
CSC418 / CSCD18 / CSC2504 Visibility

7 Visibility

We have seen so far how to determine how 3D points project to the camera’s image plane. Ad-
ditionally, we can render a triangle by projecting each vertex to 2D, and then filling in the pixels
of the 2D triangle. However, what happens if two triangles project to the same pixels, or, more
generally, if they overlap? Determining which polygon to render at each pixel isvisibility. An
object is visible if there exists a direct line-of-sight to that point, unobstructed by any other ob-
jects. Moreover, some objects may be invisible because theyare behind the camera, outside of the
field-of-view, or too far away.

7.1 The View Volume and Clipping

Theview volume is made up of the space between the near plane,f , and far plane,F . It is bounded
by B, T , L, andR on the bottom, top, left, and right, respectively.

The angular field of view is determined byf , B, T , L, andR:

α

e f

T

B

From this figure, we can find thattan(α) = 1

2

T−B
|f |

.

Clipping is the process of removing points and parts of objects that are outside the view volume.

We would like to modify our homogeneous perspective transformation matrix to simplify clipping.
We have

M̂p =











1 0 0 0
0 1 0 0

0 0 − 1

f

(

f+F

f−F

)

2F
f−F

0 0 −1/f 0











.

Since this is a homogeneous transformation, it may be multiplied by a constant without changing

Copyright c© 2005 David Fleet and Aaron Hertzmann 45

CSC418 / CSCD18 / CSC2504 Visibility

its effect. MultiplyingM̂p by f gives us











f 0 0 0
0 f 0 0

0 0 −
(

f+F

f−F

)

2fF

f−F

0 0 1 0











.

If we alter the transform in thex andy coordinates to be

x̂∗ =











2f

R−L
0 R+L

R−L
0

0 2f

T−B
T+B
T−B

0

0 0 −
(

f+F

f−F

)

2fF

f−F

0 0 1 0











p̂c,

then, after projection, the view volume becomes a cube with sides at−1 and+1. This is called
thecanonical view volume and has the advantage of being easy to clip against.

Note:
The OpenGL command glFrustum(l, r, b, t, n, f) takes the distance to the near and
far planes rather than the position on thez-axis of the planes. Hence, the n used by
glFrustum is our−f and the f used by glFrustum is−F . Substituting these values
into our matrix gives exactly the perspective transformation matrix used by OpenGL.

7.2 Backface Removal

Consider a closed polyhedral object. Because it is closed, farside of the object will always be invis-
ible, blocked by the near side. This observation can be used to accelerate rendering, by removing
back-faces.

Example:
For this simple view of a cube, we have three backfacing polygons, the left side,
back, and bottom:

Only the near faces are visible.

We can determine if a face is back-facing as follows. Supposewe compute a normals~n for a mesh
face, with the normal chosen so that it points outside the object For a surface point̄p on a planar

Copyright c© 2005 David Fleet and Aaron Hertzmann 46

CSC418 / CSCD18 / CSC2504 Visibility

patch and eye point̄e, if (p̄ − ē) · ~n > 0, then the angle between the view direction and normal
is less than90◦, so the surface normal points away from̄e. The result will be the same no matter
which face point̄p we use.

Hence, if(p̄ − ē) · ~n > 0, the patch is backfacing and should be removed. Otherwise, it might be
visible. This should be calculated in world coordinates so the patch can be removed as early as
possible.

Note:
To compute~n, we need three vertices on the patch, in counterclockwise order, as
seen from the outside of the object,p̄1, p̄1, andp̄3. Then the unit normal is

(p̄2 − p̄1) × (p̄3 − p̄1)

‖(p̄2 − p̄1) × (p̄3 − p̄1)‖
.

Backface removal is a “quick reject” used to accelerate rendering. It must still be used together
with another visibility method. The other methods are more expensive, and removing backfaces
just reduces the number of faces that must be considered by a more expensive method.

7.3 The Depth Buffer

Normally when rendering, we compute an image bufferI(i,j) that stores the color of the object
that projects to pixel(i, j). The depthd of a pixel is the distance from the eye point to the object.
The depth buffer is an arrayzbuf(i, j) which stores, for each pixel(i, j), the depth of the
nearest point drawn so far. It is initialized by setting all depth buffer values to infinite depth:
zbuf(i,j)= ∞.

To draw colorc at pixel(i, j) with depthd:

if d < zbuf(i, j) then
putpixel(i, j, c)
zbuf(i, j) = d

end

When drawing a pixel, if the new pixel’s depth is greater than the current value of the depth buffer
at that pixel, then there must be some object blocking the newpixel, and it is not drawn.

