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Abstract 
 

This paper presents a method for painting texture 
interactively on a 3D model.  Unlike some previously 
published methods, the technique presented here does 
not require a grid topology and does not require a dense 
mesh.  The resolution of the texture map produced is 
independent of the density of the geometry. 
We also discuss the application in a 3D application of 
various brushes traditional to 2D painting.  We also 
present ideas that are only possible in 3D. 
 
1. Introduction 
 

It is common in computer graphics to take shortcuts in 
order to generate a believable image efficiently.  Texture 
maps are the most commonly used among such shortcuts.  
They allow us to modulate the properties for any point on 
a surface.  Texture maps are simply a bitmap that can be 
applied to a surface.  The bitmap can contain diffuse 
colour values, alpha (transparency) values, lighting and 
shadow information (usually called light and shadow 
maps respectively in that context).  Texture maps help us 
to efficiently create realistic looking computer imagery. 

The difficulty in using texture maps is that for many 
surfaces used in computer graphics, there is no natural 
parameterization that helps us predictably map a 2D 
bitmap on a 3D model.  Most notably, a general 
polygonal model has no obvious parameterization 
whatsoever. 

The problem of parameterization is currently solved 
by painstakingly mapping each vertex of the polygonal 
mesh to a point on the 2D texture.  Many commercial 
software products are available to help with this.  
Usually, a spherical or cylindrical projection is used on 
the mesh (depending on the shape of the object) and then 
the texture map is tweaked manually to correct the errors 
of the simple projection. 

Needless to say this is a tedious process.  Some studios 
hire artists dedicated to this task alone. 

This paper presents a method for painting the texture 
map directly on the 3D surface interactively.  The user 
never has to worry about parameterization or texture-map 
distortion because what they see on the screen is the final 
result of the texture mapping. 

 
 

Section 2 discusses previous work in this area.  
Section 3 discusses the topology required by the program 
and the corresponding texture map that is generated.  
Sections 4 and 5 discuss some ideas for brushes that can 
be used to paint the texture.  Section 6 discusses 
hardware acceleration techniques that make this 
application interactive.  Finally, section 7 discusses 
results and section 8 provides a conclusion and a 
discussion of future work. 
 
2. Previous Work 
 

Pat Hanrahan and Paul Haeberli described a program 
[1] that can alleviate some of the tedium in texture 
mapping by allowing the artist to paint directly on the 
object. 

Their system allows the artists to paint material 
attributes interactively on the model.  The system is not 
confined to any particular material property and can be 
used to paint diffuse colour as readily as to paint specular 
colour or transparency and even geometric displacement. 

Their system is dependent on a geometric topology 
that can be mapped to a regular grid.  This gives a simple 
parameterization with which to work and removes some 
complexity at the expense of generality. 

Another program that uses direct 3D texture mapping 
is produced by Right Hemisphere called Deep Paint 3D.  
However, we couldn’ t find any published papers 
describing their work. 
 
 
 
 



3. Texture and Topology 
 

Two main extensions to Hanrahan and Haeberli’s 
paper were the drive behind the program presented in 
this paper.  The first was to remove the grid topology 
restriction and the other was to remove the dependency 
between mesh density and texture resolution. 

Our program works on any topology, even non-
manifold topologies.  The only restriction imposed on the 
model is that it be composed of quadrilateral polygons.  
Although, we could have easily allowed for triangles as 
well, we chose to only support quadrilaterals because 
objects represented as Catmull-Clark subdivision surfaces 
[4] are in such a form and are easy to model. 

The density of the mesh and the resolution of the 
texture are independent in our program.  This is 
important because modern hardware can more easily 
render a low-density mesh with high-resolution texture 
than a high-density mesh.  This is accomplished by 
generating an actual bitmap for the texture. 

A first attempt at solving this problem involved 
allocating a separate texture map for each polygon in the 
mesh.  Needless to say, this quickly proved to be 
inefficient and rendered the program too slow for 
interactive application on objects that contain even a 
modest number of polygons. 

The solution currently implemented, is to allocate a 
single texture map (of high-resolution) and assign a 
region of the texture map to each polygon.  The 
parameterization of the polygons and this region 
allocation is done at the same time.  Each polygon gets 
texture coordinates that correspond to its region in the 
large texture map.  Note that in this method, polygons 
that are adjacent in object space do not necessarily get 
adjacent regions in the texture map.  This is what 
removes the topological restrictions imposed by earlier 
work. 

It is important to note here that due to precision errors 
in assigning the texture coordinates, it may be more 
effective to divide the geometry into a small number of 
texture maps rather than using a single texture map. 

