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CG is maturing …



… but it’s still hard to create



… it’s hard to create in real-time



Petersen, dir: The Perfect Storm, 2000



One shot of The Perfect Storm

1. “Ocean scout” looks through 1000-frame 
simulation, puts camera in position 
(days)

2. Animator refines camera motion, adds 
boats (days)

3. TD adds lighting, particle simulation, 
bow wake (8 weeks)

4. Compositor puts it all together (2 weeks)



Altogether…

• 250-300 shots (~5 seconds each)
– 75 TDs
– 12 animators
– 6 “ocean scouts”
– 15 “match movers”
– 15 compositors

• All in all: close to 100,000 man-
hours!



Thus, the problem

The process for creating CG doesn’t scale:
– Good models are hard to come by
– Need a human expert to create each one

This is fine for big studios, but not for 
independent artists, home users, 
researchers, etc.



Data-driven computer graphics

What if we can get models from the real 
world?



Overview

Intro (10 mins)
Character Animation (80 mins)
• Motion textures
• Probabilistic kinematic models
• Biomechanical Models
Texture (60 mins)
• Texture synthesis and extensions
• Image Analogies



Key themes

1. Black-box models vs. “strong” models

• “Strong” models leverage relevant domain 
knowledge

• Require less data to be predictive 
(sometimes much less)

• Can be more efficient
• But require more effort to design



Key themes

2. Algorithms driven by the application, 
not the tools

• Formulate the problem, then design a 
model and an algorithm

• Does the algorithm solve the real problem?
• Don’t just apply your favorite learning 

algorithm uncritically 



Key themes

3. Symbiosis of graphics and vision

Graphics Vision/
Learning

Hyperparameters

Scene

Images



Key themes

4. Practical issues matter

• As researchers, we want to study the 
fundamentals of a problem

• But complicated and slow techniques are 
much less likely to be adopted

• (This contradicts theme #1)



Character animation



Body parameterization

Pose at time t: qt

Root pos./orientation (6 DOFs)

Joint angles (29 DOFs)

Motion
X = [q1, …, qT]



Forward kinematics

Pose to 3D positions:

qt

[xi,yi,zi]t

FK



Keyframe animation



Keyframe animation

http://www.cadtutor.net/dd/bryce/anim/anim.html

q1 q2 q3

q(t) q(t)



Keyframe animation

• Define a set of key poses: [q1,…,qT]
• Interpolate to produce q(t)

– typically, with spline curves



Summary of keyframing

• Pros:
– very expressive. total control to the artist

• Cons:
– very labor intensive
– hard to create physical realism
– hard to match individual style

• Uses:
– potentially, everthing except complex 

physical phenomena (e.g., smoke)



Motion capture

[Images from NYU and UW]



Motion capture



Mocap is not a panacea



Motion capture

Demo



Summary of motion capture

• Pros:
– captures specific style of real actors

• Cons:
– often not expressive enough (!)
– time-consuming and expensive

• lots of equipment, space, actors
• manual clean-up

– hard to edit

• Uses:
– character animation
– medicine (kinesiology, biomechanics)



Data-driven animation

Can we learn motion style from examples
• How do we model and represent style?
• Representation will directly affect 

quality of the results



Animation

Off-Line Learning

Motion Learning Style

Synthesis

Pose

Constraints

Data-driven animation



Probabilistic motion models

• Given input motion sequences, learn 
PDF over motions

• Generating motions: constrained 
sampling from PDF



Data “learning”

Probabilistic motion models

Walk cycle in pose/velocity space

HMM

Brand and Hertzmann, SIGGRAPH 2000, “Style machines”



Style machines demo



Summary of Style machines

Pros: 
– generate novel sequences of motions
– parameterized style model

Cons:
– HMM is a poor model for continuous motion
– No kinematic control yet
– No physical model

• e.g., ground contact is smoothed out

– Our learning strategy could be improved…



Mark V. Chaney

[Shannon 48] proposed a way to generate English-
looking text using N-grams:
– Assume a generalized Markov model
– Use a large text to compute probability distributions of 

each letter given N-1 previous letters 
• precompute or sample randomly

– Starting from a seed repeatedly sample this Markov chain 
to generate new letters

– One can use whole words instead of letters too:

WE  NEED TO EAT CAKE



Mark V. Chaney
Results (using alt.singles corpus):

– “As I've commented before, really relating 
to someone involves standing next to 
impossible.”

– "One morning I shot an elephant in my 
arms and kissed him.”

