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Abstract
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2010

We introduce an alternative to Monte-Carlo techniques for solving radiance transport

problems for participating media. We use a reformulation of the volume rendering equa-

tion from its standard integro-differential form to a purely differential form. We then

leverage the large body of work in numerical methods for solving differential equations

by framing and analyzing the problem as a differential equation. To our knowledge,

this is the first application of such techniques in the area of photorealistic rendering of

volumes based on ray optics.
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Chapter 1

Introduction

Image synthesis poses a rich problem space in computer graphics. Accurately portraying a

scene incorporates the techniques and knowledge of many fields, including but not limited

to software engineering, physics, mathematics, and computer science. In particular,

visualizing complex effects such as global lighting and volumetric phenomena requires a

significant amount of computation. This thesis addresses the problem of rendering images

with participating media and introduces a new technique for rendering these effects.

As producing high quality images is very time consuming, a critical goal in ren-

dering research is fine-tuning the trade off between computational resources and visual

fidelity. Approaches to this fall into two key categories: real-time and offline. Real-time

algorithms are characterized by maximizing image fidelity under stringent fixed time re-

quirements, whereas offline algorithms place a higher emphasis on the visual accuracy of

the final image. The entertainment industry presents many high profile applications of

these approaches: video games are a prime example of real-time techniques, while movie

special effects exemplify offline techniques.

An elusive, challenging and important phenomenon that requires visual realism is

that of participating media such as smoke, steam and dust. These effects are described

by the physical process of radiative transfer. The Radiative Transfer Equation (RTE, see

1



Chapter 1. Introduction 2

Section 2.1) which governs this process yields closed form solutions in only the simplest

of cases, so accurately rendering its effects often requires lengthy numerical calculation.

This complexity has forced all but the most advanced real-time techniques to resort to

approximating the effects of smoke with particle systems and simple billboards (textured

rectangles). On the other hand, offline methods are able to directly compute a solution to

the RTE using numerical techniques. A common approach to solving the RTE is Monte

Carlo integration, as with other rendering problems; however the necessity of Monte

Carlo methods is not clear.

Fortunately, due to the nature of the RTE, Monte Carlo integration is not the only

available method. This thesis explores the application of non-Monte Carlo techniques

to solving the RTE in a ray tracing setting. In particular, we lever the body of work

in numerical methods for solving Ordinary Differential Equations (ODEs). Numerical

methods for differential equations (NMDE) have been studied for over a century. We

can incorporate this knowledge to gain a better understanding of the efficacy of various

techniques for solving the RTE. We expect this will add a degree of control over the

accuracy of the solution. Unless analytic or empirical data is available, controlling the

accuracy of the RTE solution, and thus the final image quality, is something that can

only be done indirectly with Monte Carlo integration by varying the number of samples

used. Tuning the sample count for a desired image quality is a matter of trial and error.

Chapter 2 introduces the RTE in the context of image synthesis, and discusses pre-

vious techniques for rendering images with it. Chapter 3 describes the basics of ODE

formulation and solution, and presents a variety of solvers that our algorithm will utilize.

Chapter 4 discusses the details of applying ODE solvers to the RTE in a ray tracer, as

well as the specifics of our implementation. Chapter 5 presents results from experiments

with our renderer and existing techniques. In chapter 6, we conclude that the technique

presented by this thesis provides a viable alternative to Monte Carlo methods, and we

discuss possible extensions for future work.



Chapter 2

Volume Rendering

Ray tracing produces images by simulating the transport of light energy within a scene

using the geometric concept of rays interacting with objects in the scene. This algorithm

has been the basis of most photorealistic image synthesis algorithms since it was proposed

by Turner Whitted in 1980[20]. The physical basis for this approach draws on the laws of

geometric optics to determine the paths of the rays, as well as the law of conservation of

energy to describe the interaction of the rays with the objects they intersect, producing

the color of the light seen along each ray. The laws of radiative transfer predict the

transfer of light along those paths between surface interactions. It is this last circumstance

in which participating media comes into play.

Light transport yields two key equations that characterize how light is scattered

among interactions within the scene. The first deals with boundary conditions at sur-

face interactions, and is known as the Rendering Equation. The second models light

scattering and transport between surface interactions; it is called the Radiative Transfer

Equation. As the effects of participating media are confined to radiative transfer, it is

this second equation in which we are interested. We will explore the Radiative Transfer

Equation and how it models the effects of participating media in Section 2.1. Section 2.2

discusses key advances in volume rendering research related to participating media.

3
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2.1 The Volume Rendering Equation

The fundamental tool for visualizing participating media is the Radiative Transfer Equa-

tion (RTE)[4]. Graphics researchers have come to know it as the Volume Rendering

Equation. It describes the propagation of electromagnetic radiation in a medium, tak-

ing into account emission, absorption and scattering. Given the intensity of light at the

boundary of the participating medium, the equation uniquely specifies the light field for

the volume. The following integro-differential formulation describes the light radiance

along a ray:

∇ωL(x, ω) + σt(x)L(x, ω) = E(x, ω) + σs(x)

∫
S2

p(x, ω, ωi)L(x, ωi)dωi (2.1)

where L(x, ω) is the radiance of the light at the point x in the direction ω, σt and σs are

the extinction and scattering coefficients, respectively, E is the medium’s emissivity, S2

is the set of directions on the unit sphere, and p is the medium’s phase function. The

phase function will be described in detail later.

Each of the terms admits a simple physical analog. The first term, ∇ωL(x, ω), is a

directional derivative along ω of the light field at the point x. In other words, it gives us

the change in the light field in the direction of the light ray, with respect to direction ω.

The next term, σt(x)L(x, ω), tells us what proportion of the light is absorbed and thus

removed by the medium. This accounts for absorption of light within the medium along

a given direction, as well as when the light is scattered away from the direction of the

ray, called out-scattering. The next term is E(x, ω), the amount of light spontaneously

generated by the medium.

