. Developing and testing the individual terms
should allow for faster progress in combining these terms to build
better and more sophisticated systems. For example, most meth-
ods use an L2-norm for the distance term D(P, I), but comparing
pixel-wise differences is very poor measure of perceptual differ-
ence. Better metrics, such as SSIM [Wang et al. 2004], which have
been validated for comparing images in signal reconstruction prob-
lems could be used instead.

Line drawing. Some recent line drawing algorithms are de-
scribed purely in terms of mathematical sets. Contours and sugges-
tive contours [DeCarlo et al. 2003; Judd et al. 2007] are described in
terms of zero-sets on smooth surfaces, or image-space ridges [Lee
et al. 2007]. These forms may also be expressed as local minima,
e.g., image-space local minima of shading. This suggests a varia-
tional principle for line drawing: find a minimal set of curves that
cover the darkest regions on the image. Formalizing this precisely
remains an open problem.

Cole et al. [2008] note that some commonly-drawn do not corre-
spond to shading variations. These could be explained by a more
general variational principle. Suppose, given a line drawing, a
viewer mentally reconstructs a particular 3D shape. The goal of
line drawing is to produce a minimal set of lines so that the desired
3D shape is reconstructed by the viewer.

4.3 Random sampling

Human artists are not deterministic. If you ask me to draw one
hundred pictures of a specific person, each picture will be differ-
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ent. The variation will be structured, with some regularities in the
images, and some of the regularity will be relatively simple (e.g.,
wiggles in pen strokes), but some will not (e.g., choices of overall
composition and selection of which lines to draw).

One possible generalization to optimality is to replace the objec-
tive function with a probability distribution, perhaps using a Gibbs’
distribution. For any objective function E(x), the corresponding
Gibbs’ Distribution over variables x is p(x) ∝ exp(−E(x)/T ),
where T is a temperature parameter (assuming the function is inte-
grable). We can then produce an image x by randomly sampling
from the probability distribution. As long as the temperature is
not too high, all of the samples will still be close to optimal, but
yet all different. The use of the Gibbs distribution allows us to di-
rectly generalize the optimality formulation, since probabilities are
directly related to objective function values.

In fact, many current NPR algorithms do include random steps
(e.g., adding random offsets to strokes to produce wiggles), thus
describing distributions over imagery. However, using this distri-
bution for anything other than random sampling is very difficult,
e.g., it is very difficult to study individual terms in the probability
distribution. Furthermore, implementing interactions between ele-
ments in such an approach can be much more difficult.

4.4 Performance issues

As a practical matter, many optimization methods are extremely
slow. Some specialized cases admit tractable algorithms, e.g., gen-
eralizations of k-means [Secord 2002]. In most cases of interest,
however, problems are highly nonlinear, high-dimensional, mixed
continuous and discrete, and thoroughly laced with local minima.
For example, my work in painting by optimization [Hertzmann
2001] entailed random perturbations with a complicated proposal
mechanism, parallelized across a computing cluster, and still re-
quired hours to produce an image. Nonetheless, I believe that opti-
mization methods are worth the trouble. Once we have a good ob-
jective function, we can devise faster optimization algorithms and
approximation algorithms. Understanding the underlying optimiza-
tion problem we really seek to solve can often be the first step to-
ward formulating efficient algorithms or even good heuristics.

5 The computational neuroscience of art

Much of the discussion of the neuroscience of art has employed
qualitative approaches to neuroscience. These can be quite fasci-
nating and revealing, e.g., Ramachandran and Hirsteins’ theories
[1999], or Sacks’ [1996] descriptions of the artwork of patients with
bizarre neurological conditions. However, modern computational
neuroscience and vision science can provide much more quantita-
tive, computational models of how the human vision system works,
and a number of useful insights and tools that, in combination with
NPR, may be crucial to understanding art.

5.1 Computational neuroscience and vision today

Computational neuroscience aims to understand the brain’s func-
tioning mathematically and algorithmically: what is the computa-
tion performed by the brain? This includes both low-level process-
ing (what does a neuron compute? what does V1 compute? what
information does a spike train store?), as well as more high-level
theoretical models that are distinct from how computations are per-
formed [Marr 1982].

As with the optimality models discussed in Section 4, many scien-
tists have studied the hypothesis that the brain is designed to process

information optimally, and, ultimately, to take optimal actions. Op-
timal inference and decision-making under uncertainty is given by
Bayesian inference and decision theory [Jaynes 2003]. Hence, it
seems plausible to model the brain as performing Bayesian compu-
tations. In fact, many experiments have been performed in which
human judgements match those of an optimal Bayesian algorithm,
given an appropriate model. Such experiments have been explored
in visual perception [Doya et al. 2007; Kersten et al. 2004; Rao
et al. 2002; Weiss et al. 2002], in cognitive science [Chater et al.
2006; Griffiths and Tenenbaum 2006], decision-making [Dayan and
Daw 2008], and in motor neuroscience [Körding and Wolpert 2004;
Todorov 2004]. While humans are obviously not optimal in every
way and every situation, low-level vision and motor control have
been modeled by Bayesian models with great initial success. The
current theory is by no means complete or even widely accepted,
but it is the only present theory that makes a plausible claim to fu-
ture success at explaining the brain.