– "I spent an interesting evening recently 
with a grain of salt"



Motion graphs

• Idea: cut-and-paste motion capture to 
create new motion

• Four papers introduced the idea at 
SIGGRAPH 2002

• Inspired by texture synthesis algorithms 
(next hour)

• I’ll outline one of them: J. Lee et al., 
Interactive Control of Avatars



Motion graphs

Input: raw motion capture

“Motion graph”



Distance between FramesDistance between Frames

),(),(),( jiji vvdppdjiD α+=

Weighted differencesWeighted differences
of joint anglesof joint angles

Weighted differencesWeighted differences
of joint velocitiesof joint velocities



Pruning Transition

Contact state: Avoid transition to 
dissimilar contact state

Likelihood: User-specified threshold

Similarity: Local maxima

Avoid dead-ends: Strongly connected 
components



Run-time graph search

Best-first graph traversal
• Path length is bounded
• Fixed number of frames at each frame

Comparison to global search
• Intended for interactive control
• Not for accurate global planning



Global vs. Local Coordinates

Local, moving,
body-relative

coordinates

Global, fixed,
object-relative

coordinates



Demo



Motion synthesis with annotations

• Arikan et al., SIGGRAPH 2003



Summary of motion textures

Pros:
– very realistic
– easy to understand and implement
– real-time synthesis

Cons:
– no generalization to new poses or new styles
– e.g., no kinematic/keyframe control



Style-Based Inverse 
Kinematics

with: Keith Grochow, Steve 
Martin, Zoran Popović



Motivation



Problem Statement

• Generate a character pose based on a chosen 
style subject to constraints

Constraints

Degrees of freedom (DOFs) q



Style Representation

• Objective function
– given a pose evaluate how well it matches a style  
– allow any pose

• Probability Distribution Function (PDF)
– principled way of automatically learning the style



Goals for the PDF

• Learn PDF from any data

• Smooth and descriptive

• Minimal parameter tuning

• Real-time synthesis



Mixtures-of-Gaussians



SGPLVM

Scaled Gaussian Process Latent Variable Model

based on [Lawrence 2004]

– automatic parameter scaling
– extensions for real-time synthesis
– style interpolation



Gaussian Processes

Let g(x) be a nonlinear mapping, e.g., 
RBFs:
– y = g(x) = ∑i wi φi(x)
– Gaussian prior on wi

We can marginalize out w explicitly
p(ynew | X, Y) = ∫ p(ynew, w | X, Y) dw



Gaussian Processes



Gaussian Processes



y(q) =  q           orientation(q)  velocity(q)
[ q0 q1 q2 …… r0 r1 r2 v0 v1 v2 … ]

Features



GPLVM

y1

y2

y3

g(x)

x1

x2

Latent Space Feature Space

x ~ N(0,I)



Precision in Latent Space

σ2(x)



CPose Synthesis

y1

y2

y3

x1

x2

y

xx

arg minx,q LIK (x,y(q); θ)
s.t. C(q) = 0
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Style Learning

y1

y2

x1

x2



Style Learning

y1

y2

y3

x1

x2



Different styles

Jump ShotTrack StartBaseball Pitch



Style interpolation
Given two styles θ1 and θ2, can we 

“interpolate” them?

));(exp()(1 1θyy IKLp −∝

Approach: interpolate in log-domain

));(exp()(2 2θyy IKLp −∝



Style interpolation
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Style interpolation in log space
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Applications



Interactive Posing 



Multiple motion style



Style Interpolation



Trajectory Keyframing



Summary of Style IK

Pros:
– Arbitrary kinematic constraints
– Minimal parameter tuning

Cons:
– Weak temporal model
– Some optimization issues, particularly with 

large datasets
– Purely kinematic (no physical model)



Learning Biomechanical 
Models of Human Motion

Aaron Hertzmann
University of Toronto

with: Karen Liu, Zoran Popović
University of Washington



What determines how we move?

Individual Style:
Biology
Physics
Intention
Emotion
…

Can we build realistic and accurate models?



Goals for the model

1. Physically plausible

2. Generative models of human motion

• Predictive, synthesis-quality

3. Generalize from a small dataset



Biomechanical principles



Optimality Theory

Hypothesis:
We optimize for efficiency, both in our 
body structure and movement



Criticisms of Optimality Theory

• We’re not really globally optimal
– The objective function constantly changes
– We never really converge
– We may be locally optimal

• Non-optimal variation, e.g., genetic drift 
• Hard to build realistic models



Optimality Theory

This is controversial among biologists

Use optimization to test our assumptions 
about organisms

“Optimization is the only approach biology 
has for making predictions from first 
principles.”

– W. Sutherland, Nature, June 2005



Not like this:

How do you walk?