The last term is the most complicated part of the equation. It describes the amount

of light scattered towards the direction of the ray, called in-scattering. Given a unit

quantity of light coming in from the direction ωi, the phase function, p(x, ω, ωi), tells us

how much light is scattered in the direction ω. After accumulating the light scattered from

all directions, the scattering coefficient, σs(x), modulates this. The scattering coefficient
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is also referred to as the scattering albedo. The in-scattering term combined with the

emission term are together called the source term, as they describe the source of any

additional light along the ray.

We now see that equation 2.1 can be intuitively described as the following:

(change in light along ω) + absorption = emission + in-scattering

(change in light along ω) = emission− absorption + in-scattering

Now that we have an equation describing how light rays interact with participating

media, we need to know how to solve it. Due to the complexity of the in-scattering

term, it is impossible to derive an analytical solution for all but the simplest of cases.

Furthermore, the light field L(x, ω) is a five dimensional function. Rendering algorithms

only require its value at a few particular locations and directions. Thus, we can reduce

the dimensionality of the problem by parameterizing equation 2.1 by a specific ray x(t) =

x0 + tω:

L′(t) = E(t)− σt(t)L(t) + σs(t)

∫
S2

p(t, ωi)L(x, ωi)dωi (2.2)

Typically, we will have traced a ray from a surface intersection because we need

to know the light incident on the intersection in a specific direction. We use this ray

to parameterize the equation, and then use whatever method desired to solve for the

incident light.

While our approach uses Eq. 2.2 directly, existing techniques require a pure inte-

gral equation, as opposed to an integro-differential equation. This can be achieved by

integrating Eq. 2.2:

L(t) =

∫ t

0

[
T (0, t′)

(
E(t′)dt′ + σs(t

′)S(t′)
)]
dt′ + T (0, t)L(0), (2.3)

where the in-scattering term S(t) is defined as:

S(t) =

∫
S2

p(t, ωi)L(x(t), ωi)dωi,
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and the transmittance T (a, b), which describes how much a unit of light is attenuated

when traveling from a to b, is

T (a, b) = e−
∫ b
a σt(t

′)dt′ .

Eq. 2.3 is often referred to as the volume rendering equation.

This description of scattering phenomena is unavoidably recursive, as the source term

includes the contribution of the function L(x, ωi) itself. This recursion is the primary

source of complexity in generating images with the RTE. An obvious way to mitigate this

is to limit the amount of recursion, effectively limiting the number of scattering events

that take place. This is a reasonable approximation to use when the scattering albedo

σs is low, as each scattering event reduces the total energy of the ray significantly. If

we model the source term by considering only direct paths to light sources, ignoring the

effects of the source term along those paths, we have a single scattering model. The name

owes to the fact that the scattering events modeled by the source term are handled only

a single time per light path. Single scattering is sufficient for variety of effects, such as

sunbeams, also known as crepuscular rays. The results section contains images of such

effects, e.g. Figure 5.3, rendered with single scattering. In a multiple scattering model, the

full effects of the recursive nature of the source term are considered. Correctly considering

multiple scattering has the effect of brightening the medium, as light is allowed to diffuse

throughout via scattering.

2.1.1 Phase Functions

The phase function p(x, ω, ωi) is analogous to the Bidirectional Reflectance Distribution

Function (BRDF) used in surface lighting calculations. Both define the proportion of

outgoing light at a scattering event as a function of incoming radiance. For all BRDFs

f(ωi, ωo), the following holds true:

∀ωi
∫
S2

f(ωi, ωo)dωo ≤ 1.
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Figure 2.1: Plot of two Henyey-Greenstein functions with differing g. Functions with

negative g (solid line) primarily backscatter light, whereas those with positive g show

forward scattering.

Interpreted physically, this asserts that the BRDF conserves energy. When a surface

absorbs some amount of light, this integral will be less than one. A similar statement

holds for phase functions, except that since absorption is characterized by the σa term,

the integral must evaluate to exactly one:

∀ω
∫
S2

p(x, ω, ωi)dωi = 1

Most phase functions depend only on a single angle θ between the incoming and outgo-

ing and outgoing directions ω and ωi. In this case, the participating medium is called

isotropic, and the phase function is denoted by simply p(θ), where directly forward is

defined as θ = 0, while θ = π defines the backward direction. If there is additional de-

pendence on the direction ω, the medium is anisotropic. It is useful to define a parameter

g that describes the preferred scattering direction of the function:

g =
1

4π

∫
S2

p(θ) cos θdθ,

where θ is the angle between the incoming and outgoing directions ω and ωi. This formula

is chosen to describe the average value of the product of the phase function and the cosine

of the scattering angle ω[17]. Positive values of g correspond to forward scattering. If

g = 0, there is no preferred direction, and, in a confusing overloading of the term, the
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phase function is called isotropic. This is distinguished from the previous usage of the

term to describe the dependence on the direction ω, where the medium itself is called

isotropic. Most phase functions are, however, anisotropic. Figure 2.1 provides examples

of phase functions with different values of g to show how the shape of the function relates

to g. As θ = 0 corresponds to the forward direction, the shape of the plot shows the

distribution of scattered light as a ray travels to the right.

There are a few common phase functions that are used, some for physical accuracy

and some for efficiency. The simplest phase function is isotropic:

p(θ) =
1

4π
. (2.4)

The most common parameterized phase function is the Henyey-Greenstein function[6]. It

was introduced to empirically describe the scattering of light by the interstellar medium,

and has since been used to describe scattering in additional media such as clouds and

water.

p(θ) =
1

4π

1− g2

(1 + g2 − 2g cos θ)1.5
, (2.5)

where g ∈ ]−1, 1[ is a parameter exactly corresponding to the previously mentioned

preferred scattering direction. When the efficiency of computing the fractional exponent

is a concern, the following approximation introduced by Schlick may be used[1]:

p(θ) =
1

4π

1− k2

(1 + k cos θ)2
(2.6)

Again, k ∈ ]−1, 1[ controls the preferred scattering direction. Figure 2.2 shows how

close the Schlick function approximates the Henyey-Greenstein function for correspond-

ing values of g and k. Both of these functions describe distributions that are easy to

sample, which is useful for Monte-Carlo techniques as well as photon mapping, which are

described later.