Advantages

• Simple and accurate

• Independent of order of polygons drawn

Copyright c© 2005 David Fleet and Aaron Hertzmann 47

CSC418 / CSCD18 / CSC2504 Visibility

Disadvantages

• Memory required for depth buffer

• Wasted computation on drawing distant points that are drawnover with closer points that
occupy the same pixel

To represent the depth at each pixel, we can use pseudodepth,which is available after the homo-
geneous perspective transformation.1 Then the depth buffer should be initialized to 1, since the
pseudodepth values are between−1 and 1. Pseudodepth gives a number of numerical advantages
over true depth.

To scan convert a triangular polygon with verticesx̄1, x̄2, andx̄3, pseudodepth valuesd1, d2, and
d3, and fill colorc, we calculate thex values and pseudodepths for each edge at each scanline. Then
for each scanline, interpolate pseudodepth between edges and compare the value at each pixel to
the value stored in the depth buffer.

7.4 Painter’s Algorithm

Thepainter’s algorithm is an alternative to depth buffering to attempt to ensure that the closest
points to a viewer occlude points behind them. The idea is to draw the most distant patches of a
surface first, allowing nearer surfaces to be drawn over them.

In the heedless painter’s algorithm, we first sort faces according to depth of the vertex furthest from
the viewer. Then faces are rendered from furthest to nearest.

There are problems with this approach, however. In some cases, a face that occludes part of another
face can still have its furthest vertex further from the viewer than any vertex of the face it occludes.
In this situation, the faces will be rendered out of order. Also, polygons cannot intersect at all as
they can when depth buffering is used instead. One solution is to split triangles, but doing this
correctly is very complex and slow. Painter’s algorithm is rarely used directly in practice; however,
a data-structure called BSP trees can be used to make painter’s algorithm much more appealing.

7.5 BSP Trees

The idea ofbinary space partitioning trees (BSP trees) is to extend the painter’s algorithm to
make back-to-front ordering of polygons fast for any eye location and to divide polygons to avoid
overlaps.

Imagine two patches,T1 andT2, with outward-facing normals~n1 and~n2.

1The OpenGL documentation is confusing in a few places — “depth” is used to mean pseudodepth, in commands
like glReadPixels andgluUnProject.

Copyright c© 2005 David Fleet and Aaron Hertzmann 48

CSC418 / CSCD18 / CSC2504 Visibility

T
1

T
1

T
2

T
2

e e

n
1

n
1

n
2

n
2

If the eye point,̄e, andT2 are on the same side ofT1, then we drawT1 beforeT2. Otherwise,T2

should be drawn beforeT1.

We know if two points are on the same side of a plane containingT1 by using the implicit equation
for T1,

f1(x̄) = (x̄ − p̄1) · ~n. (1)

If x̄ is on the plane,f1(x̄) = 0. Otherwise, iff1(x̄) > 0, x̄ is on the “outside” ofT1, and if
f1(x̄) < 0, x̄ is “inside.”

Before any rendering can occur, the scene geometry must be processed to build a BSP tree to
represent the relative positions of all the facets with respect to their inside/outside half-planes. The
same BSP tree can be used for any eye position, so the tree only has to be constructed once if
everything other than the eye is static. For a single scene, there are many different BSP trees that
can be used to represent it — it’s best to try to construct balanced trees.

The tree traversal algorithm to draw a tree with rootF is as follows:

if eye is in the outside half-space of F
draw faces on the inside subtree of F
draw F
draw faces on the outside subtree of F

else
draw faces on the outside subtree of F
draw F (if backfaces are drawn)
draw faces on the inside subtree of F

end

7.6 Visibility in OpenGL

OpenGL directly supports depth buffering, but it is often used in addition to other visibility tech-
niques in interactive applications. For example, many games use a BSP tree to prune the amount
of static map geometry that is processed that would otherwise not be visible anyway. Also, when

Copyright c© 2005 David Fleet and Aaron Hertzmann 49

CSC418 / CSCD18 / CSC2504 Visibility

dealing with blended, translucent materials, these objects often must be drawn from back to front
without writing to the depth buffer to get the correct appearance. For simple scenes, however, the
depth buffer alone is sufficient.

To use depth buffering in OpenGL with GLUT, the OpenGL context must be initialized with mem-
ory allocated for a depth buffer, with a command such as

glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);

Next, depth writing and testing must be enabled in OpenGL:

glEnable(GL_DEPTH_TEST);

OpenGL will automatically write pseudodepth values to the depth buffer when a primitive is ren-
dered as long as the depth test is enabled. TheglDepthMask function can be used to disable depth
writes, so depth testing will occur without writing to the depth buffer when rendering a primitive.

When clearing the display to render a new frame, the depth buffer should also be cleared:

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

Copyright c© 2005 David Fleet and Aaron Hertzmann 50