All joints actively actuated



Passive Dynamic Walking

Walking on a ramp without any muscles



Walking robots

Collins et al, Science 2005



Efficiency of walking

Dimensionless Cost of Transport = Energy cost / (Body Weight * Distance)

DCT: 1.6 DCT: 0.055DCT: 0.05



Musculoskeletal structure

• Agonist/antagonist muscles
• Passive properties of muscles 

and tendons:
– Elastic
– Damping



Muscle stiffness and springiness

Stiffness improves stability/robustness
– Muscle stiffness varies for different tasks

Passive elements help conserve energy
– saves 20-30% of energy during running



Relative muscle preferences

• Some muscles are stronger than others
• Some muscles are more efficient

– muscle attaches to bone in different ways

• Some body parts may be more prone to 
damage



Physics-based motion style



Body parameterization

18 body nodes
Pose at time t: qt

Root pos./orientation (6 DOFs)

Joint angles (29 DOFs)

Using exponential maps
Motion

X = [q1, …, qT]



Forces at a joint

Assumption: constant stiffness at each joint



Equations of motion at a joint

(Considering only aggregate forces)

tr(dWi/dqj Mi W’’iT) = Qmj + Qgj + Qpj + Qcj + Qsj

“F = ma”:



Muscle preferences

Muscle preferences: αj



Physical style

Parameter vector θ includes
– spring constants ks1, ks2 (two per DOF)
– rest angles q (one per DOF)
– shoe spring constants kshoe (two)
– damping constants kd (one for DOF)
– muscle preferences αj (one per DOF)

Total: 147 dims. in θ
A vector θ defines a physical style

(Skeleton and masses from preprocessing)



Constraints on motion

Foot contact constraints C



Objective function for motion

Weighted sum of magnitudes of all muscle forces:

E(X; θ) = ∑j,t α
j 
(Qm,j(t, X, θ))2

Qm,j(t,X,θ) determines muscle force at time 
t from X and θ (closed-form)



Generating motion

X* = arg minX ∈ C E(X; θ)

X

E
(X

; θ
)



Problem

θ is 147-dimensional
Impossible to tune by hand
How can we acquire it from data?



Nonlinear Inverse Optimization



Problem statement

Given an optimal motion, what was the 
energy function?

Given
– mocap XT

– constraints C

Determine θ

XT

E
(X

; θ
)



What doesn’t work

Least-squares
– ||XT – arg min E(X; θ) ||2

– not robust
– very hard to optimize

Maximum likelihood
– Gibbs distribution: p(X|θ, C) = e-E(X; θ, C)/Z(θ, C)

– Intractable
– … even with Contrastive Divergence



Idea

Goal: 

E(XT; θ) = minX ∈ C E(X; θ)
Learning objective function:

G(θ) = E(XT; θ) - minX ∈ C E(X; θ)

Constraints: ∑j αj = 1, αj >= 0 
– to prevent E=0 everywhere



Learning

G(θ) = E(XT; θ) - minX ∈ C E(X; θ)

XS = arg minX ∈ C E(X; θ)
H(θ) = E(XT; θ) - E(XS; θ)

dG/dθ ≈ dH/dθ
= dE/dθ|XT – dE/dθ|XS



Learning

initialize θ
while not done do

XS = arg minX ∈ C E(X; θ)
∆θ = dE/dθ|XT – dE/dθ|XS

β = arg minβ G(θ - β∆θ)
θ = θ - β ∆θ



XS

Learning

XT

E
(X

; θ
)

XS

XS = arg minX ∈ C E(X; θ) ∆θ ≈ dE/dθ|XT – dE/dθ|XS



Nonlinear Inverse Optimization

• Solve for optimization parameters for 
any differentiable energy function

• Works with hard constraints
• All you need is a forward optimizer
• Degenerate form of CD
• Related to energy-based models of 

[LeCun and Huang 2005]



A basic walk



New constraints



Warping vs. ground truth



Comparison to mocap



A “sad” style



Walking uphill



Motion warping vs. ground truth



Comparison to mocap



Running



Springier shoes



“Powerwalking”



A different subject





Another subject





Summary of physics-based style

Pros:
– Generalizes to new physical situations
– Small training sets

Cons:
– expensive optimizations
– physical model is incomplete (so far)

Future work:
– does it work for broader classes of motions 

and styles?
– model control, space of styles, etc.



Summary of animation

Motion graphs
– simple easy fast
– can’t generate new poses at all

Probabilistic kinematic models
– not quite as fast
– no physics

Physics-based style
– very slow
– potentially, very powerful