Several analytical phase functions have been derived for situations in which physical

accuracy is a primary concern. For instance, Rayleigh scattering describes the scattering



Chapter 2. Volume Rendering 9

-0.2

-0.1

0

0.1

0.2

-0.1 0.1 0.3 0.5 0.7 0.9

g=0.6

k=0.8112

Figure 2.2: Comparison of Schlick and Henyey-Greenstein phase function for correspond-

ing parameters

of light by spheres much smaller than the wavelength of the light[17]. The formula has

a wavelength dependency that causes shorter wavelengths to scatter more. This type

of scattering occurs in the Earth’s atmosphere, which contributes to the blue color of

the sky. When larger particles are involved, Mie theory[15] may be used to describe the

scattering, which is unfortunately prohibitively complex for many applications. Often,

weighted combinations of Henyey-Greenstein functions are used to approximate these

real-world models.

2.2 Survey of Rendering Algorithms

Rendering algorithms for participating media all have their roots in radiative transport

theory. The Radiative Transfer Equation described above was introduced by Chan-

drasekhar in 1960 with his book Radiative Transfer [4]. The theory has been used in a

variety of fields, such as astrophysics and atmospheric sciences. As graphics is concerned

primarily with the visual fidelity of generated images, the model may be simplified in

favor of less computationally intensive approaches or those that present more intuitive

control over the simulation. As such, most rendering techniques rely on phenomenological

simplifications of the model presented by Chandrasekhar.

Early attempts to render the effects of participating media were limited to simple
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directly observed phenomena, such as color desaturation when light travels through the

atmosphere for an extended period. The first application of models based on radiative

transfer to the synthesis of images with participating media was in a paper by Blinn in

1982[2]. This paper modeled participating media as a flat layer of suspended particles

of uniform radius. Blinn then introduced a single scattering lighting model, simulating a

beam of light entering the layer, attenuating due to absorption, and scattering at most

once, directly into the viewing direction. The technique was used to render the rings of

Saturn using empirical values for media properties derived from Voyager I measurements.

Blinn’s derivation assumed a single light source with simple media geometry, and,

importantly, assumed a low scattering albedo such that the effects of multiple scattering

were negligible. Additional work was done to extend the model to more complex geom-

etry, such as by Max[13], but restrictions on the lighting still existed. Kajiya and Von

Herzen constructed two new models that did not restrict the placement and number of

lights, allowing for integration with ray tracing techniques[11], one of which was suitable

for multiple scattering. Both approaches represented media as a three dimensional grid

of density data, allowing for more general volumes than Blinn’s original technique. Their

single scattering technique consisted of two steps. First, the light from each of n light

sources is sent through the volume and stored in n three dimensional arrays. This is done

by calculating a line integral from each point in the array to each light source, ignoring

scattering events. In the second step, the image is rendered by evaluating the RTE as a

line integral along the camera ray, using the light array in place of the in-scattering term.

Kajiya and Von Herzen’s second technique is used when the scattering albedo is high,

where multiple scattering effects are appreciable. Two approximations are used: the first

is a perturbation expansion of the RTE on the scattering albedo, and the second is the

usage of band limited spherical harmonics to represent the light field. These yield a series

of equations defined on the three dimensional grid of the participating media which can

be solved using relaxation methods. Methods using band-limited spherical harmonics in
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this manner are termed PN -methods, with N corresponding to the highest band used.

Kajiya and Von Herzen’s technique did not model all volume/surface interactions.

While participating media cast shadows on surfaces, the reverse was not true. Rush-

meier and Torrance took a different approach to calculating light transport based on the

radiosity global illumination algorithms[18]. Their technique is known as a zonal method,

because the media is divided up into zones of uniform density. A particular zone con-

tributes a well-defined proportion of light to any other zone or surface element, akin to

radiosity’s form factors. Computing these factors yields a set of simultaneous equations

describing the intensity of the zones and surface in terms of the other elements. This

particular formulation requires the assumption of an isotropic phase functions, but it has

been extended to allow anisotropy by using the Discrete Ordinates method, discretizing

the directions as well as the zones[14].

Each of these techniques relies on a memory-intensive discretization of the volume.

Monte Carlo techniques, such as those based on Kajiya’s path tracing approach[10],

alleviate this memory issue, and they also allow for more general volume geometries.

These approaches evaluate the rendering equations in their integral form using a Monte

Carlo estimator, a technique for numerically solving any definite integral. Given an

integral
∫ b
a
g(x)dx, the Monte Carlo estimator tells us to take N samples of g(x) according

to some distribution p(x), and sum the samples according to the following formula to get

an accurate approximation to the value of the integral:

GN =
1

N

N∑
i=1

g(xi)

p(xi)
. (2.7)

GN is guaranteed to converge to the value of the integral as the number of samples N

grows arbitrarily large. Due to the nondeterministic nature of the Monte Carlo estimator,

it is important to use a sufficient number of samples, as well as tailored sample distribu-

tions, in order to increase accuracy and convergence in practice. A thorough explanation

of the Monte Carlo estimator can be found in PBRT[17].

Since the Monte-Carlo estimator is suited for general purpose complex integral calcu-
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Figure 2.3: Bidirectional path tracing follows rays forward from the light as well as

backwards from the camera. Shadow rays connect all the points in the different paths.

lations, it can incorporated directly into ray tracing computations. As mentioned above,

this approach was utilized by Kajiya to solve the Rendering Equation for surfaces. It has

also been used for participating media, for example in Lafortune’s adaptation of bidi-

rectional path tracing to participating media[12]. In particular, the bidirectional path

tracing algorithm simultaneously traces paths from a light source (forward tracing) and

the camera (backward tracing), connecting the paths’ scattering events via shadow rays

in order to compute shading. When handling participating media, each path is allowed to

randomly scatter within the medium according to a probability computed via the optical

thickness of the medium along the path. By sampling enough paths, the technique is

guaranteed to converge to the correct solution, but it requires considerable amounts of

time, a general trait of Monte Carlo algorithms.