In Bayesian models of visual perception, there are three quantities
of interest: the measurements (i.e., the image we see), the unknown
variables (e.g., representing shape, reflectance, identity, and mo-
tion), and prior knowledge we obtain from experience and evolu-
tion. The rules of probability theory instruct us how to optimally
determine the value (or possible values) of each unknown variable,
integrating out all uncertainty and factoring out all sources of noise.
This allows our visual system to extract as much information as pos-
sible from the data, and to perform well under difficult situations,
e.g., perceiving shape even under scotopic (nighttime) conditions,
recognizing identity just from a moving dot pattern, and so on. See
[Kersten et al. 2004] for a more detailed explanation of how the
visual system may be modeled by probabilistic computations.

Such models can provide the viewer model needed in Section 4.2,
with response r consisting of a probability distribution over prop-
erties of the scene being depicted.

5.2 Probabilistic perception of art

So what might the neuroscience of art be: how do we explain the
human visual system’s interpretation of artistic imagery? For now,
this is largely a matter of conjecture, and I mainly focus on the ex-
planatory power of a probabilistic account. Given whatever cues are
provided by an image, the brain infers as many unknown variables
as possible. For example, a person will interpret shape—but prob-
ably not color—from a line drawing; ambiguities will remain in
areas that are left sketchy or empty. We can perceive an illustration
in terms of real objects and scenes (rather than just a piece of pa-
per with ink on it), because of our visual system’s ability to handle
ambiguities and multiple interpretations by performing Bayesian
computations. We can recognize scenes from line drawings and
paintings for the same reason, even though we never see objects
as pen or paint strokes in the real world. We can abstract or leave
out information because the brain will “interpret around” it; this
allows an artist to omit irrelevant information and thus strengthen
the desired interpretation of the image. The underlying mathemati-
cal mechanisms for these processes would be described in terms of
Bayesian inference. If successful, such a model of the visual per-
ception of art could provide comprehensive explanatory power for
visual imagery that is quantitative and predictive.

5.3 Measuring and creating ambiguity

In most discussions of the role of uncertainty in probabilistic mod-
els (including the discussion above), uncertainty is a tool for deal-
ing with noisy and ambiguous measurements. Here I conjecture
that uncertainty itself plays a unique and irreplaceable role in de-
scribing our experience of art. Furthermore, if we can model the
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(a) (b) (c) (d)
Dog Chair SculptureKey ...

(e)

Figure 3: Vagueness vs. ambiguity. (a) The Necker cube is ambiguous: it can be viewed in two very distinct ways. (b) Schematic illustration
of a viewer’s probability distribution over what the image depicts. There are two high-probability orientations of the cube. (c) A vague
drawing. (d) No interpretation has high probability; probability is spread across many possible interpretations. (e) Vertumnus by Giuseppe
Arcimboldo, 1591, illustrating a much more sophisticated example of ambiguity. The two interpretations of the Necker cube differ only in
orientation: it’s a cube either way. Here, the ambiguity is much more interesting, because the two main interpretations are so radically
different in terms of shape, materials, object identity, and so on.

uncertainties of the visual system, then we should be able to cre-
ate NPR algorithms that specifically optimize for images that have
a specified uncertainty — perhaps we could design an algorithm
that automatically makes images that are beguilingly ambiguous
and enigmatic.

Vagueness vs. ambiguity. To understand the importance of un-
certainty, we can distinguish between a work that is vague versus
one that is ambiguous. These terms are often applied to literary
works as well as to imagery [Wikipedia 2010]. A vague image, like
a blurry photograph, is one that is simply unclear: one cannot tell
what is going on. In information theoretic terms, a vague image
contains very few bits of information. In contrast, an ambiguous
image admits two very distinct interpretations. Examples of ambi-
guity include the Necker cube (which side is nearer to the viewer?),
and Arcimboldo paintings (is it a person or a pile of vegetables?)
(Figure 3). Vagueness is often a sign of a poorly-executed work,
whereas ambiguity is often a sign of a skillful work of art. Ambigu-
ity in a book can leave you pondering and discussing the work long
after you have finished reading it, whereas vagueness may have you
giving up on the book without finishing it.

Ambiguous images are interesting, since we have a natural desire
to resolve uncertainty and seek clarity. Often, we will puzzle over
an image that is hard to interpret, but, once we figure it out, we lose
interest. Ambiguous images defy solution: we keep searching for
the unique answer, but the dilemma cannot be resolved. An am-
biguous image is like a morsel stuck in your teeth that your tongue
can’t quite dislodge, but can’t stop trying to. On the other hand, a
vague image is not very interesting, because there is obviously little
to be learned from studying it.