The advantage in [1] of closely tying the texture 
resolution to the mesh density is that it can very simply 
implement geometric displacement in real-time.  Our 
system does not allow for this because of current 
hardware limitations.  Once displacement shaders can be 
implemented in hardware, then our system will also be 
able to do this more efficiently.  Currently, our system 
does not preclude painting bump maps or displacement 
maps that can be used in an external renderer that 
supports these features. 

 
 

3.1 Gutter  Space 
 
In an initial implementation, the problem of 

“bleeding”  was very bothersome.  Bleeding occurs when 
the texture regions are laid out too close to one another.  
The problem is particularly annoying because texture 
region adjacency does not correspond to geometric 
adjacency, so bleeding could occur on a polygon far away 
and disconnected from where we are painting.  To solve 
this problem, we create gutter space to separate the 
texture region.  Since the assignment of texture 
coordinates occurs independently of the texture map 
allocation, the gutter space is currently assigned as a 
small fraction. 
 
4. 2D Brushes Applied to 3D 
 

2D paint programs are well established, and many of 
the techniques used in 2D programs have application in a 
3D paint program.  However, some complications arise 
in 3D that aren’ t present in 2D.  The main issue is that 
we have two spaces: screen space and object space.  Our 
implementation currently has four brushes that are 
borrowed from 2D paint programs and applied to 3D. 

 
4.1 Local Space Brush 

 
The local space brush operates only on the local space 

of the geometry.  Once the polygon under the cursor is 
found, and we know what part of the texture map we’d 
like to modify (see Section 6 for how this is done), this 
brush paints a filled circle using the current colour and 
clips the circle to the region of the texture map occupied 
by the polygon.  Of importance to note here is that the 
position under the cursor is sampled only once. 

 
 
 
 
 



 
Figure 4.1.1 Local Space Brush. Notice how the brush 
nib is clipped at the cube face boundary because the 
mouse was clicked inside the face.  Compare this with 
the default brush. 

 
4.2 Screen Space Brush 

 
The screen space brush operates by effectively 

drawing a circle in screen space and projecting down 
onto the mesh.  Here a midpoint algorithm for drawing a 
circle is used to generate a list of pixels in screen space.  
Then each pixel is sampled to get the polygon and the 
texture coordinates at that pixel and then that pixel is 
painted.  Due to the low precision of floating points used 
on the hardware, this does not produce desirable results.  
Many pixels map to the same texture coordinates because 
of the low-precision interpolation.  This produces a 
speckled look, which is usually not what the user expects.  
See section 6 for a discussion on the effect and possible 
solution to the lack of desired precision on the hardware. 

 
 
 
 

 
Figure 4.2.1 Screen Space Brush.  Here we can clearly 
see the problem.  The hardware interpolates using only 8 
bits per channel, thus giving us only a few points on the 
texture map that we can colour. 

 
4.3 Default Brush 

 
For lack of a better name, the default brush operates 

both in screen space and in local space.  When it finds 
the pixels we need to paint in screen space, we then paint 
a circle in local space.  However, since the circles we 
draw in local space are still dependent on the sampled 
pixels and texture coordinates, this brush still suffers 
from the lack of precision on the graphics hardware, but 
to a much lesser degree than the screen space brush. 

 

 
Figure 4.3.1 Default Brush. Notice how the brush nib is 
not clipped at the cube face boundary but looks like a 
circle projected onto the geometry.  Compare this with 
the local space brush. 

 
 
 



4.4 L ine Brush 
 

The line brush implements a simple Bresenham line 
algorithm in screen space and applies the same technique 
in the default brush along the rasterized line.  This 
allows us to draw straight lines on screen and have the 
line projected onto our model. 

This same technique can be applied for virtually all 
simple 2D brushes, for example, circle, ellipse, rectangle, 
and so on.  Only the line brush is currently implemented. 

 

 
Figure 4.4.1 Line Brush. This is the line brush, which 
uses an underlying default brush.  Here the line is 
projected onto the geometry. 
 
5. 3D Brushes 
 

In three dimensions we can offer interesting brushes 
that make our job of painting a 3D surface simpler.  We 
have implemented two such brushes, where one is simply 
the generalization of the other. 

 
5.1 Face Fill 

 
The face fill brush simply colours the polygon under 

the pixel uniformly with the selected colour.  The 3D face 
fill brush provides a generalization of this brush. 

 
5.2 3D Face Fill 

 
The 3D face fill brush behaves like the simple face fill 

brush in that it colours a face in a uniform selected 
colour.  However, it also allows the user to select an 
angle and it continues to colour polygons whose normals 
differ by less than the selected angle.  This allows the 
user the uniformly colour a region that contains a little 
curvature.  Co-planar polygons can be coloured in this 
way by setting the angle to 0, or the entire mesh can be 

coloured by setting the angle to 90 (given that your mesh 
meets the restriction.) 