Global illumination and caustics are difficult to capture both with and without par-

ticipating media. Jensen introduced photon mapping to render these effects selectively

and efficiently, first without participating media[8], and subsequently to include partici-

pating media[9]. This is a two-pass algorithm, separating forward tracing from backward

tracing. The first pass traces a number of paths starting from light sources, depositing

photons into a data structure when the path interacts with surfaces or media. This data

structure, the photon map, provides a characterization of the light in the scene. In the

second pass, rays are traced from the camera, and the photon map is used to provide
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lighting information at surface and volume shading calculations. Volume interactions are

calculated by evaluating the RTE using a Monte Carlo technique called ray marching,

described in more detail in Chapter 4.

2.3 Summary

We introduced the Radiative Transfer Equation, Eq. 2.1, and detailed its effect on

light transport. We explored key papers in the area of rendering participating media.

Various techniques, including finite element techniques, emerged to solve approximations

of the RTE efficiently. Monte Carlo based ray tracing approaches were developed to

handle more general cases, and have been popular choices for rendering complex global

illumination effects. The techniques introduced in this thesis can be inserted into ray

tracing algorithms in the same place as these Monte Carlo solvers. As our technique

solves the RTE as an ODE directly, the next chapter describes the tools necessary to do

so.



Chapter 3

Ordinary Differential Equations

Differential equations are mathematical equations that explore a function through its

derivatives. They provide a fundamental tool for modeling systems that have been used

for centuries in a wide variety of fields. As a simple example, consider the motion of a

ball thrown into the air, ignoring air resistance. This can be described by the equation

ÿ = −g, which relates the acceleration of the ball, ÿ, to the force of gravity. If we want to

know the position of the ball at a particular time t, we can easily integrate the equation

twice to find y(t) as a function of the initial velocity and position of the ball. Many

interesting differential equations don’t admit solutions quite so easily.

As we mentioned in Chapter 2, the Radiative Transfer Equation is expressed as a

differential equation. While existing rendering techniques transform this equation into

an integral form for application of Monte Carlo integration techniques, our technique

solves the RTE directly as a differential equation in the form of an Initial Value Problem

(IVP). This chapter introduces the techniques used to solve IVPs such as those that arise

during rendering with the RTE. Section 3.1 discusses IVPs in general, while Sections 3.2

and 3.3 explore a variety of specific techniques for solving them numerically.

14
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3.1 Initial Value Problems

Solving a differential equation entails finding a function that satisfies the equation. It is

not immediately clear that this is a well-posed problem: uniqueness is not guaranteed

by the differential equation alone. Further conditions may be necessary to guarantee

the uniqueness of the solution. For instance, the equation y′ = m describes the slope of

a line, but there are infinitely many lines y = mx + b that satisfy this equation. The

y-intercept b serves to specify a unique solution in this case.

While it is difficult to determine if an arbitrary differential equation has a unique

solution, there are techniques for specific kinds of problems. One such example is that of

Initial Value Problems (IVPs), in which the problem is specified by an explicit first-order

ODE together with the value of the solution to the function at a single point (the initial

conditions), denoted by

y′ = f(x, y), y(x0) = y0.

This kind of problem arises when the ODE describes the dynamics of a system, and the

given value of the function determines the initial state of the system. The RTE, together

with the initial radiance of a ray, naturally form an IVP.

Solving IVPs can sometimes be as simple as integrating the function f(x, y) and

setting the constant of integration to match the initial conditions. Often, it is too difficult,

if not impossible, to analytically integrate f . This is the case for the RTE, namely Eq.

2.2, as the source term is too complex. Numerical techniques for computing approximate

solutions to IVPs have existed for centuries, with a particular emphasis in the 20th

century given to creating efficient and stable solvers. Most existing methods that are

interesting for our problem use a stepwise approach, whereby an approximation of f(x, y)

is computed within a window around a known value, then the approximation is integrated

for the length of the step size, h, and the process is repeated for the domain of the desired

solution. These are often classified based on the amount of error they introduce. It is
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useful to distinguish between local and global error, respectively the error introduced by a

single step and then error accumulated over the entire process. This classification is called

the order of the solver: an order p solver introduces O(hp+1) local error at each step,

which corresponds to O(hp) global error. Some adaptive solvers also provide methods for

adjusting the step size based on computed errors to maintain a desired accuracy.

Given the value of f(x, y) at (x, y) = (x0, y0), and a step size of h, solvers are distin-

guished by the approximation of f(x, y) used to calculate the next step y1 = y(x0 + h).

In general, all approaches follow the following structure for computing a step:

yi+1 = yi + hi+1Φ(f, xi, yi+1, yi, · · · , yi−k+1), (3.1)

where Φ represents the solver, and k denotes the number of previous steps used by the

formula. If k > 1, i.e. a multi-step solver, the solver needs to keep track of previous

values. For many solvers, Φ does not depend on yi+1, which allows the formula to be

explicit, as opposed to implicit. Implicit solvers are more computationally intensive, but

have greater numerical stability. This is useful for solving stiff problems, a loosely defined

term that describes IVPs that are more susceptible to numerical instability.

The RTE does not exhibit stiffness, since the terms do not vary rapidly, so we will focus

on discussing explicit methods. The next two sections give an overview of various explicit

single step and multi-step methods. Our approach to solving the RTE incorporates both

of these styles of solvers.

3.2 Single Step Methods

3.2.1 Euler’s Method

The simplest solver is known as Euler’s Method. It works by constructing a linear

approximation to y(x) at x = xi, using the derivative value as given by the ODE:

y′(xi) = f(xi, y(xi)) ≈ f(xi, yi). The derivative is recomputed at every step. This
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yields the following formula for computing the value of y(x) at the next step:

yi+1 = yi + hf(xi, yi).

Determining the order of a solver usually can be done by comparing the Taylor expansion

of y(x) around x = xi to an expansion of yi+1 given by Eq. 3.1. For Euler, this is simple

enough that we’ll show the error explicitly. The Taylor expansion is

y(xi + h) = yi + hy′(xi) +
1

2
h2y′′(xi) +O(h3).