Ambiguity appears in many art works very simply in the tension be-
tween representation and the media itself. For example, a painting
with distinct and clear brush strokes admits two very distinct inter-
pretations: it is a bunch of paint, or it is an image of a 3D scene.
All sorts of images, from Impressionist painting to Photomosaics
[Silvers 1996], play with this ambiguity.

Probabilistic interpretation. I conjecture that we can explain
these phenomena in terms of the viewer’s probability distributions.
When looking at a blurry picture of a face, the viewer’s PDF over
possible faces is vague: there are many different faces consistent
with the picture. When looking at a Necker cube, there are two sep-
arate peaks in the viewer’s PDF over the cube’s orientation. When
looking at an Arcimboldo painting, the ambiguity happens at mul-

tiple levels: the joint probability distribution between many differ-
ent variables (is it a person or a vegetable? is the surface shiny or
rough? etc.) has two distinct spikes.

It has been hypothesized that visual interpretations are samples
from the probability distribution (e.g., [Daw and Courville 2007]).
With a Necker cube, or Arcimboldo painting, at any given instant,
we see one interpretation or the other. We can consciously “flip”
between these two interpretations, or this flip may occur naturally
if we are not concentrating on the image. Hence, our interpretation
of such images is bistable.

If we can model the visual system (even up to coarse approxima-
tions), we can describe the degree of ambiguity and vagueness in vi-
sual interpretation. We can then measure and optimize these quan-
tities. If our goal is clarity, we might simply optimize the image
to maximize the probability of the correct interpretation. How-
ever, if our goal is to make the image interesting, then we might
want to maximize ambiguity, e.g., maximizing the probability of
the second-most likely interpretation, constrained to be far from the
most-likely interpretation, with some constraint minimizing the en-
tropy as well.

Generic vs. non-generic viewpoints. Ramachandran and
Hirstein [1999] discuss related topics under the heading of generic
and non-generic views. A generic view is one that, topologically,
is stable to infinitesimal perturbations; a non-generic view is one in
which objects line up in coincidental and misleading ways. There
is a direct analogue to art. I distinctly remember an art class in
which the instructor criticized a painting in which I’d unthinkingly
painted a table leg to line up with the side of the window above it,
thus making the composition confusing. Freeman [1996] gives a
probabilistic explanation for the generic viewpoint assumption.

Ramachandran and Hirstein do not distinguish between beauty and
ambiguity. Ambiguity does not create beauty — the Necker cube
is not (in my opinion) beautiful — but ambiguity can contribute to
the interest of an image.

5.4 Visual encodings and information theory

One of the amazing features of human vision is how we can ef-
fortlessly understand and interpret new styles of representation. A
skillful artist can construct an image from a new kind of strokes or
tiles or other primitive, and have it be perfectly unambiguous and
clear, despite the fact that the viewer has no guide to interpret it.
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One drawing might use lines to indicate outlines, another might use
them for hatching; a paint stroke might illustrate a leg, a house, a
tree or an effect of light reflection. In information theory terms, it
is as if I can send you a message in a new encoding, and you can
read the message without having to know the encoding. In machine
learning terms, it is as if we perform model selection—inferring
the artistic style—at the same time as interpreting the image. On
the other hand, only some encodings are valid. There are severe
limits to how much one can mix styles and levels of abstraction. A
pointillist bather next to an line-drawn bather would be confusing.
In Bayesian terms, this may be expressed as a hierarchical prior.

I believe there is an analogue in natural images: even though the
space of imagery in the real world is huge, the actual range of im-
agery in a particular image is very small. Real-world scenes have
limited ranges of materials, colors, and shapes. One does not see
beach sand next to forest trees next to asphalt and so on randomly
repeated throughout our field of vision. I believe our visual system
exploits these regularities when interpreting the world, identifying
and grouping common scene elements, and using this commonality
to infer consistent shape and materials for these elements, e.g., as
in [Glasner et al. 2009; Goldman et al. 2005].

A related effect may be happening with artistic imagery. If you
see a single stroke in isolation, you are unlikely to be able to inter-
pret it, or to convince me of your interpretation. It is only through
seeing all strokes can you make a convincing explanation of what
information each stroke conveys. Perhaps the same visual inference
processes are in effect as for natural scenes, as described above.

The question for NPR is: can we develop the notion of a space of
visual languages for NPR? What is the hypothesis space for inter-
preting the visual language used in an artistic image? The proce-
dural language of Grabli et al. [2004] is one initial possibility, but
there is clearly much more work to be done.

6 Conclusion

I have sketched some possible ways to build scientific theories of
art using the tools of NPR. Though we do not know how much
of art can be described scientifically, it is clear that we have only
scratched the surface. In the future, working together with scholars
from other fields, there is much more we will learn and discover.
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