For this brush, it was necessary to implement a 
structure for connectivity so that face fills don’ t jump 
over discontinuities.  We implemented a simple point 
connectivity structure.  We believe that more predictable 
results would be obtained from an edge connectivity 
structure such as the Baumgart's winged edge structure 
[5]. 

 
 

 

Figure 5.2.1 3D Face Fill Brush. This is the geometry of 
a toy spaceship.  Using the 3D Face Fill brush with the 
angle parameter set to 90 degrees, the entire object was 
painted red, then using an angle of 25 degrees, only the 
burner area was painting in yellow, because the 
polygons comprising this area don’ t defer by more than 
25 degrees. 
 
 
6. Hardware Acceleration 
 

One of the main problems that must be solved is 
performing the inverse mapping from the position on the 
screen where the user clicked to the texture coordinates 
of the polygon that occupies the pixel. 

Our first attempt used the object tag technique 
described in [1] where the entire geometry was rendered 
into a buffer, but instead of colour using an integer that 
uniquely identifies the polygon.  On modern hardware we 
have at least 24 bits to represent the unique ID and can 
thus support a good number of polygons.  Once the 
polygon is discovered we then cast a ray from the eye 
through the pixel and intersect it against the polygon.  
Only the selected polygon is intersected so we do not 
need to perform any ray tracing optimizations.  Once the 
point on the ray that intersects the polygon is found, we 
need to convert this point into parameterized space of the 



polygon.  This is the inverse parameterization required to 
find the texture coordinates corresponding to the point.  
Since we only support “well-behaved”  quadrilaterals, we 
triangulate the quad and find the barycentric coordinates 
of the point in whichever triangle contains it. 

This method works, but it is slow.  We can optimize 
the entire process by taking advantage of modern 
hardware and our imposed texture coordinates.  Our 
texture coordinates are designed in such a way that no 
two polygons have any texture coordinates in common.   
In other words, the texture coordinates uniquely identify 
the polygon.  Thus, instead of rendering a unique ID 
during the picking phase, we instead use the red and 
green channels to render the u and v of the texture 
coordinates respectively.  Thus we let the hardware 
interpolate the texture coordinates for us.  All we have to 
do now is read this buffer to get the texture coordinates 
corresponding to where the mouse cursor was positioned. 

A very important note here is that the precision is still 
24 bits, and since we are only using red and green we are 
limited to 16 bits of precision.  This is not adequate for 
practical purposes and is the cause of the problem in the 
screen space brush discussed earlier.  We get around this 
problem by painting an area instead of just a point.  
However, the ideal solution would come from true 
floating-point operations on the graphics hardware.  The 
next generation graphics hardware promises to offer such 
support. 
 
7. Results 
 

The techniques presented here work well at interactive 
speeds on faster machines.  Older-generation machines 
with poor texture hardware seem to struggle during the 
painting.  We could perhaps implement methods where 
we decrease the texture resolution while the user is 
painting if we require that the program run on the older 
machines. 

The application is fun to use but without more 
brushes, it is hard to produce production quality textures.  
As with other applications of this nature, it requires a 
skilled artist to produce visually appealing results. 

The main dissatisfaction is with the low-precision 
hardware interpolation used to perform the texture 
coordinate calculations.  This limitation makes the 
default brush hard to predict and hard to use for detailed 
work.  Being able to control the brush sizes helps quite a 
bit, but still does not alleviate the need for higher 
precision calculations on the hardware. 

 
 
 
 

8. Conclusions and Future Work 
 

The techniques discussed in this paper are a stepping-
stone towards what could be a very useful and 
entertaining application for painting interactively on the 
surfaces of 3D objects.  Removing the need for the artists 
to manually assign texture coordinates, lifting the grid 
topology restriction, and separating texture density from 
mesh density all go towards making texture mapping 
accessible even to young children. 

See Figures 8.1 and 8.2 for some images of the 
program at work. 

The important next steps are implementing many 
more brushes and improving the texture coordinate 
interpolation precision, either through hardware or 
through a fast software solution. 

Also, more intelligent allocation of texture coordinates 
would be helpful.  For example, a polygon with bigger 
area would occupy a larger texture map region.  This 
would also help in dynamically selecting the texture map 
resolution, which is now done statically. 

Independent to the dynamic texture map resolution is 
being able to calculate and use the optimal size of the 
gutter for the texture map. 
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 Figure 8.1 Dolphin Screenshot.  This image shows the application painting a texture on a model of a  

dolphin modeled using subdivision surfaces.  See Figure 8.2 for the texture map that is generated for 
this model. 

 
 
 



 

 
Figure 8.2 Dolphin Texture Map.  This is the texture map that is generated for the dolphin model shown in Figure 8.1.  
Note that the “ gutter”  space between the texture regions is exaggerated here for clarity. 
 