Since y′(xi) = f(xi, yi), we see that Euler’s Method is based on the Taylor expansion up

to the h2 term. This means the error introduced by one step of Euler’s Method is O(h2).

In other words, Euler’s Method is an order 1 solver.

3.2.2 Runge-Kutta

Runge-Kutta methods are a class of methods that achieve higher accuracy per step at

the cost of additional samples of the function f(x, y). This is done by approximating

y(x) along the interval [xi, xi+1], and then computing f(x, y) at a new point within that

interval, using the additional data to construct a more accurate approximation to y(x)

for the entire interval. This strategy can be continued with additional data points for

increased accuracy. The total number of times this is done per step is denoted by s,

yielding an s-stage Runge-Kutta formula. Once all the samples of f(x, y) are collected,

they are combined with various weighting schemes to produces the value yi+1:

yi+1 = yi + hi+1(ω1k1 + ω2k2 + · · ·+ ωsks), (3.2)

where kj is the j-th sample of f , and ωi is the weight for that sample.

The sampling strategy for Runge-Kutta methods is determined by the following for-

mula for computing the j-th sample:

kj = f(xi + hi+1αj, yi + hi+1

s∑
r=1

βjrkr). (3.3)
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The parameter αj describes the x position of the sample as a proportion of the interval.

The y position of the sample is determined by a weighted average of linear approximations

to y(x), each approximation corresponding to a separate sample. βjr determines the

weight of the r-th sample in the average.

The α, β and ω parameters can be tuned to achieve ease of implementation or error

efficiency. They are the defining characteristic of a particular Runge-Kutta method, and

are usually described in a tableau:

α1 β11 β21 · · · βs1

α2 β12 β22 · · · βs2
...

...
...

. . .
...

αs β1s β2s · · · βss

ω1 ω2 · · · ωs

Note that values of βjr for r ≥ j correspond to the weights of the current and future

stages. In the tableau, these are the values on the diagonal and to the right. If any

of these values are non-zero, then Eq. 3.3 becomes an implicit equation. In the worst

case, all the samples become coupled, and the entire system needs to be solved at once.

If βjr = 0 for r > j, but the diagonal is allowed to be non-zero, the formula is called

semi-implicit, as the samples can be determined by sequentially solving smaller systems

of uncoupled implicit equations. As we will be employing explicit methods, we will only

discuss formulas in which βjr = 0 for r ≥ j. By far the most common explicit Runge-

Kutta method is a 4-th order, 4-stage method called RK4. It is so common that it is

known as the Runge-Kutta method.

Adaptive Runge-Kutta

Adaptive Runge-Kutta methods adjust the step size at every step to satisfy a user-

specified tolerance condition. In order to know when to change the step size, we need

to be able to compute some error estimate at each step. The simplest way to do this is
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to apply an additional higher-order formula simultaneously, with the difference between

the results giving an estimate of the local error. Such an additional formula is called

a companion formula. Clearly, evaluating an additional formula can be costly. Luckily,

there are some tableaus that, with only an additional set of weights ωi, yield two valid

formulas of order p and p + 1. Such (p, p + 1) formula pairs are described by adding

an extra row to the bottom of the tableau. Our solver includes three adaptive solvers.

Two are (4, 5) formula pairs, the Cash-Karp[3] and Fehlberg[5] methods, and the last is

a (5, 6) formula pair implemented by Hull et al.[7].

Armed with an error estimate, we would like to be able to adjust the step size to be

as large as possible while still maintaining a given error tolerance. Given a user-specified

tolerance parameter τ and the current step size hi, we determine that a step is acceptable

if its error esti satisfies the following constraint:

|esti| < hiτ.

We are looking for a multiplicative factor γ such that if hi+1 = γhi, the tolerance con-

straint is met for at the next step

|esti+1| ≈ hi+1τ.

Letting zi be the true solution for the local IVP at the i-th step, the estimate zi given

by a (p, p+ 1) formula pair satisfies

yi = zi + chp+1
i +O(hp+2),

where c is a value dependent on the companion formula. This yields

|esti| = chp+1
i +O(hp+2).

Substituting this into our desired equation for γ, we find

hi+2τ > |esti+1| ≈ c(γhi)
p+1 = γp+1|esti|
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Solving for γ, we find

γ =

(
τhi
|esti|

)1/p

If we were to use this value directly, we would expect to be always on the very edge of

accepting a solution. To deal with additional error, e.g. from floating point arithmetic,

our heuristic for choosing the next step size use a “safety factor” of .9:

hi+2 = .9

(
τhi
|esti|

)1/p

hi+1. (3.4)

If a step is rejected, this formula is also used to adjust the step size for the current step.

This scheme is a well-known heuristic for adaptive step size techniques.

3.3 Multi-step Methods

The most common type of multi-step formula is known as a Linear Multistep Formula

(LMF). Just as Runge-Kutta methods take a linear combination of new samples of the

derivative, LMFs use a linear combination of previous values of the derivative, as well as

previous y values.

yi+1 =
k∑
j=1

αjyi+1−j + h
k∑
j=0

βjy
′
i+1−j (3.5)

If β0 is non-zero, then the LMF is implicit. As with the single-step solvers, the implicit

solvers incur an additional computational cost to achieve greater numerical stability. We

focus on the simplest of the LMFs, the Adams-Bashforth methods, which are explicit

and have α1 = 1 and αj = 0 for j 6= 1:

yi+1 = yi + h
k∑
j=1

βjy
′
i+1−j (3.6)

In essence, this method works by constructing a polynomial that interpolates the deriva-

tive y′ through the last k data points, then directly integrating that polynomial. The

coefficients βj are picked to accomplish this. These coefficients can be either precalcu-

lated or constructed on the fly, which allows variable stepsize and variable order. For an
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s-step method, this yields an order s formula. We chose to use a fixed step size, 4-step

Adams-Bashforth method:

βj =

(
55

24
,−59

24
,
37

24
,−3

8

)
A significant advantage of Adams-Bashforth methods lies in that, regardless of the order

of the method, the function f is only evaluated once per step. In contrast, an order p

Runge-Kutta method requires a minimum of p evaluations per step. Thus, in situations

in which f is costly to compute, the Adams-Bashforth method may yield significant

computational benefit.

As multi-step methods require data from previous steps, the solver must be boot-

strapped. If the solver is variable-order, it may compute the appropriate βj values for

however many steps it has available. Otherwise, a different solver can be used for the

first s steps. In our implementation, we used RK4 for the first four steps to boostrap the

multi-step method.

3.4 Summary

This chapter introduced the basic theory behind ordinary differential equations and initial

value problems. We described a variety of solvers that can be used for general purpose

IVPs, as well as the specific choices that form the basis of our method. These techniques

perform well for non-stiff problems and are designed to converge on to a good solution

while maintaining low computational cost if the solution is sufficiently smooth. While

there some discontinuities, notably at scattering events, the ray-parameterized RTE is

mostly smooth, which makes these techniques suitable for solving the ray-parameterized

RTE. With these tools, we need only fit them into a rendering framework to produce

images with participating media. The next chapter discusses the details of implementing

these ODE techniques in a ray tracer.
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Implementation

4.1 PBRT

Our software is built as a plug-in to the open-source rendering software bundled with

the textbook Physically Based Rendering[17]. The software, known as PBRT, is a fully

functional ray tracer, designed with a multitude of extension points to allow researchers

to try new rendering techniques without having to write an entire rendering system from

scratch. A full description of the software literally fills a textbook, so the discussion here

is limited to the parts that affect the rendering of participating media.

When a ray travels between intersections, PBRT passes the ray to a VolumeIntegrator

class to calculate the ray’s interaction with the medium. The volume integrator’s Li()

method calculates the extent of the ray’s travel through the volume, if any, and re-

turns the amount of light added to the ray by the medium. An additional method

Transmittance() is called to determine the proportion Tr of the ray’s original light that

remains at the other side of the medium. Thus, given a ray with radiance L0 interacting

with the medium, the exiting radiance is the sum of L0Tr and the result of calling Li().

This models equation 2.3.

PBRT comes with two volume integrator implementations: emission, which only

22
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calculates light emitted from the medium, and single, which computes emission, ab-

sorption, and single-scattering effects. Both of these use ray marching to numerically

integrate the volume rendering equation, Eq. 2.3, as parameterized by the ray given.

This uses the Monte Carlo estimator, as defined in Eq. 2.7, which means it computes

a weighted sum of samples of the integrand at a number of points. These samples are

computed by dividing the ray’s extent in the medium is divided into segments of uniform

length ∆x. A sample is drawn from each segment sequentially, and the integrand is

computed from that sample point. The results are weighted and summed accordingly.

There are some considerations to be taken with the sample within segments. If the initial

point is always used, the resulting images exhibit aliasing artifacts. If a random point

is used, it is likely that two adjacent segments will have nearby sample points, which

leads to higher variance in the image. A compromise is to use a uniform offset into each

segment that is selected randomly for each call to Li(). Since the samples along the ray

are chosen sequentially, this makes the algorithm “march” along the ray.

PBRT represents participating medium itself with the VolumeRegion class. This is

where the medium’s physical boundary is stored, as well as spatially varying properties

such as σt(x), σs(x), E(x, ω), and p(x, ω, ωi). These attributes are retrieved via method

calls, allowing the backing data to be either analytical or sampled. PBRT supplies

implementations for homogeneous media, exponential fog (suitable for the atmosphere),

and a grid of sampled data. The grid’s data is trilinearly interpolated to provide C0

continuity within the medium.

4.2 Our Contributions

We produced two plug-ins that implement the VolumeIntegrator interface using ODE

techniques, one with support for single scattering and another one for multiple scattering.

As PBRT does not contain a ray-marching multiple scattering integrator, we created an
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additional plugin which supports this. We implemented six different ODE solvers to be

used by the integrators. Table 4.1 shows the characteristics of the solvers we chose to

use. Each solver was written as a separate class inheriting from an ODESolver interface.

This allowed us to write the volume integration methods without worrying about the

details of the ODE techniques.

Name Order Step-Size Multi-step

euler 1 Fixed Single

rk4 4 Fixed Single

adams 4 Fixed Multi

dverk 5 Adaptive Single

cashkarp 4 Adaptive Single

fehlberg 4 Adaptive Single

Table 4.1: ODE Solver Characteristics

The solvers are written such that they can approximate the solution of any first-

order ODE. Each ODESolver supports two methods, Solve() and Step(). The solvers

are supplied with the ODE by means of a function pointer that evaluates y′ = F (x, y).

Given the solution value at point (xi, yi), Step() computes exactly one step of the solver

at the given step size h, yielding (xi+1, yi+1), where xi+1 = xi + h. Starting from a

given point (x0, y0), Solve() uses Step() repeatedly to find the solution to the ODE

at desired point xf , computing intermediate approximations along a grid with equal

spacing h. When using adaptive solvers, Step() provides an indication of the amount

of error, which Solve() uses to adjust the step size according to equation 3.4. In this

case, Solve() does not necessarily compute intermediate approximations that are equally

spaced.

Li() computes the amount of light exiting the medium along a given ray due to

scattering and emission. This suggests an IVP to solve. The ODE specification is given
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by the ray parameterization of the RTE in equation 2.2, which is implemented in a

callback function that computes L′(t). We need the initial value and the solution domain.

Since PBRT has a separate calculation for the attenuation of incoming light due to the

medium (the Transmittance() method), the initial radiance value is zero. The solution

domain is given by intersecting the ray with the boundary of the medium as given by

the VolumeRegion. Our integrators create one of the six ODESolvers based on a user

parameter, then supply this information to the Solve() method to find the radiance

exiting the media along the ray. An important consideration is that the initial point

given to Solve() needs to be offset by a different random amount for each ray along

the ray direction, a process called jittering. Omitting jitter leads to undesirable banding

in the final image, where the color in the image exhibits step functions that should not

appear. Similar banding would happen in PBRT’s ray marching approach if the sample

offset into each ray segment is uniform across different rays.

4.2.1 Multiple Scattering

As mentioned in Chapter 2, handling multiple scattering requires considerable compu-

tation. Our single scattering integrator mitigates this by approximating L(x, ωi) in the

source term with only direct light sources. Computing L(x, ωi) directly via ODE tech-

niques would be prohibitively expensive due to recursion. We decided to incorporate

Jensen’s photon mapping techniques to simulate multiple scattering[9].

As mentioned in section 2.2, photon mapping is a two-phase technique to accelerate

the calculation of indirect illumination. The first phase shoots photons from light sources

and traces them through the scene, depositing them in a photon map at each interaction

to keep track of illumination throughout the scene. The second phase, the usual rendering

process, uses photons stored in the map to estimate indirect illumination at any desired

location. We will describe each phase in more detail.

PBRT already includes an implementation of photon mapping for indirect illumina-
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Figure 4.1: (Left) During the first pass, photons are placed in the volume according to

rays traced from the light source. (Right) The second pass uses these photons to model

the contribution of multiple scattering.

tion of surfaces called exphotonmap. Their integrator maintains two photon maps, caustic

and indirect, for photons from specular and non-specular paths respectively. We started

with this code, and created a PhotonMap class also maintains a volume map, and can be

shared between both surface and volume integrators. When a photon travels through the

medium, our class attempts to record photons within the volume map. After the photon

exits the medium, photons will be placed in the surface maps, caustic and indirect.

The PhotonMap class has a Construct() method that is called during PBRT’s pre-

processing phase. This method repeatedly traces paths from light sources until either

the specified number of photons has been reached or, after tracing 500,000 paths, the

number of stored photons is less than a thousandth of the traced paths. For each path,

a random light source and direction are sampled. After finding the nearest surface in the

chosen direction, we check for interaction with participating medium before reaching the

surface. As specified in [9], the cumulative density function describing the probability of

a photon interacting with the medium at point x is

F (x) = 1− τ(xs, x) = 1− e−
∫ x
xs
σt(s)ds,

where xs is the point the photon enters the medium, τ is the optical transmittance, and
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σt is the attenuation coefficient. Thus, a photon at a location x is determined to have

interacted with the medium if, for a random parameter ξ ∈ [0, 1], we find that ξ < F (x).

Equivalently, this is true when
∫ x
xs
σt(s)ds > − ln(ξ). In other words, we can find a

photon interaction location by sampling − ln(ξ) and solving
∫ x
xs
σt(s)ds > − ln(ξ) for x.

Practically, this is done by marching along the ray starting at xs, accumulating σt(s)

until it surpasses − ln(ξ) or we’ve exited the medium. In the former case, a photon is

recorded in the volume map and a new path direction is sampled according to the phase

function. In the latter, the ray has exited the medium and intersected the surface, so a

photon is stored in one of the two surface maps, and a new direction is picked according

to the BRDF. No more than ten interactions are allowed per path, and Russian roulette

is also used to randomly terminate the path tracing at any interaction.

When the desired number of photons is reached, they are formed into kd-trees to

assist in the next phase. During the rendering process, whenever the volume integrator

needs to know the incoming light, i.e. for the source term, it calls the photon map’s

VolumeLi method. The formula to compute the radiance at a point x is given in [9]:

Li(x, ω) =
1

σs

n∑
p=1

f(x, ωp, ω)
∆Φp(x, ωp)

4
3
πr3

.

Φ refers to electromagnetic flux, so ∆Φp(x, ωp) denotes the radiance contributed by the

photon p in the direction ωp, which is stored in the photon data structure. The photon

map looks for the n nearest photons to compute the sum, the furthest of which is used to

find the radius of the containing volume r. On note, the use of the n-nearest neighbors is

non-linear and introduces bias to Monte Carlo estimators. As in [9], we have the option

of not storing volume photons from direct lighting, i.e. the first interaction in a path.

This corresponds to separating the multiple and single scattering. In this case, the single

scattering term is computed directly as previously, and then added to the light received

from the photon map.
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4.3 Summary

We introduced the PBRT ray tracing framework upon which we built our renderer. We

discussed the Monte Carlo implementation it uses for participating media calculations,

and described the additional code we added to support our ODE techniques. Addition-

ally, we described the volume photon mapping algorithm we used to support multiple

scattering effects. The next chapter highlights the experiments we conducted with our

renderer and the existing system built into PBRT.
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Results

We will compare the performance and behavior of six integrators on various scenes con-

taining participating media with different volumetric properties and surrounding geom-

etry. Each of these integrators is based on a solver described in Sections 3.2 and 3.3.

We also experiment with the effects of single and multiple scattering on image qual-

ity and rendering time. Finally, we will compare our integration technique against the

traditional Monte-Carlo style ray marching integrator built into PBRT. Ground truth

renderings were generated using a Monte Carlo ray marching integrator with a very

small step size and a large number of samples per pixel. For convenience, the figures are

all contained at the end of the chapter.

PBRT contains functionality for tracking statistics both overall and within individual

components. This gives us the ability to track both the total time for the rendering

process, as well as the time spent only within the ODE solver. Timing at such fine

level incurs significant overhead, so only utilized integrator-specific timings for our first

experiment. Other times given are total rendering times. Images were computed on

two computers, a 2.54 GHz Intel Core 2 Duo and a 3.8 GHz Intel Xeon. Ground truth

renderings were computed using a Monte Carlo ray marching integrator. In addition

to raising the number of samples per pixel, we selected a step size calculated to let the

29
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rendering take approximately three days.

Each solver has its advantages and disadvantages. Our first experiment shows the

effectiveness of using higher order for Runge-Kutta solvers. Figure 5.1 shows a scene

rendered with a first-order Euler solver and a fourth-order Runge Kutta solver, as well as

a ground truth comparison. These were timed so that the integrators had a time budget

of 120 seconds. We can see that the Euler solver exhibits more variance, especially in

the close-up of the sphere, while the image produced by the Runge-Kutta is somewhat

darker.

Our next experiment compares the multi-step Adams-Bashforth solver against a

Runge-Kutta technique, which are both of order 4, as seen in Figure 5.2. The advan-

tage of only requiring one function evaluation per step is clear. Both techniques exhibit

similar noise in the ceiling and the lower right box. While some of this can be fixed

by increasing the number of camera rays per pixel, as we found was necessary to do for

the ground truth, there is a marked decrease in variance for the multi-step algorithm

in the highlighted regions. Furthermore, the multi-step algorithm completes an order of

magnitude faster.

Figure 5.3 shows the results of our last integrator comparison. Similar to the previous

experiment, we pitted a multi-step solver against a single-step Runge-Kutta solver, but

this time the single-step solver used adaptive step sizes. Again, the multi-step solver

outperforms in both time and quality. The image of the Runge-Kutta solver is much

darker. Explicit Runge-Kutta techniques will undershoot the true value of an exponen-

tially decaying function. The absorption component of the RTE exhibits this decaying

behavior, which may account for the darkness of the Runge-Kutta image. Furthermore,

the artifacts within the shafts of light in the Adams-Bashforth image may be a result of

insufficient step size causing the algorithm to miss the true boundaries of the light shafts.

The difference in step size between the multistep solver and the ground truth solution is

a factor of 50.
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The next comparison shows the effects of multiple scattering on the final image.

Figure 5.4 shows a scene rendered with and without multiple scattering. As this is

primarily to highlight the visual differences between single and multiple scattering rather

than the choice of solver, we only show the results of the Euler integration, and omit a

ground truth rendering. Multiple scattering enables visualization of volume caustics, as

well as contributing to scene brightness by considering light paths that a single scattering

integrator does not.

We also compared the performance of single and multistep solvers against the Monte

Carlo integrator in a scene with smoke from a volumetric data source. As described in

Chapter 4, this data is linearly interpolated. Each rendering used the same step size of

0.05 world units. A tolerance of 0.01 was used for the adaptive integrator (See Section

3.2.2 for information on how tolerance is handled). The only difference is the choice of

integrator. We selected a fairly large step size in order to accentuate the errors that arise

from each technique when using insufficient step sizes. Figure 5.5 shows the results of

this test. At the quality setting used, the ODE techniques appear to overestimate the

light within the smoke, and there are artifacts within the front lobe of the smoke with

the Adams multistep method. Otherwise, the time required for all the techniques is of

the same order.
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Figure 5.1: Effects of order on a solution with fixed computational budget (120 seconds

integrator time, 2.54 Ghz CPU).
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Figure 5.2: One and multi-step algorithms (2.54 GHz).



Chapter 5. Results 34

Ground Truth

Adams-Bashforth (137s) Adaptive Runge-Kutta (639s)

Figure 5.3: Comparison of adaptive step-size Runge-Kutta and constant step-size Adams-

Bashforth solvers (2.54 GHz).
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Figure 5.4: Spotfog scene exhibiting scattering effects (3.8 GHz). (Top) Rendered by

Euler integration with single scattering only. (Bottom) Rendered by Euler integration

with multiple scattering.
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Figure 5.5: Smoke data set rendered with many techniques (3.8 GHz). In order from

the top left: Ground Truth, Monte Carlo (58.9s), Euler (50.3s), RK4 (89.6s), Cash-Karp

(87.6s), and Adams (51.2s).
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Conclusions and Future Work

6.1 Conclusions

We introduced a new method of solving the Radiative Transport Equation for the purpose

of rendering participating media. Traditional ray tracers use Monte Carlo integration to

perform this computation, as the technique is suited to a wide number of problems

encountered during ray tracing. Instead, we maintain the RTE in differential form,

allowing us to leverage a large body of research in efficient methods for solving ordinary

differential equations. We built a system utilizing these techniques as a module for

the open source ray tracing software PBRT, allowing us, again, to draw upon existing

techniques for improving rendering efficiency and fidelity. Maintaining their modular

design, our system makes implementing additional ODE solvers that plug into our RTE

solver a simple task.

We tested a variety of solvers, including both single and multistep solvers as well as

adaptive and fixed step size solvers. We found that Euler methods are comparable to

existing Monte Carlo techniques, sometimes outperforming the Monte Carlo techniques

by a small amount. Higher order Runge-Kutta techniques and multistep Adams methods

afford a moderate performance gain as well. However, there are drawbacks in that these
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high order techniques are may have additional aliasing errors at low quality settings.

6.2 Future Work

There has been work on improving Monte Carlo techniques for ray tracing, known as

Metropolis Light Transport, or MLT[19]. The technique uses the path integral formula-

tion of light transport, using the Metropolis sampling algorithm to form new paths by

permuting existing ones. This helps overcome the problem with traditional Monte Carlo

ray tracing that paths which contribute to the image brightness can be difficult to find

in complex scenes. While MLT was initially developed without consideration for partic-

ipating media, it has been adapted to incorporate participating media[16]. It would be

interesting to compare the results of the refined Monte Carlo techniques to those of our

own.

Among the solvers we tested, we found that the multistep solvers had the best perfor-

mance, but there remain other solvers that can be applied to the same problem. Implicit

solvers or other symplectic integrators may be able to better deal with the energy dissi-

pation noticed in figure 5.3, but we do not expect the extra overhead to be a sufficient

gain. We would like to experiment with adaptive multistep solvers. In this case, there

are both variable step size and variable order methods available. Additionally, there are

noted discontinuities in the RTE at scattering events and volume phenomena boundaries,

such as spotlights. We could taylor the ODE solver to detect these discontinuities and

handle them appropriately.

Participating media is an important part of movie special effects. Another area to

explore is the application of ODE techniques to animations, beyond just static images.

As seen in our results, the solvers each have different noise characteristics. It would be

interesting to see how the noise appears visually in sequences of animation frames.
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6.3 Closing Thoughts

This thesis shows that ODE techniques present a viable alternative to Monte Carlo

techniques for solving the RTE in a ray tracing setting. Having identified areas where

efficiency has been improved, and some where results can still be refined, we hope this

will contribute to further work in increased efficiency in rendering participating media.
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